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A trial shadow wave function is introduced to describe the ground state of “He in the solid and liquid
phases. We have used Monte Carlo integration to optimize the parameters of this function, and have
carried out a thorough analysis of the shadow description of the system. This shows improved pair
correlations, an improved condensate fraction, substantially reduced variational energies, and a good
equation of state. We have explored the melting and freezing transition, and find the transition densities
to be in good agreement with the exact results of Green’s function Monte Carlo (GFMC) calculations.
We introduce a second shadow wave function in which a basis set expansion is used to optimize the two-
particle correlations. This shadow wave function yields pair-correlation functions in excellent agree-
ment with GFMC, as well as a substantial reduction in the variational energies at all densities.

I. INTRODUCTION

Nearly thirty years ago McMillan! published the nu-
merically accurate variational calculation of the ground-
state properties of liquid and solid “He. Since that time
many improvements have been made both in the form of
variational trial functions and in computational metho-
dologies. The purpose of this paper is to present results
for the properties of liquid and solid helium for a class of
variational functions that we recently introduced—the
“shadow” functions.? It is not our primary intention to
show that these functions can yield results that are
markedly better than any achieved previously, although
some are. Rather we aim to show that this class of func-
tions can give a very good systematic description of the
homogeneous phases of “He. We already have achieved
some success in applying the shadow wave-function for-
malism to the roton® and vortex* states, the liquid solid
interface,” and helium droplets.® Thus our approach
seems to be able to deal successfully with inhomogeneous
and excited states of helium systems. Encouraged by
these results, we return here to establish how well shadow
wave functions can describe the homogeneous liquid and
solid phases.

Our earliest work with these functions was intended
primarily to show that they could describe a crystalline
system, and was therefore largely confined to the solid
phase. We have now improved the original function and
extended the work to four densities in the fluid phase,
computing a wide range of physical properties.

Until the introduction of shadow form wave functions
variational wave functions for the ground state of *He
took quite different functional forms to describe the solid
and liquid phases. In the most common wave function,
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the Nosanow-Jastrow form,’ the crystalline order of the
solid phase is imposed through one-body terms that ex-
plicitly localize the atoms in the vicinity of the lattice
sites of a perfect lattice. Such one-body terms violate
both the translational symmetry of the Hamiltonian and
the permutation (Bose) symmetry of the wave function.
Some consideration has been given® to wave functions in
which the one-body terms have the periodicity of the as-
sumed crystalline phase so that the Bose permutation
symmetry is maintained but not the translational symme-
try. These forms are certainly acceptable trial functions.
However there are good reasons to try to construct a
wave function in which the crystalline order arises from
the interparticle correlations and does not have to be im-
posed a priori. First the probability distribution corre-
sponding to such a function is the natural quantum ana-
log of the Gibbs distribution which describes a classical
crystal. Second it allows one to investigate the phenome-
na of nucleation of the crystal phase from a fluid phase.
Finally a function of this structure is essential if we wish
to study phenomena such as vacancy formation, the
liquid-solid interface or the formation of metastable
amorphous states. However we think it is important to
establish the properties of the wave function in the homo-
geneous fluid and solid phases before proceeding to inves-
tigate these more complex phenomena in detail.

The introduction of the shadow form of wave function?
provided a means of avoiding the introduction of a priori
equilibrium positions. Shadow wave functions use the
fact that simple Jastrow functions can be used to describe
systems with crystalline order as was shown long ago by
McMillan.! Although translationally invariant and Bose
symmetric, such Jastrow crystals correspond only poorly
with solid “He. First they share with classical systems a
much greater particle localization than is seen in quan-
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tum solids and second they have very high energies. In
the shadow form, a Jastrow-style crystalline order arises
from a set of auxiliary variables, and is thence transferred
to the system of real particles by coupling each real parti-
cle through a Gaussian factor to one auxiliary variable.
These auxiliary, or shadow, variables are finally integrat-
ed out. In this way the real particles can have a rather
large motion about their equilibrium positions, while the
long-range order is preserved.

The original shadow wave function used simple
power-law forms for the pseudopotential of the shadow
particles. Vitiello et al.® showed that while such a wave
function yields variational energies substantially below
those of simple Jastrow wave functions in the liquid
phase, its description of the solid phase is in even closer
agreement with exact simulation results. Thus, although
shadow functions succeeded in offering for the first time a
unified picture of both phases of ground state *He, there
was a marked disparity in the success of the description
of the two phases, which suggested that the resulting
melting-freezing transition would bear little correspon-
dence with that of real helium systems. Reatto and
Masserini'® suggested on the basis of an interpretation of
the modulus squared of the shadow wave function as an
approximation to the discretized path-integral represen-
tation of the density matrix that a more appropriate form
of intershadow pseudopotential should contain attractive
correlations, and that a scaled form of the helium interac-
tion potential would be appropriate.

We have adopted this suggestion and have carried out
an optimization of the parameters of the shadow wave
function over a range of densities in both the liquid and
solid phases. With this five-parameter wave function we
achieved a significant lowering of the energies. From
these results we fitted equations of state using a polyno-
mial form for the energy dependence upon density. This
yielded melting and freezing transition densities which
are in good agreement with those computed from the ex-
act Green’s function Monte Carlo (GFMC) method. The
structure factor and pair-correlation functions of the sha-
dow form were computed and compared with those of
the old form. The condensate fraction n, was computed
and compared with the original values. Our values for n
are now much closer to the best GFMC estimate at both
the equilibrium and freezing densities.

In a second form of shadow wave function that we in-
troduce, we have used a more general form for the real
interparticle pseudopotential obtained from the basis-set
expansion introduced by Vitiello and Schmidt.!! This
also produced a quantitative improvement in our descrip-
tion of liquid and solid phases of helium, although now
the wave function contains 13 parameters.

II. ANIMPROVED SHADOW WAVE FUNCTION

The Hamiltonian of the system of N helium atoms in a
volume Vis

ﬁZ N )
H=—>— 3 VI+3 V,lry), (1)

i=1 P<j

where the two-body potential V ,(r) is that of Aziz
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et al.'? This potential was chosen because the significant
body of both GFMC and variational work done with it
provides useful comparisons. The GFMC work shows
that it provides an accurate description of the liquid and
solid phase of “He. Three-body terms in the real poten-
tial are believed to introduce only small (=0.1-0.2 K)
corrections to the energy per particle!® in the liquid
phase, making a somewhat larger contribution in the
solid phase. The Aziz potential is given by'?
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The values of the constants are
A=0.5448504%X10°, €/ky=10.8 K,
@=13.353384 , C4=1.3732412,
D=1.241314, Cy=0.4253785,

. =2.9673 A, C,,=0.178100 .

A trial shadow wave function for a system of N Bose
particles has the form

R)= [K(R,S)¥,(S)dS , 3)
where R ={r,,r,,...,r,} and S={s;,s,,...,55}. We
chose the kernel K (R, S) to have the simple form

K(R,S)=1,( R)HO k —Sk) 4)

The function 6 which provides the coupling between
the auxiliary, or shadow variables S and the particle vari-
ables R is taken to be

5
12

O(r, —s;)=e <% 5)
C is a variational parameter that we refer to as the in-
teraction strength.

The functions ¥,(R) and %,(S), which are taken to
have the Jastrow form, correlate, respectively, the parti-
cles and the shadows. Taken by themselves as variational
functions, Jastrow trial functions do not provide good
descriptions of the “He solid phase,! since they describe a
solid phase in which particles possess the much greater
localization than that which typifies classical solids. This
contrasts markedly with the diffuse structure seen in solid
“He. Although in the solid phase the system of shadow
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particles has the greater structure of a Jastrow solid, the
Gaussian coupling of the real particles to the shadow sys-
tem allows the real particles to be substantially less struc-
tured.

In the earlier work, both of the functions #,(R) and
¥,(S) were chosen to have a pseudopotential of the same
power-law form that was used by McMillan.! For ¢,(S)
we now use a Jastrow function

D (S)=[[e ", (©)
i<j
where w(s)=86V  (as). That is, the pseudopotential is
taken as a rescaled version of the physical two-body po-
tential ¥ ,(r). Here 6 and a are the variational parame-
ters.

