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Exact-diagonalization study of the Hubbard model with nearest-neighbor repulsion
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An exact-diagonalization technique on small clusters is used to study the ground states and single-

particle excitations of the Hubbard model with on-site ( U} and nearest-neighbor ( V) Coulombic repul-

sive interactions. It is shown that the long-range charge-density-wave state realized in a half-filled two-

dimensional square lattice for 4V U persists up to quarter filling, and that the doped carriers form a
small Fermi surface that encloses an area corresponding to the number of doped carriers rather than the
total number of electrons involved in the system. The present result offers a well-defined counterexample
in the discussion of the Fermi-surface dimensions of strongly correlated electron systems, and may pro-
vide a complementary understanding of the large Fermi surface believed to exist in the ordinary Hub-

bard model.

I. INTRODUCTION

Much attention has recently been attracted to the
physics of strongly correlated electron systems including
high-T, cuprates, heavy fermions, low-dimensional or-
ganic conductors, etc. Long-range Coulomb interaction
is known to play a significant role in such systems, '

and much theoretical work has been devoted to clarifying
its role. The extended Hubbard model, which takes into
account both the on-site and nearest-neighbor replusions,
may be the simplest possible model that describes strong
electron correlation with long-range Coulomb interac-
tion. The phase diagram of the model at half filling,
where either a charge-density-wave (CDW) or a spin-
density-wave (SDW) states is realized depending on the
interaction strength, has been studied intensively in the
context of one-dimensional organic systems. ' A possi-
ble relevance of the model to oxide superconductors has
also been discussed. "

In this paper, we will make further investigations of
the CDW phase of the extended Hubbard model because,
although there are number of published papers, not much
is known of its doping dependence and, in particular,
low-energy excitation properties. A study of the effects
of doping of CDW insulators may provide a complernen-
tary understanding of the doping effects in antiferromag-
netic insulators, an issue raised by the discovery of cu-
prate superconductivity.

The single-band extended Hubbard Hamiltonian is
written

H= i g (c; c +H c )+Up—. n.;)n;i+ Vg n;n
&ij}o

with the standard notation, where c, creates an electron
with spin o(g and 1) at site i, n, =c; c, is the number
operator, and n, =n, &+n, ~ (ij ) represen. ts a nearest-
neighbor pair. The parameters t, U, and V are the
nearest-neighbor hopping, on-site repulsion, and nearest-
neighbor repulsion, respectively. We confine ourselves to

low-dimensional systems at T=O K: two-dimensional
(2D) systems are mainly examined but some results for
one-dimensional (1D) systems are also given as a refer-
ence.

We adopt a numerical approach, i.e., the exact diago-
nalization of finite-size clusters by the Lanczos method,
which is known to be a powerful technique to obtain not
only the ground states but also dynamical quantities such
as single-particle excitation s ectra. We take square lat-
tices of the size +8Xv 8, 10Xv 10, and 4X4 in 2D,
and chains of up to 16 sites in 1D. Periodic boundary
conditions are used. The translational and k-group sym-
metries are fully taken into account. '

We will show, for the extended Hubbard model in 2D,
that the CDW long-range order persists up to quarter
filling when the nearest-neighbor repulsion is sufBci.ently
large. This is in contrast to the ordinary half-filled Hub-
bard model where the antiferromagnetic long-range order
collapses very rapidly on doping. We will then show
that, in this CDW phasq, the Fermi surface is small in
the sense that it encloses an area proportional to the
number of doped holes rather than to the total number of
electrons involved in the system. The calculated quasi-
particle dispersion suggests that holes introduced into the
CDW state propagate freely to second- and third-
neighbor sites by tunneling the first-neighbor barrier,
with a reduced effective hopping parameter. The result
thus offers a well-defined counterexample in the discus-
sion on the Fermi-surface dimension of the ordinary
V=O Hubbard and t-J models where a controversy still
exists. ' ' We will also show that, at quarter filling, a
gap opens in the single-particle excitation spectrum, of
which the size is given by min(U, 4V) when t~0, and
SDW long-range order coexists with the CDW long-
range order. The SDW fluctuation exhibits a filling-

dependent incommensurate behavior in both 1D and 2D.
The present results are compared with our previously ob-
tained results' for the ordinary Hubbard mode1.

