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We investigate the behavior of Bux lines in the presence of both columnar and point disorder in

(1+1) dimensions using renormalization-group (RG) and world-line quantum Monte Carlo (QMC)
techniques. In particular, we calculate the transverse wandering correlation function for a single
boson and recover known results for point and columnar disorder separately. We then examine the
existence of a localization transition of a Bux line in the simultaneous presence of both types of
disorder. We also performed RG calculations for interacting Bux lines. The RG calculations indicate
that the vortex glass is unstable with respect to an arbitrary small amount of columnar disorder.
Using QMC techniques we find that the Bose glass transition temperature is reduced by the point
disorder, in agreement with recent RG calculations. Further we find that the region posited to be
an Anderson glass is completely destroyed.

I. INTRODUCTION

There has been a great deal of interest lately concern-

ing the creation of a deliberately disordered environment
as a method to pin Bux lines and create a true super-
conductor with a vanishing linear resistivity. Two types
of disorder have been employed: point disorder, which is
uncorrelated in space, and columnar disorder (produced,
e.g. , by heavy-ion irradiation) which is correlated in a
preferred direction. While much theoretical attention
has been lavished on the behavior of Bux lines in the
presence of either point or columnar disorder and their
respective pinned glassy phases, the interplay of the two

types of disorder is still an open topic. Both types of dis-

order lead to pinning of Bux lines at low temperatures,
but the nature of the phases is quite diferent. In the
vortex glass the Bux line is pinned in a tortuous mean-

dering path by the point disorder. In the Bose glass, '

the Bux line remains relatively straight, locked to the
columnar pins. However, the interface of the Vortex and
Bose glass phases, where point and columnar disorder
compete, remains beyond the reach of present analyti-
cal approaches. 5 The only guidance comes ft. om a recent

study, where it has been argued that a single Bux line will
always be localized for arbitrary weak columnar disorder,
irrespective of the strength of the point disorder. Inter-
actions between lines could then further limit wandering
and enhance the localizing tendencies.

In this paper we analyze the localization. of single and
interacting Bux lines in the presence of both point and
columnar disorder. In particular, we employ a mapping
of the Bux line problem in d+1 dimensions onto the prob-
lem of disordered quantum bosons in d dimensions. We
measure the transverse Hux line wandering of the single
Hux line and discuss the possible existence of a critical ra-
tio of the columnar to point disorder strength to localize
the boson. Tmning then to the interacting boson prob-
lem, we study the phase boundary of the Bose glass phase

and its stability to point disorder. We combine these sim-
ulations with a renormalization-group (RG) treatment
of a disorder potential, which interpolates between point
and columnar disordered potentials, and we find evidence
for trajectories scaling away from the vortex glass phase.
We also find evidence that a localized phase at weak bo-
son repulsion, the "Anderson-glass" region, is destroyed
by the dephasing efFect of the point disorder.

II. FORMALISM

A. Mapping

Our Monte Carlo analysis is based on the mapping of
Bux lines in d+ 1 dimensions onto the quantum problem
of interacting bosons in d dimensions. This mapping can
be understood qualitatively as arising from the similarity
between the Bux lines aligned parallel to the applied field
and the boson world lines, which appear in a path integral
representation. More specifically, for Qux lines confined
in a plane, the classical de Gennes —Matricon &ee energy
in the absence of disorder is

N

F,~ „= dz ) —eq[drs(z)/dzj[,=i '
1+-).rll "(*)—"(*)ll)

Here the displacement Beld r;(z) describes the position
of Hux line i in a direction perpendicular to that of the
applied field (z). The interaction potential V between the
Qux lines is often simplified to a b function that prevents
Buxes from touching. Then one can define a discrete field
that takes on only integer values

X(*,z) =) e(*-r„(z)),
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where 0 is the Heaviside step function, and rewrite the
classical free energy as

B. Simulation algorithm

+class— dz dz —ei (dA/dz) + —(dA/dx)
1 V 2

G 2 2

(3)

In this paper we consider a discrete lattice version
of the interacting boson problem, the Bose-Hubbard
Hamiltonian