While there are phenomenological motivations for re-
lating w(s) to V4, the following argument provides a
good theoretical reason for choosing an attractive pseu-
dopotential like our w(s). A wave function of the shadow
form with a pseudopotential directly related to V 4 is sug-
gested by the following argument. Consider the discre-
tized path-integral representation of the density matrix of
the system.!* The action for a path is the integrated sum
of kinetic and potential energies as the system follows
that path in imaginary time. An integration over the
endpoints of these paths may be transformed into an in-
tegration over the centers of mass of the paths.!> In the
shadow wave function, the auxiliary variables can be
thought of as corresponding to these centers of mass of
the particle paths. The Gaussian coupling of a particle to
its auxiliary variable results in a diminished contribution
of widely diffuse paths to the wave function. Interactions
between different particles at particular instants of imagi-
nary time are replaced in part by an interaction between
the centers of mass of their paths. This interaction be-
tween mass centers mimics the interactions in a system of
particles, and provides further justification of our use of
the term shadow “particle” to describe this “secondary”
system. Finally, the fact that the source of this interac-
tion is the potential between helium atoms suggests that
one use a parametrized form of the He-He potential as
the pseudopotential between the shadow particles. This
analogy is most appealing in the dense fluid and solid
phases, where because of the hard core of the atomic po-
tential the particle paths may be thought of as being
reasonably confined by surrounding particles. The form
we have used for w(s) was suggested by Reatto and
Masserini'® as a simple check of this hypothesis.

The present work also explores two Jastrow forms for
¥,(R). In the first one, this function was chosen to have
a pseudopotential of the McMillan fifth power-law form:

—(l/2)u(rij)

Y (R)=]]e ,

i<j

where
b 5
u(r)= l—l . (7)
r

Here r;=|r;—r;| and b is a variational parameter.'®
This form of shadow wave function will be denoted by
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M+ A(S).

The second form for ¥(R) that we explore arises from
the following consideration. To overcome the limitations
of the McMillan form for the pseudopotential, an opti-
mized basis set expansion can be introduced!! that has
been shown to describe accurately the two-body correla-
tions in the ground state of “He systems. We refer to the
shadow wave function in which the two-body correla-
tions of ¥,(R) have been optimized in this way as
O2B+ A(S).

Both these forms of ¢,(R) do not have the correct
long-range behavior for large interparticle separation.!”
We have not included this in our wave function because
this long-range behavior cannot be dealt with by standard
Monte-Carlo techniques. We also know that its inclusion
will lead to only a very small change in the energy of the
system. '8

We will compare the results we obtain from the
M+ A(S) and O2B + A(S) forms for the shadow wave
function with those found by Vitiello et al.;° we refer to
this wave function as M +M(S). In their trial shadow
function both of the pseudopotentials, for the particles
and for the shadow variables, have the McMillan form.

III. THE VARIATIONAL CALCULATION

The variational energy is given by

JdrRV HY,

Ep="Ff——,
T [dR|¥

which is the sum of the kinetic energy Ex and of the po-
tential energy E,. Because the variational energy
possesses a smaller variance when evaluated using the
Pandharipande-Bethe!® form for the kinetic energy, this
form was used in our calculations:

N
Jdr ¥, 3 V2,
EK=—h—2 i=1 ) 9)
2m  [dR|¥.?

The potential energy is given by
JdR ¥, 3V, (r))¥y
i<j

E, =
g [dr|¥|?

(10)

The variational expectation value of an operator O can
be written as

(0)=[ [ [ dR ds dS'p(R,S,S")

OY(R)[]O(r, —s'y)
K

X , 1
!/I(R)He(rk _‘S,k) (1D
k

since O acts only upon the variables describing the sys-
tem of real particles. { ) denotes an average with respect
to I‘I/T(R)|2. Here,
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1

— . (12)

p(R,S,8")=
[ [ [dr ds ds'y,(R)?

To evaluate the expectation value of O the Metropolis
algorithm is used to sample the probability density
p(R,S,S’) from the 9N dimensional configuration space
of the system coordinates together with the two sets of
shadow coordinates. The details of this procedure are the
same as those used by Vitiello et al.® It is interesting to
note that p(R,S,S’) is equivalent to the Boltzman factor
of a system of classical trimers at some effective tempera-
ture, where a trimer consists of a particle interacting har-
monically with two shadow particles, one from each of
the two sets S and S’. This is illustrated in Fig. 1. There
is no direct interaction between the two distinct shadows
of a given trimer. Rather, they interact with one another
indirectly through their interaction with the real particles
and by the interaction between trimers. Because this
analogous classical system consists of trimers, with a very
unusual interaction, results are not easily extracted by
analyzing this classical system.

In addition to the kinetic, potential, and total energies
we have also computed the radial distribution function

1
gr=—S{(8(|r,—r,—r1|)), (13)
Np % !
and the structure function
1
s<k>=ﬁ<plpk> , (14)
where p is the particle density and p, is given by
_ ‘ik-rj
=2 ;e .

A further probe of the trial wave function is the con-
densate fraction n,, which is the fraction of particles oc-
cupying the zero momentum state. This quantity is ex-

FIG. 1. The figure shows two of the classical trimers which
arise when the Metropolis algorithm is used to sample the
modulus squared of the shadow wave function. The continuous
line represents the real particle pseudopotential u (r) and the
dotted lines that of the shadows, w(s). The labels on each
monomer designate the system to which that monomer belongs,
either the real or one of the two shadow sets.

[16(r, —s ¥,(S)
k

[16(r, —s' ), (S")
k

i

r

pressible in terms of p(r), the off-diagonal matrix ele-
ment of the one-body density matrix p;:

Vr(r,ry,...,r;+r1,

NN 52 >
NS RS I ’
where the average is taken with respect to |¥,|%. For a
shadow form wave function, p,(r) may be expressed as

i/lr(R')H@(r'k '_Sk)
k

- ) (15)
P\ G ROTTOG —s¢)
k

pl(r)=(rlpxlo>:< Vrlry,r, ..

where R'={r,...,r;+r,...,ry}, and where R and S
are as in (3). In terms of p,(r) the condensate fraction is
given by
ny= lim p,(r) . (16)
r—>

The condensate fraction provides a very different as-
sessment of a trial wave function. In practice a wave
function yielding good variational energies may not show
corresponding success in describing the off-diagonal
long-range order represented by the asymptotic form of
the one-body density matrix. Conversely, a good conden-
sate fraction does not imply good variational energies, as
the variational energy is very insensitive to the asymptot-
ic form of p,(r).

All our computations start from an ordered initial
configuration corresponding to an fcc crystal. When the
density of the system is below a certain value (approxi-
mately po>=0.43), it quickly evolves to a disordered fluid
state. This is shown very clearly by monitoring the value
of S (k) at a reciprocal-lattice vector and the value of the
mean-square displacements of the particles from their ini-
tial positions. S(k) at a reciprocal-lattice vector drops
rapidly from a value in the range of 30-50 to a value of
the order of unity. The mean-square displacement rapid-
ly grows until it has reached a maximum value propor-
tional to the linear dimension of the simulation cell.
However at high densities (po> greater than 0.492) the
evolution is entirely different and the crystal phase is
stable throughout the entire Monte Carlo simulation.
However this crystalline order is not an artifact of the in-
itial state. We have recently?' been able to demonstrate
in three dimensions the spontaneous nucleation of the
crystalline phase, when the system is started from a com-
pletely disordered initial configuration. In the work re-
ported in this paper we chose the initial configuration to
be that of an fcc lattice as a matter of convenience.

When optimizing the variational parameters, it proved
useful to use a reweighting scheme,?” which allowed the
comparison of the variational energies for two sets of
slightly different parameters. Such a procedure is espe-
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cially useful when the energy differences are much small-
er than the statistical variation of separate energy esti-
mates. As our variational search progressed, it became
apparent that steps in the Metropolis random walk are
correlated over longer times with our M + A(S) (typical-
ly =1500 passes in the liquid phase) form than they were
with the M +M(S) form (several hundred passes). The
wave function with an attractive pseudopotential for the
shadow particles shows markedly enhanced pair correla-
tions between the shadow variables, and to a lesser extent
between the real variables. It is likely that these
enhanced correlations are the source of the longer corre-
lation and equilibration times observed in our runs.

Our runs consisted of a total of about 112000 passes
during each of which an attempt was made to move every
particle and shadow coordinate. In both the liquid and
solid phases, the initial configuration for the system is a
perfect fcc lattice. In the liquid phase, the equilibration
is accomplished in two steps. The initial configuration is
run for 400 passes using a simple Jastrow wave function
of the McMillan form. The configuration obtained in this
way is used as the starting configuration for both the real

system and the system of shadow coordinates, so that in
this starting configuration the shadow particles occupy
the same position as their corresponding real particles.
The same stage of the equilibration phase is carried out in
the usual way, with a number of passes being discarded
until the asymptotic regime of the random walk has been
reached. We chose to be conservative in this, allowing
about 32 000 passes for the equilibration of the M + A4 (S)
runs shown in Table I. This equilibration phase is fol-
lowed by about 80000 passes which comprise the equili-
brated random walk.