This paper is organized as follows. We first present the
equal-time charge and spin correlation functions in Sec.
II, whereby the doping dependence of the CDW and
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SDW long-range orders is examined. Then, in Sec. III,
we present the single-particle excitation spectra and
momentum distribution functions, and discuss the low-
energy excitations and Fermi surface of the model. A
summary of this paper with a schematic phase diagram of
the model is given in Sec. IV. Some of our preliminary
results have been published in Ref. 20.

2nd 3rd
H=P J ps, s.+J'$ s; sj

(ij ) (ij )

with

(4)

change interactions, respectively. We obtain the spin
Hamiltonian

II. GROUND STATE

Let us first examine the ground state. We measure
correlation functions for zero-momentum ground states
(unless otherwise stated}, as has always been done in the
standard finite-size calculations of physical quantities.
This is well justified because in order for the finite-cluster
ground state to be "representative" for the ground state
in the thermodynamic limit it should have the same
quantum numbers, i.e., vanishing total momentum. We
define the equal-time charge correlation function as

4&4 4 1 4
9V2 U V U+4V

and

4t 1 2

to fourth order of t. The summations in the first and
second terms of Eq. (4) are over second-neighbor and
third-neighbor pairs, respectively, and P represents the
projection to the states where the electrons are only in

1 iq (R,. —R. )C(q}=—g (n, n )e
EJ

(2)

where R; is the lattice vector, N is the number of lattice
sites, and ( ) represents the ground-state expectation
value. The calculated results for C(q) at q=(m. , n. ) are
shown in Fig. 1 as a function of the filling n, where we
take U/t =8 and V/t =3. It is found that the cluster-
size dependence of C (m, m ) /N is very small for
0.5~n ~1; it may well remain finite in the thermo-
dynamic limit, indicating a v 2Xv 2 CDW long-range
order. The order persists up to quarter filling. The tran-
sition into this CDW phase caused by increasing V is as-
sociated with a ground-state energy-level crossing in the
finite-size calculation. The calculated values of C(q) at
momenta other than q=(m. , m.) are small and featureless
for any filling. No behaviors suggesting discommensura-
tion are noticed; i.e., the removal of electrons by doping
does not influence the CDW wavelength. The motion of
holes in the CDW order is discussed in Sec. III. In the
parameter region 0 & 4V & U we expect an enhancement
of the charge fluctuation which couples with the lattice
degrees of freedom and may lead to a soft-phonon insta-
bility. ' ' The results for C(n.,m ) in this parameter re-
gion, however, indicate that the electronic system alone
does not lead to the CDW long-range order.

The equal-time spin correlation function
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is also calculated, where s,-' is the z component of the spin
operator at site i. The results are shown in Fig. 2. Ap-
proaching quarter filling from half filling, we observe an
enhancement of $(q) at q=(n, O), (m /2, n./2), and (O, m. ),
which suggests a SDW ordering at quarter filling. The
equivalent value of S(q) at these momenta [see Fig. 2(d}]
is due to the hypercubic symmetry of the 4X4 cluster.
The strong-coupling perturbation expansion indicates
that the spin degrees of freedom of the system at quarter
filling are described by a J-J' model, where J and J' are
second- and third-nearest-neighbor antiferromagnetic ex-