H = t)—(a,+,a;+a,"a,+g)+V) n; +) n;e, (i).
The partition function in the canonical ensemble is then

Z D g g class/

Consider now the quantum-mechanical free energy for
bosons in d spatial dimensions. In the continuum limit

hP

F,„.,„= d~ dh (4 t—d'-4 /dx'
0 2

+c.c.) + —
i

4t 4 i'
I2

plus terms that can be absorbed into a chemical poten-
tial. @ is the second quantized 6eld representing the
bosons. Following Haldane, we can write the Bose den-
sity operator

where 8 B(z) = No + 11(x) is chosen to ensure the dis-
crete nature of the Bose 6eld. Here X0 is the average
boson density and II is a small Quctuation. Linearizing
in II we obtain

hP h -
2 U

Fc c: dc' dc (dB/dc '/c y (dB/dc)'
0 2

(7)

As we shall see, e, represents columnar disorder. The
inclusion of point disorder will be discussed below.

The partition function Z can be written by discretizing
the imaginary time P = Lb,7, separating the exponen-
tials of the kinetic and potential energies, and inserting
compete sets of occupation number states:

x (n(i, 2) ~e e ~n(i, 3))
x. . . (n(, , L) ~e-n.~e-n.~~n(i, 1)). (1O)

The sum is over a classical occupation number field whose
6rst index runs over the spatial sites in the lattice and
whose second index runs from 1 to I and labels the
"imaginary time slice, " that is, the position of the com-
plete set in the expression for Z. Since H conserves parti-
cle number, and K moves bosons only locally, the allowed
configurations of n(i, 7.) form continuous world-line tra-
jectories, which are the analogs of the Hux lines. The
sum over all con6gurations necessary to evaluate Z is
performed stochastically.

Since P is diagonal in an occupation number represen-
tation,

Zquantum—

Comparison of the two partition functions leads to the
analogy

Classical Buxes
T
L
Bg/2
V

Quantum bosons (h)

h/T
5 /t

or, if one wants to set 6 = 1, then the mapping is

where we discard nonlinear terms representing commen-
suration e8'ects. Thus we 6nd that the partition function

Z = ) e ' (n(i, 1)~e ~n(i, 2))
n(i T)

x(n(i, 2)~e ~n(i, 3))
x (n(i, L) ~e ~n(i, 1)),

S, = V~~) n(i, ~)'+a~) ..(')n(i, r).

The matrix elements of the kinetic energy operator K can
be evaluated using the checkerboard decomposition.
We are now in a position to see that "point disorder"
can naturally be incorporated as an additional imaginary
time-dependent random term in Sg, which takes the form

Classical Buxes
L
Bg /2T
V/T

Quantum bosons (h = 1)
1/T
1/t,
U

and all classical energy scales get divided by T. The same
holds true when one includes the chemical and disorder
potentials.

Sf = A~) e„(i,~)n(i, 7.).

All the standard methods of' world line simulations
can now be employed. In addition to Monte Carlo
moves, which locally distort the world lines, we also
include moves that shift the entire world-line position
spatially. This significantly helps equilibration in the
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presence of columnar disorder. The point and colum-
nar disorder are bounded and uniformly distributed, i.e.,
—c, —p & e, „&c,p, where c,p stands for columnar and
point disorder strengths, respectively.

100 ~ ~ ~ ~ \ ~

III. SINGLE FLUK LINE
0.1

In this section we consider a single boson in both a
random point and columnar disorder potential and in-
vestigate the localization of the boson as a function of
the strength of the respective disorders, c/p. In partic-
ular, we focus on the transverse wandering correlation
function,

0.01
0.1 100

FIG. 2. The transverse wandering correlation function for
different positions in imaginary time P along the boson world
line for the case of two point disorder strengths. The slope of
the line is 1.33 + 0.03.

R(7) = t r, no disorder. (14)

Point disorder has been shown to promote lux line wan-
dering due to the presence of favorable site energies which
encourage excursions, and consequently,

R(r) r, point disorder, (15)

with the wandering exponent ( = 2/3. i2 Lastly, in the
case of columnar disorder simple quantum mechanics
leads to the localization of the flux line for arbitrary pin-
ning and thus the transverse extension of the flux line is
bounded3'

R(7 ) t„columnar disorder.

