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Cancellation of quasiparticle mass enhancement in the conductance of point contacts
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The high fraction of Andreev reflections that has been observed in noble-metal point contacts with the
high-T, oxides YBa&Cu307 and La2 „Sr„Cu04 as well as with the heavy-fermion superconductors UPt3
and URu2Si2 suggests that the boundary condition at the interface involves Fermi velocities without
mass-enhancement factors. We show theoretically that this is indeed the case for a self-energy X(e,k)
only weakly dependent on k. A comparison between the velocities derived from point-contact experi-
ments with known values of the fully dressed quasiparticle velocities allows a determination of the mass-

enhancement factor.

INTRODUCTION

The theory of point contacts where one electrode is a
superconductor S and the other one a normal metal N
has been developed by Blonder, Tinkham, and Klapwijk
(BTK}.' They have calculated the efFect of difFerent inter-
face conditions on the shape of the V(I) characteristics,
going from the pure Andreev case of a perfect metallic
contact to the Giaever tunneling case for which the con-
ductance is limited by a dielectric barrier. The BTK
theory successfully explains the variety of characteristics
that can be obtained in a superconducting-normal metal
point contact in terms of an efFective barrier parameter Z
that goes from zero in the pure Andreev case to infinity
in the Giaever case:

r =(vFs/vFN ) ' (2)

This second term has its origin in a boundary condition
for the electronic wave functions at the S/N interface, in-
volving the dispersion relations on both sides. A detailed
discussion of this boundary condition constitutes the
main part of this paper, as will be seen later. The
normal-state resistance of the contact is given by

R„=Ra(1+Z ), (3)

where Ro is the Sharvin resistance of the point contact
(4/3n)(pl/a ), p and 1 being, respectively, the normal-
state resistivity and the mean free path, and a the radius
of the contact. The Sharvin expression for Ro is valid
when l ))a. Ro is within numerical factors the resistance
of (kFa) conducting channels in parallel each of them
having a resistance (A'/e2}.

Z =[Zb+(1 r) /4r), —

where the first term in the right-hand side represents the
contribution of a dielectric barrier and the second term
expresses the effect of the mismatch of the Fermi veloci-
ties between the S and the 1V sides in terms of their ratio

We show in this paper that the Fermi velocities enter-
ing in the ratio r are not the quasiparticle velocities but
rather the velocities without the mass enhancement fac-
tor. This explains the high fraction of Andreev reflection
observed in contacts where in one of the electrodes the
mass-enhancement factor is very large (a heavy fermion}.
This remark ofFers a method to determine the mass-
enhancement factor by comparing velocities obtained
from. point-contact characteristics with quasiparticle ve-
locities. We find for instance that it is at least equal to 5
in La2 „Sr„Cu04 (LSCO) and YBa2Cu307 (YBCO), and
briefly comment on the significance of this result.

KXPKRIMKNTAL BACKGROUND

When one of the electrodes of a pure Sharvin contact
(Z=0) is superconducting with a pair potential 6, its
conductance is enhanced at voltages ~eV~ (b, by a factor
of 2 compared to its high voltage value ( ~

e V~ &&h, ). This
is due to the well-known Andreev reflections: at ~e V~ (b,

incoming electrons from the N side are reflected as holes,
while the current in the S side is carried by Cooper pairs.
At ~eV~ & b, the normal single-particle current is progres-
sively restored. For a superconducting state having the s
symmetry and at T«T„ the dynamical conductance
remains constant up to

~
e V~ =b, and then drops sharply,

returning to the normal-state conductance over an energy
scale h.

BTK have shown that if 0 & Z ~ 0.5, the zero-bias con-
ductance is reduced but remains larger than the normal-
state conductance. Simultaneously, the conductance
starts to develop peaks at

~
e V~ =h. For Z & 1, the

characteristics are Giaever-like but with a finite zero-bias
conductance.