The initial equilibration in the solid phase was carried
out in a different way from that of the liquid, since the in-
itial fcc lattice becomes rapidly disordered if a Jastrow
wave function of the McMillan form is used to determine
its evolution. Once the crystal has become disordered, it
will not recrystallize during a typical run of the order of
10° passes. Because of this, and also because we want to
equilibrate the random walk as rapidly as possible, in the
initial equilibration phase of the solid the shadow coordi-
nates are held fixed at the points of an fcc lattice. The
real particles, coupled to these fixed shadow coordinates,

TABLE 1. The table shows variational (E7), kinetic (Ex), and potential (E)) energies obtained from
several wave functions. The results labeled M + A(S) are for the shadow wave function with a scaled
Aziz shadow pseudopotential. O2B + A(S) refers to a shadow form wave function in which a basis set
method has been used to optimize the real two-particle pseudopotential u (7). M+ M(S) refers to a
shadow wave function using a McMillan form power law pseudo-potential for both the system particles
and the auxiliary variables (Ref. 9). In this case the subscript denotes the power of the McMillan form
shadow pseudopotential. O2B+ T refers to results obtained by Vitiello and Schmidt (Ref. 11). GFMC
refers to the Green’s function Monte Carlo results of Whitlock and Panoff (Ref. 23). We also show the

available experimental data (Ref. 24).

e —3

P (A ) ET EK EV
0.0196
M+ A(S) —6.5611+0.032 11.85410.042 —18.415+0.019
O2B+ A(S) —6.6951+0.027 12.7611+0.033 —19.456+00.013
O2B+T —6.80410.015
GFMC? —7.03+0.04 12.081+0.08 —19.11+0.07
0.0218
M+ A(S) —6.599+0.034 14.08510.045 —20.6841+0.024
O2B + A(S) —6.789+0.023 14.8891+0.042 —21.679+0.024
M+M(S), - —6.165+0.019 14.420+0.021 —20.586+0.014
O2B+T —6.862+0.016 14.46810.52 —21.331+0.048
GFMC —7.124+0.02 14.47+0.09 —21.59+0.09
Experiment —17.14
0.0240
M+ A(S) —6.398+0.019 17.1711+0.021 —23.569+0.018
O2B+ A(S) —6.615+0.029 17.738+0.040 —24.353+0.023
O2B+T —6.5241+0.020
GFMC —6.891+0.05 17.31+0.1 —24.21+0.09
Experiment —7.00
0.0262
M+ A(S) —5.871+0.016 20.1331+0.021 —26.008+0.020
O2B + A(S) —6.28610.022 20.508+0.035 —26.7941+0.022
M+M(S), -5 —5.3421+0.012 19.339+0.038 —24.681+0.039
O2B+T —5.83710.023
GFMC —6.5610.06 20.1+0.2 —26.710.1
Experiment —6.53

*The GFMC result is for p=0.0197 A3,
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evolve for several hundred passes by a series of Metropo-
lis steps in which the variational parameters are taken as
slightly different from the optimum ones to assure high
mobility. In this way the real particles remain in the vi-
cinity of their crystal lattice sites because of their Gauss-
ian coupling to the fixed coordinates. Next, as in the
second equilibration phase of the liquid, the shadow par-
ticles are freed and the equilibration continues for about
25000 passes. After the two equilibration phases the
equilibrated random walk continues for 80000 passes.
This procedure results in a more rapid equilibration than
a direct relaxation from an initial lattice. However, we
have verified that a direct relaxation from an initial lat-
tice yields the same equilibrium results.

It should be noticed that this equilibration procedure
for the solid is equivalent to using, during the first phase,
a Jastrow-Nosanow function in place of the shadow func-
tion. In fact a Jastrow-Nosanow function (¥ (R)) has
the form’

Wn(R)=W(R)[[6(r, —RY), 17
k

where W(R) is a Jastrow function, 6 is a Gaussian, and
{RY} are the positions of the lattice sites of the crystal.
It is clear that, once normalized, this function is
equivalent to Eq. (3) when 5, =R}. This also shows that
(17) is a special case of (3): this form is appropriate when
the shadow pseudopotential in W (S) is so strong that the
shadows cannot move. The rigid lattice of shadows
means that correlations between helium atoms are instan-
taneously transmitted across the system in the solid phase
and this is embodied in Eq. (17). On the other hand with
a shadow pseudopotential of finite strength only local
correlations are effective and this is the essential
difference between our wave function and the Jastrow-
Nosanow function.

1V. RESULTS FOR THE FLUID PHASE

The organization of our fluid phase results is as fol-
lows. First we make comparisons between the variational
energies of our wave function and those of GFMC and
experiment. The same comparisons are then made with
the original M + M (S) form of shadow wave function and
with two other variational forms from the literature. The
radial distribution functions of our forms are compared
with those of the earlier shadow wave function and with
GFMC. Comparisons are then made between the varia-
tional structure functions, experiment and GFMC. Fi-
nally, our variational results for the condensate fraction
are presented. Table II shows the values of the optimum

TABLE II. The table shows the optimum parameters for the
liquid phase of the M + A4 (S) form wave function.

3

p (A7) b (A) C(A™? 8 (K™Y a
0.0196 2.812 0.8419 0.088 0.915
0.0218 2.812 0.8419 0.095 0.915
0.0240 2.837 0.9184 0.105 0.920
0.0262 2.837 0.9031 0.110 0.910
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variational parameters b, C, a, and 8 for the M + A(S)
wave function in the liquid phase.

A. Energy

Table I shows the energy per particle obtained from
our M+ A(S) and O2B + A(S) forms of trial functions.
The kinetic and potential energies are also shown. Our
simulations were carried out on systems of 108 and 256
particles. Also included in the table are several results
from the literature. O2B + T designates variational ener-
gies obtained using a trial wave function with optimized
two-body and triplet correlations.!! Energies obtained
with a shadow wave function having a pure repulsive
pseudopotential of the McMillan form for both the real
particles and the shadows’ are designated by M +M(S).
Finally, we show the GFMC energy and the correspond-
ing kinetic and potential energies from the liquid phase
work of Whitlock and Panoff®> for systems of 64 parti-
cles, as well as the experimental energies of Roach, Ket-
terson, and Woo0.2*

1. Comparisons of M + A(S) with GFMC and experiment

The GFMC energies were obtained by a Monte Carlo
solution of Schroedinger’s equation. They are believed to
be exact for the Aziz potential apart from small statistical
uncertainties. Our M + A(S) variational energies are
consistently about 0.5 K above the GFMC energies at all
densities in the liquid phase except at the GFMC freezing
density 0.0262 A 3. At that density our energy is about
0.7 K above the GFMC result. Our wave function yields
a lower kinetic energy compared with GFMC at all ex-
cept the freezing density. The difference in our
M+ A(S) kinetic energies and those of GFMC is most
pronounced at low densities and less so as the density in-
creases. At the freezing density the two results are in
agreement. The variational potential energy is con-
sistently higher by about 0.7 K than the GFMC potential
energy, except at the equilibrium density where it is
about 0.9 K higher. Overall our variational results are
above those of GFMC by an amount essentially indepen-
dent of the density except for the small variation seen
near the freezing density.

Table I also shows experimental energies derived from
the results of Roach, Ketterson, and Wo00.%* Because of
the close agreement of GFMC with experiment, essential-
ly the same observations arise from the comparison of
our energies with experiment as with GFMC.

2. Comparison of M + A(S) with the M + M (S)
shadow wave function results

A comparison of the energies of the M+ A4(S) form
with the results obtained using a repulsive power-law
form for the shadow pseudopotential is made at the equi-
librium and freezing densities. These are the only two
densities in the liquid phase where that function was opti-
mized. This comparison shows the improvement in this
form over the original shadow form.

