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All previous electronic-structure calculations of Gd have obtained a density of states N(E+) much

larger than the experimental value. By comparing Hartree-Fock with local-spin-density-approximation

(LSDA) atomic calculations we previously concluded that the minority-spin 4f resonance just above Er
in the metal, which is responsible for the enhanced N(Er },is an artifact of the LSDA. We present here

a calculation for the Gd crystal in which the conduction electrons experience a Hartree-Pock potential

due to the core electrons and a LSDA potential due to themselves. The resonance is gone, N(E+) is less

than the experimental value (many-body el'ects will increase it), and the lattice constants are in near-

perfect agreement with experiment.

I. INTRODUCTION

It is amazing that the local-spin-density approximation
(LSDA), for exchange and correlation which is based on
the free-electron gas, works as well as it does for atoms,
molecules, and solids. We'3 have recently been discuss-

ing two errors in the LSDA exchange potential for
valence electrons inside the atomic core. One of these er-
rors is important only for magnetic systems and has not
previously been noted because most of its effects are for-
tuitously canceled by an error in the (LSDA) correlation.
The other error, while not small, was not noticed because
either it had very little overall effect on valence electrons
or, when the effect was large, it was blamed on the LSDA
as a whole rather than as a core effect. These errors be-
come obvious in a Taylor series expansion of the ex-
change potential experienced by any electron with spin tr

in the core region where p„„))p„,&a. We have {in Ry)

yLSDA 2( 6y~ )
I /3( + )

I/3

lPcorea+ 3(pve&a/Pcorea) Pve3al

The p«/3ea term represents the exchange potential seen by
core electrons due to core electrons but in the LSDA it is
seen by valence electrons as well. It is much larger than
the actual exchange potential experienced by valence
electrons in the core region, if only because of the core
self-exchange term that it (appraximately) includes. Be-
cause, as a rule, orthogonality to core electrons prevents
valence electrons from collapsing into the core region,
this much too attractive potential in the core region has
only a moderate effect on the valence electrons. %e
showed, however, that the unoccupied 4f minority-spin
states of the LSDA Gd atom not only have a lower eigen-
value than those of the occupied 5d and 6s states but also
have very corelike eigenfunctions, whereas the 4f
minority-spin states of the Hartree-Fock (HF) atom are
unbound, and even if assumed occupied (by promoting
the 5d& electron into the 4f&} are extremely weakly

bound, having an eigenvalue and (outside the core region)
an eigenfunction that are almost identical ta those of an
accupied 5f &

state.
We3 have noted that all Gd energy-band calcula-

tions3 7 yield densities of states at the Fermi energy
N(Ez) which exceed the experimental value and have

very narrow resonance bands of minority-spin 4f elec-
trans just above Et;. It had been pointed out that at
least same of the excess N(Es) was attributable to hy-
bridization between the minority-spin 4f bands and
minority-spin conduction bands at Es, we suggested that
the minarity 4f resonance bands are an artifact of the
overly attractive minority-spin LSDA exchange potential
for unoccupied states in the core region, and that with a
better exchange potential they would not exist and the
calculated N(EF) might be consistent with experiment.
In this paper we show that that is the case.