For non-s symmetries and a small Z, Hasslebach, Kirt-
ley, and Lejay have shown ' that the conductance of the
point contact has a broad maximum of width =2k cen-
tered at zero bias, instead of the sharply defined plateau
characteristic of the s symmetry. There are no peaks at
~eV~ =b.. This result reflects the existence of nodes in
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b(k). It is obtained from a summation of the conduc-
tance over all channels involving with equa1 weight all k
vectors on the Fermi surface, in other words assuming
that Z has no angular dependence. This is a reasonable
approximation in the absence of a significant tunneling
barrier (Zb ((1).

Recently reported point-contact measurements on
YBCO (Ref. 4) and LSCO (Ref. 5) using a gold tip orient-
ed along the Cu02 planes display an enhanced conduc-
tance at zero bias and peaks at

~
e V~ =b, : they are charac-

teristic of an s symmetry and Z & 0.5. A typical result is
shown in Fig. 1. The heavy fermion URu2Si2 also shows
an enhanced zero-bias conductance indicating & 0.5,
probably with a s symmetry. ' For the heavy fermion
UPt3, the conductance shows a broad maximum centered
at zero bias, that can be fitted to a non-s symmetry super-
conducting state. ' %e are pointing out here that these
observations of an enhanced conductance at small bias
imply that the Fermi velocities entering in the ratio r [Eq.
(2)] cannot be the quasiparticle velocities.

In heavy fermions, the reduction of the quasiparticle
velocity due to mass enhancement is known to be of the
order of 100. For r =100, and assuming the absence of
any dielectric barrier (Zb =0), we obtain Z = 5 from Eq.
(1). According to BTK theory, only Giaever-like charac-
teristics should be observed: the zero-bias conductance
should be depressed, not enhanced, compared to the
normal-state conductance. A similar conclusion can be
reached concerning high-T, oxides. As done in Refs. 4
and 5, the quasiparticle velocities can be calculated from
the BCS expression g=(AvFIn. h) using experimental in-
plane values for g and the measured value for b, . This
procedure is justified below. For YBCO and LSCO, one
then obtains ' Uz-—1.5X10 cm/s, about 10 times small-
er than the Fermi velocity in the Gold point. Even in the
absence of any dielectric barrier, Eq. (1) gives Z=2.
Again, no enhancement of the zero-bias conductance
should be observed, contrary to the experimental results.

Assuming that the finite value for Z that best fits their
experiments (Z =0.3) is entirely due to a mismatch of
the Fermi velocities at the interface, Hass and co-workers
have calculated a lower bound for the Fermi velocity in
YBCO (Ref. 4) and LSCO (Ref. 5) obtaining v~ ~6X10
cm/s. Eliashberg has already pointed out that velocities

2I

measured when a particle is injected or extracted from a
sample is not in general the quasiparticle velocity. %'e
now ask what is the exact meaning of the velocity rnea-
sured in a point-contact experiment, and what informa-
tion can be extracted from its ratio to the quasiparticle
velocity. These questions are answered in the next sec-
tion.

THEORY

Consider an interacting Fermi liquid, possibly coupled
to other degrees of freedom. The Hamiltonian is

H=g +V(x)+H;„, „
Pi

2m

where V(x) is the one-body lattice periodic potential. In
the normal state the single-particle Green's function is

G(k, co) =
(R k /2tn ) —co —X„,(k, co)

gk
=p+ kVF

It is easily shown that

X„,(k, co) is the total self-energy, which includes a
frequency indep-endent part Xv(k) due to the lattice po-
tential V, and a retarded part X(k, co) due to interactions.
In the absence of the latter the Bloch state bare energy is
just

%2k 2

ek = —Xv(k) .
2m

One may equally well write 6 in the form

G(k, co) = 1

Ek co X(k, co )

(we thus use Bloch states as a basis instead of plane
waves). In a first stage we rely on (7), but we can clearly
return to (5) if we include an instantaneous (co-
independent) X„ into X.