At the equilibrium density, our form yields a variation-
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al energy 0.5 K lower than that with the repulsive sha-
dow pseudopotential. This is a substantial improvement
when one considers that the M +M(S) energy is only
about 1 K above the GFMC result. At the freezing den-
sity, the reduction in energy is about 0.5 K. A good illus-
tration of the significant improvement in our M+ A(S)
form over M +M(S) is that the reduction in energy is
nearly half of the difference between the M + M (S) and
GFMC. The improvement is comparable to the reduc-
tion in energy which occurs when explicit three-particle
correlations are introduced into the wave function.?®

3. The basis-set method

As we mentioned in Sec. II, a method has recently been
introduced!! to describe the two-body correlations be-
tween helium atoms in a many-body wave function. The
many-body correlations are written in the usual way as a
product of two-body factors f(|r;|). The two-body
correlation function f(r) is then expanded in terms of a
basis set f,(r),

fr=3c,falr)

subject to

>c,=1.

n
The f,(r) are chosen to be the set of functions which are
solutions of the two-body Schroedinger equation for a
pair of helium atoms interacting via the Aziz potential,
subject to the boundary condition that f,(r >d)=1. The
parameter d was chosen to be one-half the size of the
simulation cell. Schmidt and Vitiello!! truncated this ex-
pansion at ten terms and then optimized the variational
energy with respect to the ten coefficients in the expan-
sion. The resulting energies were, when triplet correla-
tions were also included, lower than previous variational
estimates at all densities in the fluid phase. This form is
referred to as O2B +T.

To apply this method within the framework of our sha-
dow wave function, we replaced the simple McMillan
form for the two-body correlation function for the real
particles with an expansion in terms of the same ten basis
functions as were used by Schmidt and Vitiello. We then
held the parameters describing the shadow correlations
fixed and minimized with respect to these ten parameters.
The shadow wave function having this form is called the
O2B+ A(S) form. With this approach we were able to
lower the ground-state energy at all densities in the fluid
phase. Full minimization would require that also the
shadow parameters of the O2B + A(S) form were reop-
timized. Computation in few cases showed that the ener-
gy was not significantly lowered by this. A difficulty
which arises in the optimization of the O2B + A(S) pa-
rameters is due to the insensitivity of the variational ener-
gy to the long-range behavior of u (r). As a result of this
insensitivity, several different sets of variational parame-
ters {c;} can yield essentially the same energies, even
when there are qualitative and quantitative differences in
the long-range behavior of the different pseudopotentials.

We show the O2B + A(S) energies at four densities in
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the fluid phase in Fig. 2(a). In the same figure we display
the energies using our M + A4(S) shadow wave function,
as well as those obtained by Schmidt and Vitiello’s
O2B +T form. Also included are results obtained by the
GFMC method. The smooth curves shown there are
third-degree polynomial fits to the data. These fits are
described in detail in Sec. IV B.

While the basis-set approach leads to lower energies
the energy density curve is now comparatively flat, i.e.,
rises much less steeply as the volume decreases. This im-
plies that the pressure, which is simply the negative of
the slope of the energy curve with respect to volume, is
much too low in the high density fluid. This is shown in
Fig. 2(b). We therefore have a somewhat paradoxical re-
sult; the energies are lower but the equation of state p(p)
is unsatisfactory. It is possible that a resolution of this
paradox might be found in a further minimization of the
coefficients in the basis-set expansion. In other words,
there may be another region of parameter space which
leads to low energies and also to a satisfactory equation
of state. Since the main focus of this work is to examine
the consequences of introducing attractive correlations
between the shadow particles, we have not undertaken
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FIG. 2. (a) The figure shows our O2B + A(S) variational en-
ergies, together with those of Vitiello and Schmidt. The GFMC
energies are also shown (Ref. 23). The smooth curves are a po-
lynomial fit to the energies. Squares denote O2B + A(S), circles
O2B +T, triangles GFMC, and stars M + A4(S). (b) This figure
shows the pressure as a function of specific volume obtained by
differentiating the smooth curves of (a). The symbols are as in

(a).
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the rather formidable task of making a still wider search
in the parameter space for the real particle correlations.

4. Comparison of the M + A(S) form with O2B+T

It is interesting to compare the energies obtained from
our M+ A(S) form with those from the O2B + T form'!
of Vitiello and Schmidt. Our form shows a steady im-
provement compared with the O2B + T form as the den-
sity increases. Although it gives a variational energy
about 0.2 K higher than that of the O2B + T form at the
lowest density studied, this energy difference decreases at
higher densities until at the freezing density the energies
of the two wave functions are in agreement. Because our
trial function compares well with a wave function having
both two- and three-body correlations, it is evident that
this form of the shadow function recovers a large part of
the energy which is due to correlations between more
than two atoms.

5. Comparison of O2B + A(S)
with other variational results

The results for the 02B + A(S) shadow wave function
illustrate the improvement in the shadow description
when a much more general form for the real particle pair
correlations is used. Comparison of the O2B + A(S) en-
ergies with those of the M + A(S) form shows that the
former leads to a decrease of about 0.14 K compared
with the latter at the lowest density. The trend as a func-
tion of density is for the O2B + A(S) form to improve
until at the highest density studied in the liquid phase it
yields an energy which is 0.4 K lower than that of the
M+ A(S) form. This means that the O2B + A(S) wave
function yields a variational energy almost a full degree
lower than that of the original M +M(S) shadow wave
function.

Thus, the optimization of the two-body correlations
gives rise to a significant improvement in the variational
energy near the freezing density, whereas the correspond-
ing improvement near the equilibrium density is less than
half as great, and is less still at the lowest density con-
sidered. The improvement with density of the
O2B + A(S) form compared with the M + A(S) form is
expected from the fact that at higher densities, the parti-
cles probe the inner region of the potential more fre-
quently than at lower densities. Thus, the wave function
which represents the correct two-particle correlations in
this inner region most correctly should show the greatest
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improvement at higher densities. In contrast with the
pair-correlation functions computed from the basis-set
expansion, the McMillan form Jastrow function of the
M + A(S) form is a priori inappropriate for the inner re-
gions of the Aziz potential. Another possibility, men-
tioned previously, is that the arduous variational search
for the coefficients in the basis-set expansion may have
been incomplete, so that there may be other regions of
the parameter space that yield even lower variational en-
ergies. Even considering this possibility, our new results
at the freezing density are the lowest variational energies
reported using variational Monte Carlo.

B. The equation of state

Our energies at four densities in the fluid phase were
fitted to a third-degree polynomial of the form

2 3
E_4+8 +C

N

P~ Po

Po

Pro

Po

The parameter p, is the zero pressure, or equilibrium
density. Such a form?* describes very well the experimen-
tal equation of state, and has widespread use in the varia-
tional and GFMC literature. The values of the parame-
ters in the fit and their errors are shown in Table III. The
errors shown there arise from the statistical uncertainty
in the energies. The GFMC parameter values reported
by Kalos et al.!® are also shown in the table. The values
of the curvature terms B and C show the extent to which
the variation with density of our variational result agrees
with that of the GFMC calculation.

The table shows that the coefficients B, C, and p, for
the M+ A(S) form are in good agreement with the
GFMC values. Because of the agreement, the pressure,
given by p?[dE(p)/dp], is well represented by the
M+ A(S) form. The table illustrates the discrepancy be-
tween the O2B+ A(S) and GFMC equation of state
remarked upon previously, which is unambiguous even
considering the rather large uncertainties in the fit.

C. The radial distribution function

Figures 3(a) and 4 show the radial distribution func-
tions g(r) obtained in the liquid phase at the equilibrium
and freezing densities. These results are shown for our
M+ A(S) and O2B + A(S) forms, together with those of
the M + M (S) shadow wave function and the GFMC re-
sults of Kalos et al.!> At the equilibrium density, the
original M +M(S) form wave function yielded a g(r)

TABLE III. Fitting coefficients in the equation of state curve in the liquid phase for the M + A4(S)
and O2B + A(S) variational results. The GFMC result of Kalos et al. (Ref. 13) is also shown. Our en-
ergies at four densities in the fluid phase were fitted to a third-degree polynomial of the form

E/N=A+B[(p—po)/po]*+Cl(p—po)/po]*.