0.0
~ nm& . O ~

0.2 0.4
I I

0.6 0.8 1.0

FIG. 1. Filling dependence of the charge correlation function
in (a) 2D and (b) 1D extended Hubbard clusters. (a) shows
C (q)/N at q=(m. , m. ) calculated for the
&8X&8(h),&10X&10(O),and 4X4(o ) clusters with Ult =8
and V/t =3. (b) shows C (q) /N at q =m. calculated for the 8-site
(6), 10-site (0), 12-site (0), and 16-site (X) rings with
U/t = 12 and V/t =7. Insets show the size-scaling behaviors of
available data; the lines, from the top, show the data at
n =1, 0.75, 0.5, and 0.25 in (a), and n =1 and 0.5 in (b).
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one sublattice and there are no doubly occupied sites.
The relation J'~ J/3 holds for any values of U and V
that sustain the CDW order, so that the frustration ' of
the exchange interactions is rather small. It is thus ex-
pected that the 2 X2 SDW long-range order, which corre-
sponds to the divergence of S(q) at q=(m/2, .vr/2), ap-
pears in the thermodynamic limit. An incommensurate
peak is observed in the spin correlation function at
around 0.5 (n ~0.75 in 2D, which is due to strong frus-
tration caused by extra spins introduced into the SDW
order at quarter filling.

The CDW plus SDW long-range order at quarter
filling may persist even when 4V & U, because the system
remains insulating as discussed below. Since the ordinary
V=O Hubbard model shows no indications of long-range
order at this filling, a phase transition is expected when a
finite V term is present. Further studies are required to
clarify what is the critical value of V/t and whether any
experiments can provide this situation. A quantum
Monte Carlo study of this problem is now in progress.

The charge and spin correlation functions in 1D sys-
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tems are also calculated. We examine the case where the
interaction strengths are sufficiently large, i.e., U/t =12
and V/c =7. The results are shown in Figs. 1(b) and 3.
The behavior looks similar to the 2D systems. (i) C (q)//Ic'
at q =~ is almost size independent at n = 1 and —,', but at
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FIG. 2. Filling dependence of the spin correlation function

S(q) calculated for the 4X4 cluster with U/t=8 and V/t=3.
The height of the square bar at each q point indicates the values

of S(q). The part of the Brillouin zone with q„~0 and q~
& 0 is

shown.

FIG. 3. Filling dependence of (a) charge and (b) spin correla-
tion functions calculated for the 1D 12-site ring with U/t =12
and V/t =7 (0 ), and with U/t =12 and V/t =0 {X }.
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III. SINGLE-PARTICLE EXCITATION

Now let us examine the single-particle excitations in
the extended Hubbard model. First, we show the
schematic density of states at 4V& U » t in 2D (see Fig.
4},which enables one to get a rough idea of the evolution

(a)

(b)

8VW

EF

8V-U ~I

IttI
I+ I+
41 4I

I+ I+ I 0tl 4I

I4 I4
41

I+ 5 It
41 I 41

fillings inbetween it decreases significantly with N. CDW
long-range order is then suggested at least at n =1 and —,'.
The momentum dependence of C(q) suggests no discom-
mensurate behaviors in the CDW phase, as in the 2D
case. (ii) The peak in S (q) at q =2k~, which indicates an
incommensurate SDW fluctuation, is observed clearly in
a wide region of n around quarter filling. This incom-
mensurability comes from the Fermi-surface nesting and
is enhanced with increasing U.

of the spectral functions upon doping. At half filling, a
gap of the size 8V—U opens up between lower and upper
bands, since doubly occupied and empty sites are ar-
ranged regularly to form the V'2 XV 2 CDW
configuration. By removing an electron from the half-
filled system, the spectral weight of 1 appears at the top
of the lower band. The Fermi energy lies at this energy,
so that the system is metallic. The same weight also ap-
pears at zero energy. Spectral-weight transfer to this
type continues until quarter filling. Note that this is in
contrast to the ordinary Hubbard model where the
weight of 2 appears at the top of the lower band. At
quarter filling, there appears a gap again, the size of
which scales with U for 4V& U. This gap does not even
vanish for 4V& U and has the size of 4V at t~O al-
though it may close to vanishing if t is too large com-
pared with V. The realization of the quarter-filled insula-
tor, which is a kind of Wigner lattice, seems to be an in-
teresting experimental problem. ' By removing an
electron from the quarter-filled insulator, the spectral
weight of 2 appears at the top of the band around zero
energy, and the system again becomes metallic. The Fer-
mi energy goes through this band on further doping. The
finite-size cluster calculations properly reproduce such an
evolution of the spectral function.