Since our boson must satisfy periodic boundary condi-
tions, we study the wandering of the world line at imag-
inary time 7 = P/2 after positioning the boson at its
lowest-energy site at time slice w = 0. Our runs use on
average 100 realizations of the disorder. We first show
our results, which recover the above limiting behaviors
in Figs. 1 and 2. For the case of no disorder (Fig. 1) we
recover both the exponent 1 and the value of the diffusion
constant t for the case of 32 site chain, in agreement with
Ref. 11. The finite size of the chain limits the correlation

which measures the transverse extension of the boson
world line from its initial position as it traverses the imag-
inary time axis. It is well known that in the absence of
disorder the boson dynamics are diffusive, with the diffu-
sion constant governed by t, or equivalently, the flux line
tension such that for large 7

function for large values of hopping t and for large imag-
inary time separation P. For the case of point disorder
(again for a 32-site chain, hopping t set equal to 1), we
find that the wandering exponent ( increases &om 1/2 to
2/3 for arbitrary point disorder strength, which is shown
in Fig. 2 for p = 10 and 25.

Turning on the point disorder p with a fixed value of
columnar pinning strength c, we see in Fig. 3 that R lifts
up at higher P reaecting the nature of the point disor-
der, which encourages lux line wandering. Our behav-
ior is consistent with that of Kardar 3 who via another
method found numerical evidence that for p/c ( 1.2, the
flux line is localized. However, it has been shown that a
simple extrapolation of the localization length to infinity
is inadequate and the presence of rare regions due to the
point disorder leads to slow glassy dynamics, which keeps
the localization length large but finite. e In Fig. 4 we show
the value of the "localization length, " i.e., the saturation
of the wandering correlation function R, for runs at dif-
ferent values of p/c, which indeed seems to indicate a
crossover to delocalized behavior at a value consistent
with that of Kardar. However, our simulations are lim-
ited to P values, which cannot provide a closer analysis
near (p/c) „;t,, i to reveal whether the localization length
slowly turns over and remains finite at higher values of
p/c, as argued in Ref. 6.
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FIG. 1. The transverse wandering correlation function for
different positions in imaginary time P along the boson world
line for the case of no disorder, Eq. (14). A turnover from
linear difFusive behavior occurs when the Bux line begins to
see the finite lattice size.

FIG. 3. Transverse wandering correlation function at
imaginary time slice P/2 for p = 10, c = 0 (crosses); p = c = 0
(diamonds); p = 10, c = 5 (triangles); p = c = 10 (x's);
p = 0, c = 10 (squares) for a 32-site chain.



13 628 T. P. DEVEREAUX, R. T. SCAI.ETTAR, AND G. T. ZIMANYI

5(r

0
0

I I

0.6 0.8
S/c

FIG. 4. Square of the inverse localization length as a func-
tion of p/c for a 32-site chain.

IV. INTERACTING FLUX LINES

We have seen in the preceding section how the inter-
play between point and columnar disorder aH'ects the dy-
namics of flux lines in the absence of interactions. We
now turn on the flux line repulsion V to study the var-
ious pinned phases of interacting flux lines. The advan-
tage of using a boson world-line approach is that we can
take the on-site interactions into account using the same
numerical techniques as before. However, since the bo-
son world lines are indistinguishable we found it more
useful to measure the superfluid density p, rather than
the transverse correlation function as an indicator of the
Bose glass (p, = 0) and either the vortex glass or line
liquid (p, g 0) phases. In particular, we extend the re-
sults of our previous study of spatially disordered bosons
by adding point disorder. It was shown in Ref. 14 that
there were two localized regions separated by a superfluid
phase as a function of boson repulsion. It was posited
that the physics of the region at small repulsion (Ander-
son glass) was qualitatively different than the phase at
larger values of the repulsion (Bose glass). Therefore,
the two phases may behave di8'erently as point disorder
is introduced. Localization of noninteracting bosons in
one dimension is a consequence of the phase coherent
(back)scattering of bosons and therefore the presence of
a time-dependent potential will dephase the boson wave
functions and thus allow the boson to propagate. How-
ever, in the case of strongly interacting bosons, the boson
repulsion governs localization, and it could be that the
efFects of point disorder are suppressed.