M+ A(S) O2B+ A(S) GFMC
A —6.6101+0.036 —6.796+0.025 —7.110%0.023
B 10.3£5.5 14.10+4.18 10.08+3.2
C 11.3+£18.5 —18.7£18.1 12.59+8.5

0.021 17+0.000 26

0.02136+0.000 19 0.021 56+0.00029
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FIG. 3. (a) and (b) These curves show the pair-correlation
functions of the real and shadow systems, respectively, at the
equilibrium density, for both our M+ 4(S) and O2B+ A(S)
forms and for the early M +M(S) shadow function. The con-
tinuous curve denotes M+ A(S), the dashed curve
O2B+ A(S), and dash-dot M +M(S). The GFMC curve is
denoted by stars. In (b), the M + A(S) and O2B + A(S) results
are barely distinguishable.
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FIG. 4. This figure shows the pair-correlation function at
freezing. The smooth curve denotes M + A4(S), dashes denote
O2B + A(S), and dash-dot denotes M + M (S). The stars denote
GFMC.
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which differed from GFMC chiefly in that it predicted a
diminished nearest-neighbor maximum by about 0.08, at
a value of 7 about 0.1 A larger than the maximum of the
GFMC curve. The entire curve appeared shifted to
larger values of r compared to the GFMC curve by this
amount. Our form improves over the M +M(S) form by
showing an enhanced nearest-neighbor presence, so that
the nearest-neighbor maximum of g(r) is only about
0.015 smaller than the GFMC result. The curve is still
shifted compared with the GFMC result by nearly the
same amount as the M + M (S) curve. We conjecture that
this shift is an artifact of the fifth power-law form for the
pseudopotential u(r), which is present in both trial func-
tions. This conjecture appears substantiated by the ob-
servation that in the O2B + 4(S) form with optimized
two-particle correlations, no such shift is seen. The
OB + A(S) curve is in excellent agreement with GFMC.

The trend seen at the equilibrium density in Fig. 3(a) is
repeated in Fig. 4 at the freezing density. Statistical er-
rors in the GFMC g(r) near the maximum of g(r) are
large, so a detailed comparison with GFMC is not possi-
ble here. The M +M(S) curve is again shifted with
respect to the GFMC curve, and shows a smaller
nearest-neighbor maximum. Our M + A(S) g(r) curve is
shifted by the same amount, but shows a larger nearest-
neighbor maximum than that of M +M(S) and a smaller
one than GFMC. The pair-correlation function of our
O2B+ A(S) form is again in good agreement with
GFMC.

Figure 3(b) shows the radial distribution function g (s)
of the shadow particles for the M +M(S) and for our
M + A(S) wave function at the equilibrium density. This
shows that the primary difference in g(s) is that the
nearest-neighbor maximum is substantially higher than in
the M +M(S) form. This enhanced shadow particle
correlation gives rise to the increased correlation among
the real particles that we have just noted. The g(s) for
our form compared to the M + M (S) form also is shifted
inward to smaller values of s. Earlier work on shadow
wave functions’ showed the shadow particles to be corre-
lated to a greater extent than the real particles, and this
result is true to an even greater extent for our shadow
wave function. In this sense their correlations are some-
what closer to, thought not as great as, those expected in
a classical system. In Fig. 5(a), we show g(s) for the
M + M (s) power-law form at the equilibrium density, to-
gether with the corresponding shadow correlation factor
fu(s). Figure 5(b) shows g (s) for our form together with
f 4(s). Note that in 5(b), g(s) and f 4(s) have coincident
maxima, and that the structure of g(s) is similar to that
of f 4(s).

D. The structure function

Figures 6(a) and (b) show the structure functions S (k)
obtained from our variational calculation and the experi-
mental data. The static structure factor is defined in Eq.
(14). The isotropic state structure factor S (k) may also
be expressed in terms of the radial distribution function
g(r)as

5 sin(kr)

S(k)=1+417'pf0wr — o le(n—1ldr. (18)
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FIG. 5. (a) and (b) These figures show the shadow pair-
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To determine S(k) from this expression it is necessary to
extend the radial distribution function beyond one-half
the size of the simulation cell. To accomplish this, a fit
was made to g(r) beyond its first maximum using the
form

3 —ZzZ r
gl —1=—3 d,e

n=1

for complex numbers z, and real constants 4,.%° This fit
was used to evaluate the integrand in the region outside
the simulation cell. As a check on this procedure, Eq.
(14) was used to directly compute S(k) during the simula-
tion at the equilibrium density, a procedure which is only
possible on the discrete set of k allowed by the periodic
boundary conditions. These results were then compared
with the S(k) obtained from Eq. (18). The comparison
was made over a range of system sizes from 32 to 256 par-
ticles.?” With increasing system size the discrete S(k)
converged to the S(k) curve that was obtained using Eq.
(18). The S(k) curves obtained from this equation were
in excellent agreement with one another for both the 108
and 256 particle systems.

Figure 6(a) shows S(k) at the equilibrium density

00 10 20 30 40 50 60
k (1/R8)

FIG. 6. (a) and (b) The figures show our structure function at
the equilibrium and freezing densities, respectively. The
smooth curves are M + A(S) results, dashes denote O2B + A(S)
and squares denote experimental results.

0.0218 A™>. The experimental S (k) shown in this figure
is the result reported by Svensson and co-workers,?%?’
and was obtained by neutron diffraction at saturated va-
por pressure at 7=1.0 K. Figure 6(b) shows S(k) at the
freezing density. The experimental curve in that figure is
from Wirth and Hallock,’® and was obtained by x-ray
scattering at a density of 0.025 73 A %and T=1.16 K.

The agreement of the equilibrium variational structure
functions of Fig. 6(a) with experiment is seen to be very
good. There are a number of reasons why our simulation
is not expected to give good agreement with experiment
for small k. First, the experiment was carried out at
T=1.0 K, and although the effect of the finite tempera-
ture on the large-k region of S(k) should be minimal, the
small-k region is substantially modified by a finite temper-
ature.!” In addition, our wave function does not contain
the proper long-range correlations necessary for the
linear behavior of S(k) which is observed in *‘He.'’
These correlations do not effect the energy in a significant
way,'® though they are necessary for the proper long-
range pair correlations.

The comparison of the S(k) results with the experi-
mental data near the freezing density is shown in Fig.
6(b). It is not as good as that at the equilibrium density.
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It is clear from the experimental curve that there is con-
siderable uncertainty in these results for large values of k.
Our wave function gives a peak in S(k) which is some-
what larger than experimental data. It should be noted
that the experimental curve is obtained at a density
slightly different from our freezing density. A rough esti-
mate of the order of the reduction in the peak of S(k)
that we expect in the experimental result compared with
ours can be obtained by interpolating between the experi-
mental results of Wirth and Hallock® at 0.0244 and
0.0257 A%, Such an interpolation suggests the experi-
mental S(k) may be reduced by about 1.5% compared
with ours due to the slightly differing densities of the two
results. The difference in height of our maximum of S(k)
at freezing and the experimental result is about 9%. This
approximant analysis suggests that the slight difference in
density of the two results is alone unable to account for
the discrepancy.

E. The condensate fraction

Our method of computing n, is more elaborate than
that which is normally used. The procedure we use is de-
scribed in the work of Vitiello et al.’ Briefly,
configurations generated by sampling p(R,S,S’) [see Eq.
(12)] are useful for calculating p,(#) only for small values
of r. The reason is that the computation of p,(r) from
Eq. (15) for large values of r gives zero for any Monte
Carlo run of feasible duration because of the Gaussian
coupling of the particles to the shadow variables. This
can be seen from the observation that the quantity being
averaged in Eq. (15) approaches zero as r— o, yet p,(7)
approaches a constant for large ». The problem arises be-
cause we perform a full integration over the shadow vari-
ables in the shadow wave function.

A useful procedure is to sample the integrand of the
single-particle density matrix:

piP=N[ [ [ [dR dSdS"yp,(r;+1,1,,...,1y)
XY, (11,15, . . ., TN )Y (S)Y(S')

N
O(r+r—s)) [] 6(r; —sy) ]
k=2

N
HG(I'I_S;)

=1

(19)

where N is an unknown normalization constant. p,(7) is
then obtained by binning the value of r during the simula-
tion. In other words, we perform a simulation where an
extra particle is introduced. N —1 particles are still cou-
pled to both sets of shadows, but now the Nth particle is
coupled to only one of the sets and the (N + 1)th to the
other.

We combine Eq. (19) with the standard procedure
which yields p,(#) accurately in the vicinity of »=0 to
determine the normalization constant. Scaling p,(r) ob-
tained from Eq. (19) to match the p(r) of Eq. (16) com-
puted at small values of r (typically r <o =2.556 A) re-
sults in a complete, normalized p,(7). Moreover since the
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statistical errors in the computation of p,(7) by Eq. (16) at
small values of r are smaller than those obtained by Eq.
(19), our final p,(r) is obtained through Eq. (16) for values
of r less than ~1.3 A and from Eq. (16) otherwise.