The second term in Eq. (1) represents the exchange po-
tential between valence electrans and is unphysically re-
duced by a factor of —,'(p„„/p „}3/3. This reduction is
normally welcome since it partially compensates for the
large error in the first term. However, if the valence elec-
trons are spin polarized, this factor gives a huge unphysi-
cal reduction in the polarization energy of the valence
electrons in the core region. For d electrons, whose wave
functions peak quite close to where those of the outer-
most core electrons peak, this can be a very large effect.
Because the LSDA usually yields approximately the
correct magnetization, there must exist a canceling error.
Since the LSDA for correlation does not apply to rapidly
varying charge densities nearly as well as the LSDA for
exchange does, we suspect the correlation functional does
not adequately represent the screening of the exchange
potential due to correlation. This cancellation is good
but not complete. Although the LSDA yields good
values for the magnetization of Fe, Co, and Ni, it un-
derestimates their magnetic energy, as demonstrated by
the fact that it yields the correct bulk modulus for all 3d
and 4d transition metals except Fe, Co, and Ni and that it
finds parama netic face-centered-cubic Fe to be the
ground state. ' We' recently calculated the properties of
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a nine-layer Rh(001) Slm where the valence electrons ex-
perienced a HF core potential and a LSDA potential
among themselves but without correcting the screening
of the exchange potential. We found the surface of
Rh(001) to be ferromagnetic. This engendered a Com-
ment" that the LSDA yields the Fe magnetization and
Rh magnetic susceptibility in agreement with experiment,
whereas our potential makes both of these much too
large, and that since the LSDA does not yield Rh surface
magnetization, our prediction was incorrect. We' were
in general agreement with these comments but pointed
out that there is some experimental evidence' that the
Rh(001) surface is ferromagnetic. If this experimental re-
sult should hold up, perhaps the reason the HF-
core/unscreened-LSDA-valence potential yields the
correct result is that surface screening is weaker than
bulk screening. In cases such as surfaces or magnetic 4f
cores, there is no straightforward ab initio way to screen
the LSDA exchange interaction. The ordinary LSDA
with its canceling errors yields quite reasonable values
for the magnetization of Gd; however, to eliminate the
excessively attractive p,'„,term which causes the unoccu-
pied minority 4f state to collapse into the core (in the
atom) or become a low-lying resonance (in the crystal),
we must use the HF-core/LSDA-valence exchange po-
tential, screening the crystal valence exchange potential
in an ad hoc manner with a single adjustable parameter.
The test of this procedure will be comparison of our re-
sults with experiment.

II. COMPUTATIONAL PROCEDURES

Using the spin-orbit-averaged Dirac equation' we per-
formed a HF calculation' for a Gd atom in the
4f &5d&6s configuration (fractional occupancy is not
possible for HF calculations). Then those core electrons,
taken to be rigid, were used in a spin-orbit-averaged
Dirac calculation in which the valence electrons experi-
ence a HF exchange potential from the core electrons and
a LSDA potential amongst themselves, with the Gd atom
in a 4f~&5d

&
5d &' 6s configuration, corresponding to

the crystal spin polarization. The LSDA potential con-
tains von Barth —Hedin' (vBH) correlation with Hedin-
Lundqvist' (HL) parameters. The majority-spin 4f elec-
trons are treated as core electrons, since in the HF calcu-
lation they lie over 17 eV below the lowest-lying valence
electrons' and their wave functions are exceedingly core-
like.

Combining the Troullier-Martins' method for max-
imurn smoothness and that of Rappe et a1. for minimi-
zation of the large wave-vector content, we constructed
ionic pseudopotentials for the Sd~, 5d&, 6s&, 6s&, 6p&,
and 6pt eigenstates as well as for unbound ' 4ft and 5f (
states. The d pseudopotentials have a cutoff radius of 2.S
bohrs and the others have r, =2.8 bohrs. The HF core
exchange tails were cut off at an approximate Wigner-
Seitz radius of 3.746 bohrs. The usual factorized form
was used for all except the 4f &

where a comparison of
the energy dependence of the phase shifts of the wave
function with the pseudo wave function was unsatisfacto-
ry. This was corrected by calculating the pseudopoten-

tials for unbound 4f &
functions at two energies, 0 and

—0.6 Ry, and combining them with the norm-conserving
Vanderbilt procedure. ' Figure 1 displays the
minority-spin pseudopotentials; the majority-spin pseudo-
potentials diS'er only slightly.