Recently, a renormalization-group (RG) approach has
been applied to the problem of flux lines with point and
columnar disorder. This technique is able to capture the
Bose and vortex glass phases as well as the line liquid
phase which exists at high temperatures. It was shown
that the location of the Bose glass transition is shifted to-
wards higher repulsions (i.e. , lower temperatures) by the
point disorder, while the vortex glass phase is unaH'ected

by the columnar disorder. Also, a phase diagram has
been constructed based on RG calculations, suggesting a
vortex glass —to—Bose glass transition at a critical value
of c/p. However, since the RG treatment was confined
to small disorder, this transition could not be accessed ir)k

Ref. 5.
We consider two approaches towards understanding

the nature of the Bose and vortex glasses in the pres-
ence of both point and columnar disorder. First we will
reconsider the RG approach from Ref. 5, where we in-
troduce a disorder potential which interpolates between
columnar and point disorder potentials. This introduces
another small parameter which allows us to construct the
scaling trajectories. Similar ideas were used by Weinrib
and Halperin on a related problem. Then we perform
quantum Monte Carlo simulations to test the results of
the RG analysis.

A. Renormalization-group approach

We reconsider the coarse-grained free energy in a con-
tinuum description,

—2Vp(x, z)pcos(27r[xp+ u(z, z)]}, (17)

where u is the lux displacementlike field, p is the average
line density, U is the on-site flux repulsion, and ~q is
the line tension. The disorder potential V0 we take to
represent both point and columnar potentials by writing

(Vp(x, z)Vp(z, z )) Ab(z —x )h(I z —z I), (18)

where we take

h,
+0

zo+ I
z —z' I"

where z0 is a short-distance cutoK The Fourier transform
of h(z) is given by

h(k, ) cp + cik, ~ (19)

for small k, and c0 ~ are positive constants. We see that
if a & 1 the potential is governed by short-range corre-
lated disorder and thus describes point disorder, while
for a & 1 the potential is governed by long-range correla-
tions. Thus disorder with long-range correlations, which
decay at larger distances faster than 1/z leads to the
same critical behavior as that due to short-range corre-
lated disorder.

Replicating the above free energy and performing the
disorder average leads to

+gcos(27r[u (x, z) —up(x, z+ z')]}) (2o)
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where a, P C (1, . . . , n} are replica indices, and j = (z, z}. The bulk and tilt moduli are given by K = U/T and

K, = eq/T, respectively, and the bare coupling constant of the nonlinear cosine interactions is g = p 4/T . Lastly,2 2

b, =4/T
We have performed a renormalization-group analysis of Eq. (20) using b = 1 —a and g as small parameters. We

developed a technique which is an extension of the sine-Gordon scaling theory as discussed, e.g. , by Kogut. We

performed our calculations up to next-to-leading order in the couplings. This involved considering terms with eight
displacement fields. High scaling dimensions eliminate xnany of the newly generated terms. As a novelty, in this order
the renormalization of the disorder correlation exponent a became necessary. Upon rescaling by a factor e', tedious
but straightforward calculations lead to the recursion relations as

dK
dl

dK,
oga) = go(2 —K ),

= gq(3 —a —K [1+b, co/2K ]}—Cqgz,
da 2—= —C2g, b,
dl

(21)