A possible quasiparticle picture may be extracted from
the single-particle spectral function A(k, co), which is
defined as the sum

A (k, co)= A (k, —co}+A+(k, co)

(c)
U

IW

EF

IA 'LI
EF

V

~ 4V—U~
of the photoemission (PES)

(k, co)=y ~(y' '~c„~y')~'5(co—E' '+E')

and inverse photoemission (IPES)

A+(k ~)=y
~

(q'+'~ct. ~y') ~'S(~ E'+'+E'—) (9)
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I Wl
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FIG. 4. Schematic representation of the density of states in
the extended Hubbard model in 2D. The numbers indicate
spectral weight in the ¹ite lattice. The parameter range of
4V) U))t is assumed. Illustrated are (a) the state at half
filling, (b) the state where an electron is removed from half
filling, (c) the state at quarter filling, (d) the state where an elec-
tron is removed from quarter filling, and (e) the one-electron
state in an otherwise empty lattice. The corresponding electron
configurations are also shown.

—2t', s' (cos2k„+cos2k» ) +const (l0)

with the efective second- and third-neighbor hopping

spectra. E„and g„are the vth excited eigenvalue and
eigenvector of the L-electron system, respectively, where
v=O denotes the ground state, and c& is the Fourier
transform of the creation operator c,~. The Lanczos al-
gorithm is used via the continued-fraction expansion of
Eqs. (8} and (9). By adding a small imaginary number i'
to co, we give a Lorentzian smoothing to the spectra,
which otherwise consist of a set of 5 functions. The value
g=0. 15t is used.

First let us examine the spectral function at half filling.
The ground state is at k=(0, 0) with the point-group
symmetry A, . The result for A (k, co) is shown in Fig.
5(a). We find that there appear lower and upper bands,
which are separated by a gap. The spectra are represent-
ed almost entirely by dispersive low-energy states, form-
ing a quasiparticle band. The dispersion of the quasipar-
ticle is represented very well by the following expression
obtained from the second-order perturbation expansion:

cg 4t el coskz cosky
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strengths of

t' =2t' '= 2t
ea' eff

An intuitive picture obtained from this result is that the
single hole introduced into the CDW state propagates
freely to a second- or third-neighbor site by tunneling the
first-neighbor barrier, with the e5'ective hopping
strengths of t',z' or t',ff, respectively. Such a structure of
the single-hole spectral function is in strong contrast to
the ordinary Hubbard and t-J model calculations' where
a broad band of the incoherent continua is observed be-
side the quasiparticle peak at the edge of the gap. The
hole propagation in the CD& state is not associated with
spin distortions, which play an essential role in the SDW
state.

Next let us examine the filling dependence of the spec-
tral function (see Figs. 5 —7). In the case of two holes (or
at n =

—,",) the ground state has the momentum k=(0, 0)
with the A

&
point-group symmetry [which is degenerate

with the k=(m. , m) state with the 82 point-group symme-
try]. The spectral function is calculated for the zero-
momentum ground state and is shown in Fig. 5(b). As in
the standard Hubbard-model cases, ' we find that, upon
doping the half-filled insulator, the Fermi level is shifted
to the top of the lower band, and these appears spectral
weight just above the Fermi energy mainly at k=(m, O), a
gap remaining to the deformed upper band. However, in
contrast to the Hubbard-model results, ' no low-energy
spectral weights appear at k=(vr, m ) and (n, m. /2), so that
the dispersion of the 1ow-energy quasiparticle states
remains basically unchanged. Two holes mainly occupy
the momentum (~,0) which is identical to (O, m) in the
"antiferromagnetic" Brillouin zone. The rigid-band pic-
ture thus works well in this system; the hole-pocket-like
Fermi surface is realized, which encloses an area corre-
sponding to the number of doped holes rather than to the
total number of electrons in the system. The position of
the hole pocket is determined by the interaction of two
holes in the ground state: the two holes are mainly locat-
ed at k=(~, 0) [or at k=(0, ~) j and form a zero-

(a) IPES

\' ~

F
— —---- 16

0
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(n, n/2) (n,0)(a/2, 0) (0,0) (&/2, &/2} (&,&)
k

(b) IPES

-:: -24

-16
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—0

=. ~. ™(
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(n, n /2) (m,0)(m/2, 0) (0,0) (~/2, n /2) (n, ~ )
k

FIG. 5. Single-particle excitation spectra A (k, co) at (a) half
filling (n =1) and (b) 12.5%%uo hole doping (n =0.875) calculated
for the 4X4 cluster with U/t =8 and V/t =3.