We use the following exchange-energy functional in the
crystal:

[pp]3(3/4~)i /3[( 1 y)(p4/3+p4/3)

+2—i/3y(p +p )4/3) (2)

E.[pt pt) =E,.[pt)+E,.[pt)+E. [pl E,.[p), — (3)

where E,„[p ) and E,„[p) are the screened LSDA and
screened LDA (Ref. 25) exchange density functionals.
These functionals contain a screening wave vector which
can either be treated as a parameter or taken to be the
Thomas-Fermi wave vector KT„=2(k~/m )' . Per-
dew finds that the LSDA overestimates the correlation
energy between parallel-spin electrons in atoms. Presum-

0-

-10-

I

& r(bohrs)

FIG. 1. Gd minority-spin pseudopotentials calculated at the
atomic eigenvalues except for the unbound f functions whose

pseudopotentials were calculated at —0.6 Ry (f, ) and 0 Ry
(f2).

where y is a parameter that will be chosen to obtain the
correct magnetization. Here, of course, p represents the
valence charge density since the HF core exchange is in-
cluded in the spin-dependent pseudopotentials. Note that
Eq. (2) reduces the energy gained by polarizing the crys-
tal but not the exchange energy of the unpolarized crys-
tal. The longer wave-vector components of the difference
between the majority and minority HF core potentials
should, in principle, also be screened. Since there is no
practical way to do this, its effect will be compensated for
by y taking a larger value than a strictly valence polar-
ization screening would demand. In cases where there is
no core polarization, a somewhat more physical form of
valence polarization screening might be considered,
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ably this is also the case for non-free-electron-like states
in crystals. Thus the reduction in the exchange energy of
the polarized crystal given by Eq. (2) or (3) compensates
for this failure of the LSDA to adequately reduce the
correlation energy of the polarized crystal. However, be-
cause correlation, unlike exchange, depends on unoccu-
pied states, it differs markedly from system to system.
Therefore we believe it will be very diScult to obtain an
unparametrized exchange-correlation functional which is
adequate for all spin-polarized systems.

Using Eq. (2) for exchange and vBH-HL correla-
tion' ' we performed electronic-structure calculations
for Gd. The hexagonal-close-packed Brillouin zone (BZ)
was sampled at 1928 points, which is 108 points in its
—,', th irreducible wedge consisting of four hexagonal
planes at (2n /c ) ( —,'„—,'„—,'„and —,', ). There are two ways
to choose the hexagonal array of points. One minimizes
the (triangular) proximity area associated with each point
sampled. The one we chose minimizes the distance from
the sample point to the farthest point on the perimeter of
its (hexagonal) proximity area. Using our conjugate
gradient method we expanded the wave functions in all
plane waves with kinetic energy &50 Ry (between 2646
and 2689 plane waves at the various BZ points for the
equilibrium lattice) to obtain the results presented in Sec.
III. Although we did not test convergence in the crystal,
we expanded the atomic wave functions in spherical
Bessel functions, finding that the p& and p~ eigenvalues
for k,„=50Ry were within 16 and 44 pRy of conver-
gence, respectively, whereas all the f, d, and s eigenvalues
were converged to better than 5 pRy.

III. RESULTS

With y=0. 688 we obtained a spin magnetization of
7.633 pii/atom, essentially identical with the experimen-
tal value, which contains both spin and orbital com-
ponents. Although it has been stated ' that adding an
orbital component to the calculated magnetization will
increase it by between 0.04 and 0.05 pii/atom, that is an
artifact of the fictitious minority 4f resonance. The or-
bital component reduces the magnetization of states just
below EF,' if those are predominantly minority-spin
states, it increases the net magnetization. For the current
calculation we expect the effect to be small and cannot
even predict its sign. In Table I all our results are com-
pared with the recent calculation of Singh and with ex-
periment. In Fig. 2 the minority and majority spin, as
well as the total densities of states N(E), are displayed.
Our N(EF ) = 18.57 states/atom Ry is sufficiently far
below the experimental value to account for the many-
body corrections whereas, depending how far their reso-
nant minority f bands lay above EF, other workers ob-
tained between 25 and 47 states/atom Ry.