with go q
——co qg, Co y 2 are positive constants, and

K ~ = 2z/gK K, T. The recursion relations recover
previous results on the Bose glass and vortex glass tran-
sitions, namely, for a = 0 we have the Bose glass transi-
tion temperature KBG ——3 without point disorder. This
critical value is decreased by both point disorder as found
in Ref. 5, and by the exponent a. The vortex glass transi-
tion K&G ——2 is unmodified by columnar disorder or the
exponent of the decay of the disorder correlations. Let us
denote the dixnensionless measure of the forward scatter-
ing induced by the point disorder by D = 6 co/2K . It
was argued in Ref. 5 that when the forward scattering is
strong enough, D ) 1, then the point disorder, measured
by go, scales faster to strong coupling than the columnar
disorder (gq), indicating a transition to a vortex glass
phase. However, two remarks are in order. First, strictly
speaking when deriving the scaling equations the coefB-
cients of both go and gq (or equivalently the scaling dimen-
sions) should be small. Second, in typical real systems
and numerical simulations the bare values of the forward
and backward scattering are expected to be comparable.
While there is no restriction on D in the theory, go has
to be small, restricting the applicability of the results for
D && 1 for typical systems or at least those which are
not in too small magnetic fields, i.e., p on the order 1.
Therefore conclusions about a transition around D 1
have to be viewed with some caution.

Both of these problems are remedied by the present
method. Frist we see that for a 1 the point at which
the Bose glass becomes unstable occurs for small disor-
der, D = (1 —a)/2 « 1. Second, in this region both
scaling dimensions are indeed small, justifying a proper
expansion. This formulation thus constitutes a techni-
cally sound description of the transition to the vortex
glass phase.

However, let us observe that the disorder exponent a
scales in second order: for a & 1 (b & 0), a scales to zero,
while for a & 1 (h & 0), a scales to large values. Thus
the system, which started out on the vortex glass side of
the transition 1 & D & (1 —a)/2 « 1, will scale into the
Bose glass phase for (1 —a)/2.

This How into the Bose glass phase for all a ( 1 in-
dicates an instability of the vortex glass phase towards
the addition of arbitrarily weak coluxnnar pinning. While
the weakness" is characterized by the critical exponent
a being arbitrary close to the point-disorder lixnit 1, we

I

expect that this result also translates to a critical value
of c/p = 0. This result is also plausible as the same insta-
bility has been argued for single Hux lines, and adding
interactions will further localize the vortices. However,
the Bose glass phase itself is unstable to point disorder,
although admittedly only on astronomically long length
scales. s The most likely picture emerging from the RG
is therefore that the trajectories How towards a strong-
coupling fixed point(s), which is characterized by simul-
taneous finite values of c and p. Because of the pres-
ence of columnar disorder, this feature would most likely
translate to a finite localization length.

B. Numerical approach
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FIG. 5. Super6uid density p, for various repulsion
strengths V/t for the case c = 2, p = 0 (bottom line), and
c = p = 2 (top line).

To test this scenario we have employed our Monte
Carlo algorithm to investigate the phase boundary be-
tween the insulating and superconducting phases of the
boson Hamiltonian, corresponding to the Bose (large V)
or Anderson (small V) glass and either the line liquid
or the vortex glass phase, respectively. No attempt was
made to distinguish between the vortex glass and the line
liquid phases, since it has been difBcult to find the vortex
glass phase &om static properties. Rather, we instead
measure the superHuid density p, as a function of both
boson repulsion V/t = 2(z'K) and c/p to map out the
Bose or Anderson glass phase boundary.

Results of our ron& are shown in Fig. 5 for the case of
a 64-site chain with 40 bosons at a temperature P = 16.
Values of p, are obtained by averaging over several re-
alizations of the columnar disorder (fixed at c = 2) and
point disorder, although each run showed only slight vari-
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ations in the superfluid density and appears to be self
averaging. Typical runs were over 50000 warmup and
100000 measurement sweeps. The bottom curve in Fig.
5 represents new measurements at lower temperatures
of our previous results for p, . The transition from the
superfluid phase to the localized one at large repulsions
occurs at a slightly greater value than the Giamarchi-
Shultz fixed point but is reduced compared to the runs
that were performed at higher temperatures. This may
indicate that the localization length is nearing the chain
size at this value of disorder. Further the localized phase
at small repulsion (Anderson glass) becomes more pro-
nounced at these lower temperatures.