The interaction self-energy X is retarded: the normal
quasiparticle energy gz is a solution of

4=&k —X(k kk) .

The Fermi level corresponds to

k=k~, gk=p, =eF —X(kF,p, ) .

Near the Fermi level we expand all quantities

k =kg+i, Q)=@+CO, Ek =6'F+kUF

l5

ar
Up= UF z G(k, co)=

4 P
(10)
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where z is the wave-function renormalization
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FIG. 1. Typical conductance of an Andreev point contact
Au-LSCO. (After N. Bass, Ph.D thesis, Tel Aviv, 1993.}

In the heavy fermion regime z is very small, while BX/Bk
is moderate, and eventually negligible.



50 CANCELLATION OF QUASIPARTICLE MASS ENHANCEMENT. . . 13 559

Assume now that the Fermi liquid becomes supercon-
ducting, with an anomalous self-energy 60 which we take
independent of k and m. The inverse Green's function
matrix

G—
60

6 '( —~)

yields quasiparticle energies

Ek ="(/'(4 I )'—+~'

(12)

(13)

/

kFz

in which h=zho is the real gap. The coherence length g
corresponds to values of k for which Ek departs from gk

kF) kFl

(14)

Note that z disappears in (14): only the nonlocality of X is
relevant in g—a hint of what we are looking for.

At this stage it is useful to stop and to survey all the
velocities we have considered (they will play different
roles). A'kr Im is the velocity of a free particle;
uF =A'kr/m —BX„/Bk is the velocity of an unrenormal-

ized Bloch state (without interactions);
vF =ur —BX/Bk =kkF /m —BX„,/Bk is an "effective ve-

locity" that does not account for retardation (it will actu-
ally control reflection at an interface); vr =zvF is the ac-
tual quasiparticle velocity, as seen in low-temperature
specific heat or in the coherence length. In that hierar-
chy it is a matter of taste whether one starts from free
particles or from bare Bloch states.

We now consider the planar interface between our
heavily renormalized superconductor (labeled "2")and a
normal materia1 "1"which, for simplicity, we take as
nonrenormalized (X& =0). A plane wave exp(ik r) comes
from the 1 side: it is part1y reflected and partly transmit-
ted. Since k and k are conserved the problem is one di-
mensional: we only consider the coordinate z normal to
the interface.

For energies close to the Fermi level, the two materials
are characterized by the Fermi wave vector kF and the

1

velocity vz on side 1, and the same quantities kz, vz as
01 2 02

well as zz, 4z on side 2.
The corresponding excitation spectra for real quasipar-

ticles are depicted in Fig. 2. Consider an incident particle
on side l, with energy E, depicted as I in the figure. Su-
perconductive pairing allows transformation of the parti-
cle into a hole, but two conditions must be fulfilled:

(i) Energy must be conserved;
(ii) Outgoing particles must depart from the interface,

hence their group velocity must be positive for transmis-
sion, negative for reflection. As a result there may exist
two transmitted states T, and T~ (which of course disap-
pear if E (b. ) and two reflected states R, and R2. The
state R, is the standard specular reflection, while Rz is
Andreev's reflection. In order to obtain these four ampli-
tudes we need matching conditions at the interface.

In their fundamental paper, Blonder, Tinkham, and
Klapwijik consider first two identical materials, unrenor-

FIG. 2. The excitation spectrum. "1"is the normal electrode
(fu11 line is an electron excitation, dot-dash is a hole excitation).
"2" is the superconducting electrode. The incident wave is
denoted by I. R» R» T&, T2 are the various rejected and
transmitted waves.