That our calculated cohesive energy exceeds the exper-
imental value ' by 5% is typical for transition metals.
That our c lattice constant, ca1culated at 0 K, agrees so
well with the experimental one, measured at 106 K, is
pure coincidence. Nevertheless, the agreement between
calculated and experimental lattice constants is spectacu-

TABLE I. Lattice constants, elastic stiffness constants, bulk
modulus, density of states at the Fermi energy, fcc and hcp en-

ergy difference, cohesive energy, and magnetization of Gd com-
pared with Singh's calculated values and experiment. Those
values in parentheses represent our St to Singh's data. Note
that the BK calculation contains a single parameter y, which
was chosen to obtain the experimental value ofM.

c (bohr)

a (bohr)

(c„+c,2) (GPa}
c33 (GPa)

g (C3) +C f3 ) (GPa)
8(GP )

N(EF) (Ryatom) '

E (fcc-hcp) (mRy/atom)

E«h (eV/atom}
M (pz}

'Reference 32.
Reference 34.

'Reference 8.
Reference 31.

'Reference 30.

BK

10.897

6.873

93.63
78.81
19.14

38.05

& 18.57
1.5
4.344
7.6328

Singh

(10.596)
10.594
(6.614}
6.617

(91.04)
(78.37)
(19.70)
(37.63)
38.8

& 27.1

0.9

7.57

Expt.

10.902'

6.858'

108.25b

78.99b

19 10
41.2b

21.35'
&0
4.14'
7.63'

lar. We calculated the elastic constants c33 and ci3 from
calculated stresses when +2% strains were applied along
the c axis and (c» +c,2 ) and c3i when %1% strains were
applied along the a axes. The average of ci3=19.06
and c» = 19.22 GPa is given in Table I. The experimen-
tal values34 are obtained from speed of sound measure-
ments at 0 K where adiabatic and isothermal elastic con-
stants should be identical. We do not understand the rel-
atively poor agreement between calculated and experi-
mental values for (cii+ci2) when c33 and c» and the lat-

( 20
IX

10

E(ev)

FIG. 2. Majority (long and short dashes), minority (dashes),
and total (solid line) densities of states for Gd.
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tice constants agree so well, although the experimental
c&z may be somewhat less accurate than the others since
it is the only one that could not be measured in the ab-
sence of a magnetic field. The energy of the fcc crystal
was calculated with a 6912-point BZ sample (182 in the
—,', th irreducible wedge). Since the energy tends to drop
with denser BZ sampling and since the fcc sampling is
79% denser than the hcp, the sign of the fcc-hcp energy
difference in Table I is believed to be correct, although
the magnitude may not be completely converged with
respect to BZ sample size. Singh calculated the bulk
modulus by fitting 25 calculated energies with a polyno-
mial in (c/a) and 0, the unit-cell volume. He kindly
sent us his data which we refitted with a polynomial in c
and a, obtaining the elastic constants shown in Table I.
We calculated bulk moduli from

33( 11 12 ) 13
2

8=
(C))+C)2) 4CJ3+2c33

(4)

I' M L A I"

FIG. 3. Energy bands of hcp Gd. The solid lines represent
majority-spin states and the dashed lines are the minority spins.

The discrepancy between Singh's direct fit of 8 and our
value for his 8 obtained from (4) and a fit of the c,, is a
little larger than one might have hoped.

The Gd energy bands are displayed in Fig. 3 and an ex-
panded version around E~ in Fig. 4. A much smaller ex-
change splitting of the d bands is required to get the
correct magnetization than in previous calculations be-
cause of the absence of the large minority f-band hybridi-
zation below EF. The lowest states at I which are s-like
with a small d 2 2 component are split by 0.352 eV and

the next states which are mainly 13 2 & with a small s

component are split by 0.552 eV. Singh's values for these
splittings are 0.90 and 0.97 eV. The experimental value
for the upper splitting is -0.8 eV but the minority-spin
photoemission peak is so broad that this value must be
considered somewhat uncertain. Furthermore, there can
be large self-energy corrections to d-electron excitation
energies which reduce the measured splitting relative to
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FIG. 4. Energy bands of Gd near the Fermi energy. Three
minority-spin bands discussed in the text are labeled.