The fraction of particles in the zero momentum state,
ny, calculated at 0.0218 A~ using the M+M(S),
M+ A(S) and O2B + A(S) wave functions is shown in
Table IV. The GFMC n, of Panoff and Whitlock®! is
also given there, along with their variational result’! us-
ing a wave function which contains both Jastrow correla-
tions of the McMillan form and three-body correlations.
When the M + M (S) result of 4.51+0.03% was first ob-
tained, its clear disagreement with GFMC condensate
fraction was disappointing. As can be seen from the
table, most of this discrepancy is overcome by the form
for the shadow pseudopotential contained in the
M+ A(S) form which yields 7.81+0.1% for n,. The
O2B + A(S) shadow form yields 8.110.4. These results
also represent a substantial improvement over the
5.6210.05% variational result for the McMillan-Jastrow
form with trlglet correlations.>! Also at the higher densi-
ty 0.0262 A~ ° the 028+ A (S) value of n is in reasonable
agreement with the GFMC value.

The condensate fractions obtained with the shadow
wave functions are especially interesting in light of the
following observation. Jastrow wave functions with
McMillan correlations yield a condensate fraction of
about 11%,' while Jastrow wave functions optimized us-
ing the paired-phonon analysis*?> (PPA) of Chang and
Campbell yield a condensate fraction at the equilibrium
density of 10.6010.02%.%! The incorporation of three-
body correlations into the McMillan wave function
depresses the condensate fraction to 5.624+0.05%,3! far
below the GFMC and experimental values. The shadow
wave functions, which include correlations of all orders
between the particles, show substantially improved con-
densate fractions compared with the McMillan form
combined with explicit three-particle correlations. This
is the first occasion when a variational wave function has
yielded good results for both the energy of the fluid phase
and the condensate fraction.

TABLE IV. The table shows results for the condensate frac-
tion of our wave function at the equilibrium and freezing densi-
ties together with those from the literature. When reporting
GFMC results, we give the importance function used in the cal-
culation; J(PPA) denotes a functional optimization of the Jas-
trow factors by the paired-phonon analysis (Ref. 38).

e —3

p(A) Wave function ny (%)
0.0218 M+M(S) (Ref. 9) 4.511+0.03
M+ A(S) 7.8 £0.1
O2B+ A(S) 8.1+0.4
J(PPA) (Ref. 31) 10.69+0.02
M+T (Ref. 3) 5.621+0.05
GFMC[J(PPA)] (Ref. 31) 9.35+0.05
GFMC[M +T] (Ref. 31) 7.98+0.08
0.0262 M+ A(S) 3.1+0.3
GFMC[J(PPA)+T] (Ref. 23) 3.8+0.2
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V. RESULTS FOR THE SOLID PHASE

The organization of our solid-phase results follows the
patterns established in the liquid phase. We first compare
our variational energies with the solid phase GFMC re-
sults of Whitlock and Panoff®> for systems of 108 parti-
cles. Then our results are compared with those for the
original shadow wave function having the repulsive
McMillan form for the shadow pseudopotential. The use
of the basis-set method in the solid phase is discussed,
and comparisons are made with the variational results of
Vitiello and Schmidt.!! The equation of state for the solid
phase is then presented together with the melting-
freezing transition densities. We present the pair-
correlation functions of the real and shadow systems. Fi-
nally, results for the single-particle distribution about a
lattice site are presented and discussed.

The variational results that we report here are for
simulations carried out on systems of 108 particles.
Simulations were also carried out on systems of 256 parti-
cles, as a check on the stability of the crystal. We ob-
served that there are regions of the M + 4(S) parameter
space, characterized by large values of the parameter &
(=~0.24 compared with optimal values of ~0.1), that de-
scribe a crystal phase that is unstable. Simulations on
these unstable crystal systems with 256 particles show a
rapid evolution (=~10000 Monte Carlo passes) from the
initial fcc lattice to a state containing large regions with
very few particles, or voids. This suggests that systems
under these conditions have collapsed, with the voids an
artifact of the fixed volume of the simulation cell and the
strong attraction (large value of 8) between shadow parti-
cles. No indication of metastability is seen in the smaller
(108 particles) system with the same parameter sets, even
in very long runs. The stability of the crystalline state
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whose properties we describe below has been tested using
long runs on systems of 108-500 particles, and no evi-
dence of instability has been found.

In this work we explore the fcc solid, by our choice of
the initial condition and by the shape of the simulation
cell. An interesting question is the following: which is
the lowest energy crystalline phase for the shadow wave
function? It is known} from GFMC computations with
the Lennard-Jones potential, that the energies of the fcc
and of the hcp solids are very close. We might expect
that a similar small difference is given by the shadow
wave function so that to address the issue of the lowest
energy crystalline phase would require a major numerical
effort.

A. Energy

The variational, kinetic, and potential energies for the
M+ A(S) and O2B + A(S) form wave functions at three
densities in the solid phase are shown in Table V. In the
same table we show variational results from the literature
for the M+M(S) shadow function and for the
02B +T+G function, a wave function with optimized
two-body and triplet correlations together with one-body
Gaussian localization factors.!! We also show GFMC re-
sults. The solid phase was studied at the three densities
p=0.0294, 0.0329, and 0.0353 A >, where the first is the
GFMC melting density.

1. Comparison of M + A(S) with GFMC

At the two lowest densities in the solid phase, the
M+ A(S) form yielded energies about 0.6 K above the
GFMC energies. At the highest density this difference is
0.75 K. We computed the GFMC energy at our inter-

TABLE V. The table shows variational energies (E7), together with the kinetic (Ex) and potential
(Ey) energies for our M+ A(S) and O2B + A(S) form wave functions. We also include the result for
original, M +M(S )® form shadow wave function, and the O2B + T + G * variational result of Vitiello
and Schmidt (Ref. 11). The GFMC result is that of Kalos et al. (Ref. 13).

o

p (A E; Ex Ey,
0.0294
M+ A(S) —5.052+0.014 25.379+0.015 —30.431+0.019
02B+ A(S) —5.41440.011 25.53140.019 —30.945+0.014
M+M(S), -5 —4.968+0.011 25.371£0.018 —30.339+0.020
02B+T+G* —5.409+0.051 24.66+0.18 —30.07£0.16
GFMC —5.61£0.03 25.70+0.07 —31.3140.07
0.0329
M+ A(S) —3.639+0.012 30.698-+0.023 —34.337+0.031
O02B+ A(S) —3.765+0.012 30.362+0.025 —34.127+0.024
M~+M(S), -1, —3.557+0.010 30.675+0.022 —34.23240.010
O02B+T+G —4.0114+0.036
GFMC® —4.197+0.03
0.0353
M-+ A(S) —1.94740.012 34.885+0.037 —36.831+0.035
O2B+ A(S) —2.13240.012 34.643+0.022 —36.775+0.017
02B+T+G —2.368+0.042
GFMC —2.70+0.06 33.340.2 —36.0+0.1

*The O2B + T + G result quogecj}here is for a density of 0.0293 A L
5The GFMC result at 0.0329 A ~ was interpolated from results at 0.0315 and 0.0335 A .

3
3
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mediate density 0.0329 A3 by an interpolation of the re-
sults given in Ref. 23, while for the kinetic and potential
energies no such interpolation has been carried out. At
the GFMC melting density the variational kinetic energy
is about 0.3 K lower than GFMC, while at the highest
density 0.0353 A3 it is about 1.6 K larger than that re-
sult. At melting the variational potential energy is about
0.9 K above GFMC, while at the highest density the po-
tential energy is 0.8 K lower. Overall, the solid phase
variational energies share with those of the liquid phase
the property that the difference between the variational
energies and the GFMC eigenvalues are only a weak
function of the density.

2. Comparison of M + A(S) with the M +M(S) form
shadow wave function

The improvements in the variational energies of the
solid phase of the M+ A(S) form compared with the
M+M(S) form are not as large as those seen in the
liquid phase At both the GFMC meltmg density and at
0.0329 A3, the M+ A(S) energy is only about 0.08 K
lower than the M+ M(S) energy. This compares with
the typical 0.4-0.5 K energy reductions of the liquid
phase. It is unlikely that the disparity in improvements
seen in the two phases is due to an incomplete optimiza-
tion of the parameters, as the variational search was very
thorough. The large improvement over the early shadow
wave function seen in our liquid phase variational ener-
gies has brought the description of the liquid phase into
the same realm of agreement with GFMC as that of the
solid phase.

3. The basis-set method in the solid phase

In order to study the solid phase using their basis-set
optimization technique, it was necessary for Vitiello and
Schmidt!! to modify the form of their liquid phase wave
function. This modification consisted of multiplying the
original O2B + T wave function by a product of Gaussian
single-particle orbitals that localized the atoms in the vi-
cinity of their lattice sites.

Because the shadow wave function yields a stable crys-
tal phase without such explicit Gaussian localization fac-
tors, the same basis-set description of the real pseudopo-
tential that was used in our liquid phase calculations can
be carried over directly to the solid. We have included
these results in Table V, and refer once again to that
wave function as O2B + A (S).