A. Noninteracting particles

The Hamiltonian is a one-body operator. The most
general Schrodinger equation can be written as

8 A 8 I
i A = — + Idx'Xr(x, x')@(x') .

Bt 2m Qx~
(15}

In such an integral form, (15) is unambiguous. Compli-
cations in the barrier are hidden in the nonlocal energy
X ( r, x),xwhich is instantaneous (co independent). The
matching conditions follow from solving (15) through the
transition region.

malized, differing only by their gap 5(h&=0). The inter-
face is a sharp discontinuity. Within an error of order
R/g all states with energy E have a wave vector =+kF
on the right-hand side of Fig. 1, = —kF on the left-hand
side. Such an error is negligible with an accuracy 5/EF.
The only relevant quantity is then the break of slope of
the wave function at the interface, here due to a possible
potential barrier. If the slope is continuous only T& and
R2 are present, leading to the canonical Andreev conduc-
tance behavior. A break of slope, characterized by their
factor Z, admixes modes T2 and R, : it changes the na-
ture of the conductance characteristics.

If the two materials are different, a change in Fermi ve-
locities (v&

—u2) also contributes a break of slope. What
matters is the total break, characterized by the single pa-
rameter Z, which contains two terms, one due to the po-
tential barrier, the other to (v& —

v2 }. The important fact
is that Z is controlled by normal-state properties only.
Superconductivity changes the excitation spectrum, shift-
ing wave vectors a little bit near the Fermi level. But
these shifts are irrelevant anyway. The only important
thing is the break of slope, i.e., what is conserved at the
interface: momentum, bare velocity, dressed velocity,
and in that case, which one?
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In the bulk electrodes, Xi,(x,x') is a function of
(x —x') modulated by the lattice. Its Fourier transform
generates the bare particle energy ek. It k is small, one
may try a Taylor expansion in powers of k, thereby intro-
ducing an effective mass m* different in the two elec-
trodes. It is tempting to generalize such a concept into a
mass projile rn(x) that varies inside the barrier. The
Schrodinger equation should then be written approxi-
mately as

.„ay e' a'y
dt 2m(x) i)xi

(16)

As it stands, (16) is definitely unacceptable, as the Hamil-
tonian is not Hermitian (the norm of P is not conserved).
But, even if we cure that, (16) is ambiguous, since we are
free to change the way in which 8/Bx acts on m(x).
While the integral form (15) is neat (it embodies both iner-
tial and potential changes in the barrier), a differential
equation such as (16) is undefined. The issue was ad-
dressed before by Morrow and Brownstein. We corn-
ment briefly on that point, as we feel that the problem is
largely fictitious, depending on the way X i (x,x ') is

shufHed between potential and kinetic energy.
Reference 9 proposes a general form for the kinetic en-

ergy

aT= — dx rn m~ m ~+a~y
4 Bx Bx

L

with a+P+y= —1 in such a way as to recover the
homogeneous case. The symmetrization a~y ensures
Hermiticity. The corresponding contribution to the
Schrodinger equation is easily found to be

1

1

2 Bx m(x) Bx
(19)

(19) is obviously Hermitian.
Assume that we make the choice (19) for a sharp inter-

face [m(x) is a step function]. If there is no potential
barrier at interface, then the Schrodinger equation should
not develop its own 5 functions: hence
(I/m(x))(BQ/Bx) should be continuous. What is con-
served is the uelocity iiik/m(x), not the momentum —a
fairly obvious result. The corresponding reflection ampli-
tude coefficient is

(20)

Then we can expand g(x') in a Taylor series in the in-
tegral of (15) which becomes

XgNx)+ Xi/'(x)+X2
i)'j"(x )

as used by BTK. Of course, (20) is modified if there is a
potential barrier, whether genuine or due to a difFerent
choice of a and y: what matters is the net reflection
coefficient.

For a given Xi (x,x'), there should be no ambiguity,
but for the fact that the concept of a "sharp" interface
makes little sense for a nonlocal self-energy. The results
(19) and (20) correspond to a specific limit, in which g(x)
is a slowly varying function of x on the range of Xz. Put
another way, the incident wavelength k ', the scale of
variation b of Xi and the range (x —x')-a are such that

k &&b )&a .

fi g" fi g'm'
2m2

62m" a+y A m' a+@+ay
2 4 m3 2

(18)

where Xo, X„X2 are the successive moments of
Xi (x —x').