the band splitting. Although our calculation allows for
both majority- and minority-spin f-electron hybridiza-
tion into the energy bands, we do not have the complexi-
ty introduced by the minority 4f resonance just above
E~. Singh states that without this complexity one can-
not account for the two small pieces of Fermi surface ob-
served in de Haas-van Alphen measurements. In fact,
our bands have the same small hole piece centered at M
as do his. Our structure at the X point is markedly
different; in particular, our bands do not have Singh's
hole piece of Fermi surface centered at E. However,
along the T line (from I to E) there are two minority-
spin bands, T3 and T„which cross each other twice just
above Ez. The spin-orbit interaction wi11 open gaps at
those crossings. If the Fermi energy lies in the gap, there
will be no pieces of Fermi surface there (although there
might be elsewhere in the vertical BZ re6ection plane off
the T line); if EF lies below the gap, two very tiny hole
pieces would be there. More likely, however, the second
observed piece of Fermi surface is the electron piece
formed by the spin-orbit gap at the T3-T2 crossing below
EF. Very recently Ormeci, Wills, and Albers have per-
formed fu/IY relativistic calculations of the Gd Fermi sur-
face both with and without 4f hybridization. Both calcu-
lations were consistent with experiment, indicating that,
at least until de Haas-van Alphen data are able to deter-
mine where the two Fermi surface pieces are in the Bril-
louin zone and whether they are electron or hole pieces,
they will not be of much help in determining whether the
minority-spin f bands are strongly hybridized at EF.

In conclusion, we previously asserted from a compar-
ison of HF and LSDA atomic calculations that the
minority-spin 4f resonance bands present in all LSDA
band calculations are an artifact of the LSDA. This cal-
culation contains all f contributions, but because it uses a
HF core potential, does not have the 4f minority reso-
nance. We believe that a comparison of previously and
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presently calculated lattice constants, elastic constants,
and Fermi surface densities of states with experiment
represents convincing proof that this assertion is correct.

After this work was completed we became aware of in-
verse photoemission data which indicate a minority-
spin 4f resonance about 4.3 eV above EF W. e therefore
extended our energy range at I to 10 eV above EF. We
find no clustering of minority-spin f bands which begin
at 8.36 eV, and of the fourteen 4f &

states at I (because
there are two atoms per unit cell) no more than six are
below 10 eV. This discrepancy with experiment may be
an artifact of using a plane-wave expansion and pseudo-
potentials. Although our pseudopotential cutoff radius is
fairly short range, it is not short range with respect to a
4f core function. If one looks at the 4f &

function in Fig.
3 of Ref. 2, one sees that it starts out like a core function
but as it approaches the axis it bends around and extends
outward for over 30 bohrs. It costs kinetic energy for the
wave function to bend like that and, if the boundary con-
dition were that it came in flat at the Wigner-Seitz radius
rather than at infinity, it might well collapse back into
the core. Thus with our exchange-correlation potential,
an all-electron calculation might agree with the inverse
photoemission data. In either event, whether the 4f &

are
corelike functions 4.3 eV above E~ or extended functions
more than 8.3 eV above EF, their hybridization with

states at and below EF is quite small.
Also after this work was completed, Heinemann and

Temmerman determined that the LSDA ground state of
Gd is antiferromagnetic but that with gradient correc-
tions the ground state is ferromagnetic. The gradient
corrections do not appear to have reduced the minority-
spin 4f contribution below EF in this atomic-sphere cal-
culation. Therefore, using the same ionic pseudopoten-
tials and same valence exchange [i.e., Eq. (2) with the
same value of y ] and correlation functionals we calculat-
ed the antiferromagnetic state. Not only does it lie 118
meV/atom above the ferromagnetic ground state, but its
equilibrium lattice constants, c=10.749 and a=6.903
bohrs, are in poorer agreement with experiment. Thus
our modified exchange-correlation potential corrects two
results of a LSDA calculation of bulk Gd, its magnetic
ground state and its density of states at the Fermi sur-
face.
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