4. Comparison of M + A(S) with other variational results

At the melting density the O2B + T + G variational en-
ergy is lower by about 0.36 K than our M + A(S). The
comparison is nearly the same at the 1ntermed1ate density
0.0329 A73. At the highest density, 0.0353 A3 the
O2B+T+G form yields an energy 0.42 K lower than
M+ A(S). This trend as a function of density differs
from that seen in the liquid phase, where as the density
increased the difference between our energy and that of
the O2B + T + G form increased substantially.

At melting the O2B + A4(S) shadow form yields a vari-
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TABLE VI. Fitting coefficients in the equation of state curve
in the solid phase for the M + A4 (S) and O2B + A(S) variational
results. The GFMC result of Kalos et al. (Ref. 13) is also
shown. We have elected to make our fit to a polynomial of the

form E/N=A+B[(p—p,/p))*+Cl(p—pi/p1)}’, where
p1=0.4486 is taken from the GFMC result.

M+ A(S) 02B+ A(S) GFMC
A —5.341+0.021 —5.81+0.02 —5.899+0.023
B 31.00+1.50 47.7+1.4 31.95+5.26
C 9.921+4.34 —33.891+4.14 3.395+80.0

ational energy equivalent to that of O2B +T+G. As the
density increases above melting, O2B + A(S) yields a
variational energy about 0.24 K above that of
O02B+T+G.

5. Equation of state

Because our parameter optimization has been carried
out at only three densities in the solid phase, the four pa-
rameter polynomial fit to the energies that was carried
out in the liquid phase cannot be directly carried over to
the solid phase. Instead we have elected to make our fit
to a polynomial of the form

P—P1
P1

P—P1
P1

=A+B +C

N

where the value of p, is taken to be the same as the
GFMC result of Kalos et al.,'> p;=0.02686 A. With
this parameter fixed, the results of fitting this polynomial
to our solid phase energies are shown in Table VI along
with the GFMC values. Our M + A(S) form shows good
agreement with GFMC with the exception of a
discrepancy in the constant term A. In other words our
variational energies are uniformly higher than the exact
energies.

B. The optimum variational parameters

Table VII shows the optimum variational parameters
of the M+ A(S) form wave function. A fundamental
feature of the shadow form wave functions is that they
provide good descriptions of both the solid and liquid
phases. The form is the same in both phases so that only
the parameters change with density.

Comparisons of Tables III and VII show that there is a
decrease in the power law b of the real particle pseudopo-
tential in moving from the liquid to the solid phase. The
parameter a, which does not vary strongly with density
in the liquid phase, shows a much greater variation in the

TABLE VII. The optimum variational parameters of the
M+ A(S) form wave function in the solid phase are tabulated.
o —3 Qo o —2

p (A7) b (A) C(A ) 8 (K™hH a
0.0294 2.760 0.8725 0.11 0.875
0.0329 2.799 0.9031 0.10 0.890
0.0353 2.799 0.9949 0.11 0.900
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solid phase, increasing with density. Similarly, the real-
shadow interaction strength C increases more rapidly
with density in the solid phase than in the liquid phase.

Comparing the shadow-shadow pair-correlation func-
tion at melting with that of a set of classical particles
whose distribution function was taken as |1/JS(S)I2 (.e.,
which interacted through an Aziz-form potential at an
effective temperature), we discovered that these functions
were quite similar. The corresponding comparison be-
tween the pair-correlation function for the real particles
and that of the classical system distributed according to
|¢,(R)|? showed that in contrast, these functions differed
remarkably. These results were in accordance with our
original intuition that it is primarily the shadow-shadow
pseudopotential, rather than that of the real particles,
that determines the structure of the real particle system.

Later in the paper we will give a detailed discussion of
the Lindemann ratio for solid helium described by the
shadow wave function. From that discussion we will
conclude that the “melting” of the shadow particles
shows considerable similarity with the melting of a classi-
cal system.

A comparison of the values of our C with the parame-
ters that describe the Gaussian localization strengths of
other wave functions suggests that in each, these parame-
ters play a quantitatively different role. Vitiello et al. o
found that for a Nosanow Jastrow form, Eq. (17) wave
function at p=0.329 A~ the optimum Gaussian locali-
zation parameter is 0.735 A 2. The value of the Gauss-
ian localization strength from the optimization of the
02B+T+G wave function 1 at the same density is
0.6122 A™2. Our value of our Gaussian parameter C, is
=0.9031 A 2. considerably larger than either of these
others. The same comparison with the O2B +T+ G re-
sults at the remaining two densities in the solid phase
leads to a similar conclusion: the real particles in the
solid phase of the shadow wave function are localized to
a much greater extent near their shadow particles than
the “He atoms of other variational studies are near their
lattice sites. This observation is not surprising, as the
delocalization of atoms in the solid phase of the shadow
wave function arises from both the distribution of the
real particles about their shadow partners and from the
distribution of the shadow particles about their lattice
sites.

C. The radial distribution function

The spherically averaged radial distribution functions
for the M + A(S), O2B + A(S), and M +M(S) forms are
shown at melting in Fig. 7(a). Figure 7(a) also shows the
GFMC result at melting. The pair-correlation functions
of both our shadow wave functions are nearly in agree-
ment with one another and with the GFMC g (r) at melt-
ing. The two are also in agreement at 0.0329 A3,

Figure 7(b) shows the shadow-shadow correlatlon func-
tion g(s) at the melting density. A trend in the liquid
phase also present in the solid is that the g(s) for our
form shows greater shadow correlations, and especially
an enhanced nearest-neighbor peak, than the M +M(S)
form.
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FIG. 7. (a) and (b) The figures show the pair-correlation
functions of both the real and shadow systems at the melting
density. The smooth curve is M+ A(S), dashes denote
O2B+ A(S) and dash-dot denotes M +M(S). Stars in (a)
denote GFMC results.

D. The single-particle distribution function

1. The Lindemann ratios

The Lindemann ratio y; of a solid is defined as the ra-
tio at melting of the square root of the second moment of
the singlet distribution function of an atom about its lat-
tice site to the nearest- nelghbor distance of a perfect lat-
tice. Simulations on classical®* and quantum?®® systems
confirm the theoretical expectation that the Lindemann
ratio is strongly dependent on the size of the system con-
sidered. This size dependence comes about because the
mean square of the displacements from the lattice sites is
dominated by long-wavelength phonon modes.

There is an important quantitative difference in the size
dependences of the second moment of the lattice site dis-
tributions of classical and quantum systems. Noting that
microscopic structure is unimportant in determining the
long-wavelength vibrational modes, Young and Alder**
argued that the Debye model yields the correct function-
al dependence of the lattice site distribution on size. This
gives for the dependence of the Lindemann ratio y; on
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system size
YLN=YL Y 1+KN", (20)

where 7 y is the Lindemann ratio for a system of N par-
ticles and y; ,, is that result in the thermodynamic limit.
K is a parameter independent of N, typically of order uni-
ty. This scaling form (and the analogous one in two di-
mensions) was found by Young and Alder to describe
well the size dependence of classical systems of hard disks
and spheres. The quantum-mechanical argument follows
a similar line of reasoning, with the result that in addition
to a finite temperature phonon contribution a size depen-
dence from zero-point motion of phonons is present in
the ground state. In the quantum ground state, with no
phonon modes excited, the only size dependence arises
from the zero-point phonon motion. One finds that

YLN=YL Y 1+K'N"?3, 1)

where K' is a constant. For typical systems of 102-103
particles, the finite-size corrections suggested by these ex-
pressions, especially Eq. (20), can be substantial.

The two forms given above, classical and quantum,
raise the question of which if either describes the scaling
of the shadow wave function. The exact ground-state
wave function should have the scaling form (21), as a re-
sult of the infinite range correlations induced by zero-
point phonons. Reatto and Chester!” showed that if the
infinite range correlations induced by phonons are to be
correctly incorporated into a wave function, the pseudo-
potential must asymptotically have the form y(r)«r 2.
Correlations of this form are a necessary ingredient in the
proper linear behavior of the structure factor for small
wave vectors, as well as in the correct asymptotic form
for g(r). The pseudopotential used in the present study
does not have this asymptotic long-range behavior and
we are led to expect, on this basis, that the classical scal-
ing (20) form should be appropriate for the shadow wave
function.