FIG. 6. Single-particle excitation spectra A (k, co) at 25%
hole doping (n =0.75) calculated for the 4X4 cluster with

U/t =8 and V/t =3. In (a) the ground state with momentum

(m, 0) is used, and in (b) that with (n/2, m/2) is used. The re-
sults include all the inequivalent k points in the Brillouin zone.
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momentum pair in agreement with the ground-state
momentum k=(0,0), which explains the position of the
hole pocket observed in the spectral function. The
ground state with k=(n. , m), on the other hand, involves
two holes that are located at k=(m/2, n. /2) [and at

( —m. /2, —m/2) which is equivalent to (~/2, m. /2) in the
"antiferromagnetic" Brillouin zone] and form a finite-
momentum pair. Thus the calculated spectral function
for the ground state with k=(m. , m ) also shows the hole-
pocket-like Fermi surface at momenta k=(m/2, ~/2) [or
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FIG. 7. Single-particle excitation spectra A (k, co) at various fillings (except near half filling ) calculated for the 4X4 cluster with
Ult =8 and V/t =3. Displayed are the spectra at (a) n =

—,6, (b) n =
—,6, (c) n =

—,6, (d) n =
—,6, (e) n =—

,'6, and (f) n =—
,'6.
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(
—m/2, —m/2)]. Thus, independently of the ground-

state momentum, a small Fermi surface enclosing an area
corresponding to the number of doped holes is realized;
the position is determined by the interaction between
holes and is located at the momenta k=(vr, O) [or
(7r/2, n/2)] in the 4X4 cluster.

In the case of four holes (or at n =
—,", ) the ground state

has the momentum k=(m, O) or (vr/2, m/2): .the energy of
the state is slightly lower (by 0.0854t in the case of
U jr =8 and Vjt =3) than the energy of the k=(0, 0)
ground state. Such nonzero ground-state rnomenta can
be understood because, due to their weak interactions,
one hole is located at k = ( n., 0 ) [or at k = ( m /2, vr /2 ) ],
and the other three holes are located with zero total
momentum at, e.g., k=(0, ~), (~/2, —m/2), and
(
—~/2, —m/2), i.e., at the edge of the "antiferromagnet-

ic" Brillouin zone. Note that, because momenta of such
mobile holes determine the ground-state momentum, the
choice of nonzero-momentum ground-state does not
affect the CDW long-range order (discussed in Sec. II) of
"background" electrons. The single-particle spectral
functions calculated for these nonzero-momentum
ground states are shown in Fig. 6. %e find that, in agree-
ment with the above picture, the low-energy quasiparticle
peaks appear at k=(~,0), (O, m), and (n/2, m/2. ) for
the (n, O) ground state, and at k=(m/2, m. /2),
(
—n /2, —~ /2), (n, O), a. nd (m/2, n/2) —for the

(a/2, m/2) ground state. No low-energy peaks appear at
k=(n, ~) and peaks of very little weight appear at
k = (~, +m. /2) and (+n/2, m ) T. he ri.gid-band picture
thus works well also in the four-hole case; the dispersion
of the low-energy quasiparticle states observed at half
filling remains basically unchanged. The area of the hole
Fermi surface is now rather extended to include four
holes; for the (m., O) ground state, it includes k=(m, O) and
(O, m ) and partially includes k(+n/2, +~/2), and for the
(~/2, n/2) ground state, it includes k=(m/2, n. /2) and
(
—n /2, n /2) and —partially includes k = (m, O),