Turning on the point disorder shows that the super-
Quid phase becomes enhanced, which is shown in the up-
per curve in Fig. 5 for c/p = 1. The Bose glass transition
now occurs at a larger boson repulsion, which is in agree-
ment with the RG results from Eq. (21) and Ref. 5. Fur-
ther, the Anderson glass is even more adversely affected
than the Bose glass phase as there is no evidence of a
localized phase at small boson repulsion. It may be pos-
sible that the localization length is beyond the length of
the chain at this temperature although runs performed
at larger P = 32 do not support this. This would in-
dicate that the Anderson glass is destroyed due to the
dephasing eKect of the presence of random site energies
changing in time, and is in agreement with previous re-
sults concerning Mooij anomalies. In addition, we have
performed runs at c/p = 0.1 and have found no evidence
for a localized phase for any value of boson repulsion.

V. DISCUSSION AND CONCLUSIONS

In this paper we have presented the analysis of in-
dependent and interacting flux lines in the presence of
competing point and columnar disorder. Our quantum
Monte Carlo simulations have verified that, for point dis-
order only, the exponent ( characterizing line wandering
changes from 1/2 to 2/3, in agreement with theoretical
predictions. In the presence of columnar disorder a sin-
gle lux line becomes localized. The localization length
grows with the introduction of point disorder. It was ar-
gued in Ref. 6 that the localization length remains finite
but very large for large values of c/p. Our results are not
inconsistent with this picture. We found clear evid. ence
for a finite localization length for c/p ( 0.8, but for larger
values of c/p the localization length crosses over to very
large values, which are inaccesible with our method.

For interacting Qux lines we studied the same issues
with the help of renormalization-group and Monte Carlo
techniques. We developed a variable exponent descrip-
tion of the disorder, which allows for a technically sound
scaling treatment of the problem. The scaling trajecto-
ries indicate the instability of the vortex glass phase for
arbitrarily small values of columnar disorder towards a
Bose glass, which is presumably characterized by the lo-

calization of the vortices. Furthermore as the single Hux.

line appears to be localized for arbitrarily small colum-
nar disorder as well, it is possible that adding interac-
tions between the hnes could further enhance localiza-
tion. Our Monte Carlo technique found a Bose glass
phase at medium values of the columnar disorder. That
this localized phase does not extend to very small val-
ues of e might be due to system size restrictions and
the importance of rare regions. The localization length
could thus be large but finite. It was also shown that the
Bose glass phase is unstable towards the addition of point
disorder, but only on astronomically long length scales.
Thus, presumably the ultimate asymptotic behavior is
governed by a fixed point with both c and p finite. As
c & 0, the main physical characteristic of this phase is
expected to be the localization of the vortex lines.

We continue by noting that previously it has been im-

plicitly assumed that the relevant quantity, which char-
acterizes the disordered environment of Qux lines is the
ratio of the columnar —to—point disorder strengths, c/p.
However, the recursion relations of Eq. (21) seem to pre-
vent a reduction in the scaling to a single dimensionless
coupling due to the presence of the second-term in the
recursion relation for gq, which predicts the reduction of
the Bose glass transition temperature. Further, since the
RG of Eq. (21) is limited to small values of the coupling
constants, the second-order terms could also lead to the
conclusion that both c and p (gi and go) are relevant pa-
rameters, leading to a three-dimensional phase diagram
in K, go and gq. This can be tested numerically and
is a subject for future consideration. Lastly, further nu-

merical simulations are necessary to resolve the nature of
the strong-coupling fixed point(s).

In conclusion, we have studied the behavior of free and
interacting Quxlines in the simultaneous presence of point
and columnar disorder. Renormalization-group analysis
indicates in both cases that the addition of even weak
columnar defects localizes the flux lines. However, the
physics seems to be described. by a strong-coupling fixed
point, the nature of which has to be clarified by numerical
methods. To this end, quantum Monte Carlo simulations
were also performed, which show such a localization be-
havior for medium and strong columnar disorder only.
The possible reason for that may be that the localization
length exceeds the system size in the case of weak colum-
nar pinning. It was also demonstrated that the transition
temperature to the Bose glass is reduced by the presence
of point disorder. Further work is necessary (for instance
from dynamical quantities) to distinguish between the
vortex and line liquid phases.
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