Table VIII (top) shows the Lindemann ratios for our
M+ A(S) wave function together with those of the
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M+ M(S) form for systems of 108, 256, and 500 parti-
cles. Results are shown for both the real and shadow sys-
tems. We carried out fits to these results, testing both
(20) and (21). As we expect, the Lindemann ratios were
found to scale according to Eq. (20). Table VIII (bottom)
shows the values of the constant K in the fit, together
with the extrapolated infinite system Lindemann ratios
YL, » of both the real and shadow systems.

Table VIII (bottom) illustrates the dependences of the
Lindemann ratios of both the real and shadow systems on
the system size. The constant K of Eq. (20) shows that
the shadow particles have the strongest size dependence,
both for the M+ A(S) and for the original M+ M(S)
wave functions. Both systems of the M +M(S) form
have greater size dependences than those of the
M+ A(S) form. It is interesting that while the real parti-
cle extrapolated Lindemann ratios of M +M(S) system
are substantially larger than those of the M + A(S) form,
the extrapolated ratios for the shadow particles differ
only slightly.

The melting of classical crystalline systems is known to
conform to a remarkable degree to the empirical Lin-
demann melting law, which states that such systems will
melt when the Lindemann ratio reaches a critical value
which depends only weakly on the interaction potential.
Simulations on systems interacting through power-law
potentials® show the critical Lindemann ratios range
from around 0.13 for hard spheres (the infinite power
case) to 0.18 for the soft n =4 power. Lennard-Jones sys-
tems melt when this ratio is about 0.145. The melting of
quantum systems does not conform to this simple cri-
terion. Although the Lindemann ratio of the real parti-
cles is much larger than the classical critical value for any
potential simulated, an analogy between shadows and a
system of classical particles arising from the high degree
of structure seen in their pair correlations suggests that
we explore the applicability of the Lindemann melting
law to the shadows. As shown in Table VIII (bottom),
while the extrapolated shadow Lindemann ratios are con-
siderably smaller than those of the real particles, they are
still larger than any seen classically. We note, however

TABLE VIII. (Top) Our Lindemann ratios for the M + A(S) form wave function are shown in the
table, together with the M + M(S) result of Vitiello et al. (Ref. 9). These results are shown for both the
real and shadow particles. Results are shown for systems of 108, 256, and 500 particles. (Bottom) Ex-
trapolated infinite system Lindemann ratios and scaling constants K. The results for both the real and

shadow systems are shown in each case.

N Wave function Real Lindemann ratio Shadow Lindemann ratio
108 M+M(S) 0.2488 0.1763
M+ A(S) 0.2402(2) 0.1816(2)
256 M+M(S) 0.2545 0.1842
M+ A(S) 0.2449(3) 0.1880(2)
500 M+M(S) 0.2576 0.1886
M+ A(S) 0.2478 (1) 0.1924 (1)
Wave function Real y, ., Real K Shadow ¥, Shadow K
M+M(S) 0.2703 —0.7280 0.2054 —1.25
M+ A(S) 0.2587 —0.6585 0.2073 —1.112
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that in the square of the wave function two shadows are
attached to each particle, so that a more appropriate
comparison is based on the mean position of the two sha-
dows. Since there is no interaction between the two sha-
dows of one particle we can take as a first approximation
that there is no correlation between the displacements of
the two shadows from their common equilibrium posi-
tion. In this case the Lindemann ratio for the mean posi-
tion of the shadows is 1/V2 times the shadow v, i.e.,
about 0.15. Correlations between displacements of the
shadows will increase this value a bit, but it should
remain in the range appropriate for classical monatomic
particles with soft repulsive forces. This conclusion sup-
ports our contention that the shadow variables behave in
a rather classical fashion.

2. The moments of the singlet distribution function

A further widely used probe of the one-body distribu-
tion of atoms about their lattice site is the ratio of mo-
ments of this distribution. In particular we consider ra-
tios of two such moments that for a perfect Gaussian dis-
tribution are unity. The ratios that we have computed
are (r®)/3(r?)’ and (r*)/3(r?)% Simulations on
classical hard-sphere systems have shown that the singlet
distributions have small deviations from the Gaussian
form over a range of densities.** Such non-Gaussian dis-
tributions have been observed in quantum simulations of
“He,” but to a much lesser extent than is seen classically
near melting. The values of the ratios that we give here
characterize the singlet distribution function in the fol-
lowing way: ratios which are larger than 1 reveal a lat-
tice site distribution which is broader than a perfect
Gaussian, while values less than unity show a distribution
more narrow than Gaussian.

The second, fourth, and sig(th moments of the lattice
site distribution at 0.0329 A~ for 108 particles are
shown in Table IX. Table X shows the ratios of these
moments which should be unity for a perfect Gaussian
distribution. The moments of our distribution and that
of M +M(S) wave function are in agreement. The ratios
of moments in Table X show that at this density, for both
trial wave functions, the one-body lattice-site distribu-
tions are slightly broader than Gaussian. Our wave func-
tion also shows a slightly broader distribution than was
seen with the M + M (S) form.

VI. THE MELTING-FREEZING TRANSITION

Using our two polynomial expressions for the energy in
the solid and liquid phases for the M + 4(S) wave func-

TABLE IX. The table shows the moments 9f_ t}he singlet dis-
tribution about a lattice site at p=0.0329 A " in the solid
phase. We show our M + A4(S) results together with those of the
M+ M(S) form. These results are from simulations on 108 par-
ticle systems.

(r)

1.115+0.084
1.018+0.006

(r?)

0.651+0.05
0.629+0.001

(r*)

0.717+0.042
0.671+0.003

M+M(S)
M+ A(S)
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TABLE X. The table shows ratios of moments of the single-
particle distribution about a latti(ieAs3ite for the M +M(S) and
our M+ A(S) form at p=0.0329 A .

(r) /3¢ (r%) /185(,7)"
M+M(S) 1.014+0.0017 1.042£0.005
M+ A(S) 1.01721+0.008 1.052+0.004

tion, we have carried out the usual Maxwell double-
tangent construction to determine the freezing and melt-
ing densites p, and p,. We find that
py=0.025 69+0.0006 A7 and p,, =0.0294+0.0004
A7?, in excellent agreement with the GFMC transition
densities, . p{=0.0262:t0.0007 A7? and pm =0.0294
+0.0006 A" °. These good melting-freezing densities are
further encouragement that shadow wave functions may
provide a good tool for studying this phase transition in
“He systems.

VII. DISCUSSION

Our exploration of the scaled-Aziz form for the sha-
dow pseudopotential represents a thorough study of the
shadow wave function. This form provides a good
description of solid and liquid “He, and in particular
brings the description of the liquid phase to the same lev-
el of agreement with GFMC that was achieved previously
in the solid phase. Because the optimization of the pa-
rameters of the original M + M (S) shadow wave function
was carried out at only a small number of densities in the
liquid phase, the extraction of an equation of state from
those results was not possible. The great discrepancy in
the agreement of the liquid and solid phase variational
energies with GFMC strongly suggests, however, that a
very poor equation of state would have resulted. We now
have a substantial reduction in variational energies at all
densities in the liquid phase. This improvement over the
original shadow wave function leads to an equation of
state that is in good agreement with the GFMC result.
In particular our melting and freezing densities agree
closely with those derived from GFMC.

In addition to the improved variational energies, the
M+ A(S) form also shows improved structural proper-
ties in the liquid phase compared with the early shadow
wave function. In particular the pair correlations show a
substantial improvement compared with those obtained
from the original shadow wave function. The condensate
fraction obtained from our form makes up the greatest
part of the difference between that of the early shadow
function and GFMC. We regard this as one of our most
significant results.

A further improvement of the shadow wave function is
obtained if the McMillan form of the pseudopotential for
the real particles is replaced by a basis-set optimized
form. The lowering of variational energy is especially
great at the melting and freezing densities, yielding the
lowest variational energies obtained with variational
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Monte Carlo. The reduction in energy is not as great at
the equilibrium density and as a consequence the equa-
tion of state has an anomalous behavior.

This work demonstrates the usefulness of including
high-order particle correlations into a wave function via
the introduction of subsidiary variables rather than
through the explicit introduction of a high-order particle
pseudopotential into a trial wave function. While the
shadow wave function possesses a complex many-body
pseudopotential (albeit hidden in the integration over
shadow particles), the shadow particles provide a simple,
intuitive interpretation of that pseudopotential.
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FIG. 1. The figure shows two of the classical trimers which
arise when the Metropolis algorithm is used to sample the
modulus squared of the shadow wave function. The continuous
line represents the real particle pseudopotential u(r) and the
dotted lines that of the shadows, w(s). The labels on each
monomer designate the system to which that monomer belongs,
either the real or one of the two shadow sets.