(O, n), (m/2, —m. /2), and ( n/2, m/2) —H. owever, .when
one uses a ground state of finite-size clusters to represent
the ground state of the thermodynamic limit, one should
use the state with the same quantum numbers as that ex-
pected in the thermodynamic limit, i.e., the state with
vanishing total momentum. %'e calculate the single-
particle spectral functions for this zero-momentum
ground state, and we show the results in Fig. 7(f). We
again find the same indications of the validity of the
rigid-band picture. The situation holds also in the six-
hole case [see Fig. 7(e)]. In the eight-hole case, i.e., at
quarter filling, we find a gap in the spectral function as
discussed above and the system becomes insulating [see
Fig. 7(d)]. Thus, between half and quarter fillings, a
small Fermi surface, which encloses an area correspond-
ing to the number of doped holes rather than to the total
number of electrons in the system, is realized. Such a
small Fermi surface is not surprising because the CD%
long-range order may persist between half and quarter
fillings as discussed in Sec. II. An intuitive picture in real
space would be that, on doping, doubly occupied sites be-
come singly occupied without disturbing the CDW order
and holes in the singly occupied sites are mobilized to be

natural carriers.
The calculated momentum distribution function

n(k)=g (c(, ck ) (12)
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n=10/16
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n=12/16

O,m)

(m, m)

=14/16

O,z)

O,m) O,m)

FIG. 8. Momentum distribution function n{k) in the 2D ex-
tended Hubbard model calculated for the 4X4 cluster with
U/t =8 and V/t =3. Height of the square bar at each k point
indicates the value of n(k). The part of the Brillouin zone pvith

q» 0 and q~
~ 0 is shown.

is consistent with the above picture. Results of the 4X4
cluster calculation are shown in Fig. 8. One should first
of all note that the overall momentum dependence in
n(k) simply stems from the nearest-neighbor-hopping
kinetic-energy term of the Hamiltonian, and has nothing
to do with the shape of the Fermi surface. ' However, in
agreement with the calculated single-particle spectral
functions, we find characteristic dips at some k points in
the calculated momentum distribution function. The
dips appear, e.g. , at k=(~,0) and (O, n ) for n =

—,", and at
k=(m. /2, n/2) for n =

—",, [see Figs. 8(f) and 8(g)] where

the low-energy peaks appear in the inverse photoemission
spectra. This dip structure of n (k) indicates that the two
holes (or four holes) introduced into the half-filled CDW
state predominantly occupy those momentum rather than
momenta outside the Fermi surface of corresponding
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noninteracting systems. Such a structure can be noticed
even for n =

—,", [see Fig. S(e)], and also for the nonzero-
momentum ground states calculated at n =

&g
Although

the shape of the Fermi surface realized in the thermo-
dynamic limit is still difficult to predict, a simple expecta-

tion consistent with the calculated momentum distribu-
tions and single-particle excitation spectra would be that
at very low doping levels it appears somewhere along the
edge of the "antiferromagnetic" Brillouin zone, i.e., the
line connecting (m, O), (m/2, n/2. ) and (O, m. ), and on fur-
ther doping it extends to form a Fermi surface of a
canal-like shape which includes those k points.

It should be noted that we are discussing the Fermi
surface within a finite-size calculation with no broken
symmetry, demonstrating that a number of indications of
a small Fermi surface are observed. This is not surprising
because the size of the clusters (1) is smaller than the
correlation length of the charge ordering, and the veloci-
ty of the quasiparticles (v) is faster than the correspond-
ing charge fluctuations in the clusters, so that the energy
scale (e) of the present finite-size calculations is
sufficiently low, i.e., l/v « I/e, to detect the small-
Fermi-surface indications. A possible caution would then
be that there can be no long range-CDW order in the lim-
it of infinite spatial scale, and thus the true Fermi surface
defined in the zero-energy limit is large as expected from
Luttinger's theorem. In the present case, however, the
size-scaling behavior of the calculated charge correlation
function [see Fig. 1(a)] suggests the realization of long-
range CDW order in the thermodynamic limit; we there-
fore expect that the observed small-Fermi-surface indica-
tions will survive even in the zero-energy excitation limit
of the infinite system. The present calculations would
rather provide a well-defined example by which we know
how the single-particle spectra and momentum distribu-
tions behave in the finite-size calculations in a situation
where a small Fermi surface is realized.

The single-particle spectral function at quarter filling is
shown in Fig. 7(d}. We find a gap, at the edge of which
we again observe the dispersive state. An indirect gap is
observed in the results of the 4X4 cluster. On further
doping we find that the spectral function seems to ap-
proach the picture expected for noninteracting electrons
(see Fig. 7).

The doping-induced changes in the calculated single-
particle spectra in 1D systems are similar to the 2D case
as shown in Fig. 9, although further studies are required
to show the presence of CDW long-range order (see Sec.
II}and to say anything about the Fermi surface.

IV. SUMMARY

-10

«-0

PES
0 n/6 n/3 n/2 2n/3 5n/6 n

k

FIG. 9. Single-particle excitation spectra A {k,co) in the 1D
extended Hubbard model calculated with U/t = 12 and V/t =7
for (a) the 10-site ring at n =1, (b) the 10-site ring at n =0.8,
and (c) the 12-site ring at n =0.5.

We have studied the extended Hubbard model in low
dimensions by calculating the charge and spin correlation
functions, single-particle excitation spectra, and momen-
tum distribution functions via the exact-diagonalization
technique for small clusters. The schematic phase dia-
gram in the 2D square lattice, which is extracted from
these calculations, is shown in Fig. 10.

It has been argued that the model at T=0 K exhibits a
unique ordered phase in the thermodynamic limit, which
is characteristic of the following. (i} v 2Xv'2 CDW
long-range order is realized at half filling when 4V~ U,
and persists up to quarter filling. (ii) 2X2 SDW order
coexists with the CDW order at quarter filling, the spin
degrees of freedom being described by a J-J' model. The
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V=0

metallic ~ith /arge FS

FIG. 10. Schematic phase diagram of the 2D extended Hub-
bard model. FS means Fermi surface.

single-particle excitations show a gap at this filling, which
scales with min(U, 4V) at t~O. (iii) An incommensurate
peak is observed in the spin correlation function for
0.5 (n &0.75 in 2D and in a wide region around quarter
filling in 1D. The charge correlation function shows no
appreciable incommensurate peaks in either 1D or 2D.
(iv) The single-particle spectral weight above the Fermi
level transferred due to doping the half-filled CDW phase
increases as a5 with a = 1 where 5 is the doping rate,
which is in contrast to a =2 in the SDW phase of the or-
dinary Hubbard model. Doping of the quarter-filled insu-
lating phase gives a transfer of a=2. (v) The calculated
single-particle excitations spectra in 2D indicate that the
holes introduced into the CDW phase propagate to
second- or third-neighbor sites by tunneling the first-
neighbor barrier with a reduced effective hopping
strength. The doping dependence of the spectral func-
tions (up to quarter filling) indicates the validity of the
rigid-band picture in this system. The interaction be-

tween holes is not significant except for the strong on-site
repulsion. (vi) The calculated momentum distribution
functions indicate that, on doping the half-filled CDW
phase, the characteristic dips in n(k) appear at momenta
k=(rr, O), (rr/2, rr/2), and their equivalent points. (vii)
The results (v) and (vi) indicates that the quasiparticle
Fermi surface emerging on doping is small in the sense
that it encloses the area of the number of doped holes
rather than the area corresponding to the total number of
electrons involved in the system. The shape of the small
Fermi surface realized in the thermodynamic limit is still
diScult to predict, but the simplest expectation would be
that at very low dopings it appears somewhere along the
line connecting (m, O), (n./2, m/2), and (O, m), and on fur-
ther doping it extends to form a canal-like Fermi surface
including these k points. The present result offers a well-
defined counterexample in the discussion of the Fermi-
surface dimensions of strongly correlated electron sys-
tems, and may provide a complementary understanding
of the large Fermi surface believed to exist in the ordi-
nary Hubbard model.
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