X,= f d'xX(i,xx), X,= f dx'Xv(x, x')(x' —x),
We see that the arbitrary choice of a and y only pro-

duces a localized extra potential in the barrier region.
Changing a and y is equivalent to transferring terms be-
tween the barrier potential energy and the kinetic energy.
Since the former is not fixed a priori, this is a matter of
choice, irrelevant as long as the choice is consistent (i.e., a
difFerent barrier potential is defined for different a, y).
The ambiguity does not affect the current density, which
is always defined as

X2= f dx'Xv(x, x')(x' —x)

Xo adds to the potential, which is slowly varying and
hence does not produce reflection. If the following is

met,

J(x)=- i%,B6
2m (x) Bx

Together with (18) such a choice guarantees the conser-
vation law

BJ
Bx

= —p with p=g*g .

The simplest choice is to put all potential terms into an

explicit potential energy, i.e., 3 =0. This is achieved
when a =y =0, corresponding to a kinetic energy

the next two terms have the form (19) with a "mass
correction:"

4.24) is indeed a consequence of Hermiticity as shown by
the following algebra:
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X,(x)=fdggX„,(x,x+g)
=f dggX„,(x+g, x)

=f ding X„,(x,x —g)
!.

in which a slow degree of freedom produces a very small
z.

Such a result is not surprising: it holds whenever one
considers the response ta a localized probe. Consider for
instance tunneling through an insulating barrier, de-
scribed with a Bardeen Hamiltonian

+g X„,(x,x —g)+. . . (26) ta *b+c.c. (28)

In lowest order (24) follows immediately.
Our conclusion is that the transmission coefficient of

noninteracting particles is controlled by the spatial struc-
ture of Xr(x,x'},i.e., by its momentum k dispersion Pr. e-
cise results depend on details of the barrier, which are
usually of atomic scale. (20) provides only an order of
magnitude. The above detailed discussion is mostly for-
mal since the barrier is not really controlled: we only
give it in order to make contact with past work.

p, (co}=—QlmG, (k, co)
1

k

(29)

and similarly for pb. In terms of the (total) self-energy
X(k, co) these spectral densities are

t is the hopping amplitude through the barrier, a and b
refer to edge sites on either side. Second-order perturba-
tion theory shows that the conductance involves local
spectral densities on sites a, b:

B. Interacting particles
1 1

p, (co) =— Im
77 k ek~ co X~(k, co)

(30)

Xr(x,x') is now complemented by an interaction self-
energy X(x,x', co} (we no longer assume translation in-
variance). The Green's function G(x,x', co) describes the
amplitude radiated at x at frequency co by a source locat-
ed at x'. Away from the source, that amplitude obeys the
following "effective" Schrodinger equation:

fi c) g —f dx' X„,( x, x', co)g( x')+ V(x)f(x)
2m

=cop(x) (27)

(m is the bare mass: effective masses are hidden in X„,).
X„,is supposed to depend very strongly on co(z « 1), but
moderately on k [range (x —x') of atomic size]. We
must solve (27) through the interface region for a spectfic
value of co. Away from the interface, X„,depends only
on (x —x'), and the solution is a plane-wave vector k(co)
such that

Assume that X does not depend on k. We then carry the
summation over k first. If the bare density of states

p,.(co)=+5(ek, —co) (31)

pa =pao (32)

The tunnel current is unaffected by retardation, i.e., by z.
In contrast a k dependence of X affects the ek integral
and it changes the conductance. In the end this result is
nothing but the well-known Migdal theorem formulated
forty years ago in the context of electron-phonon interac-
tions.

CONCI. USIONS

does not vary too much, ImG behaves as a slightly
broadened 5 function of ek. hence

g„=w = k=+ kF+ N P
V

VF is the quasiparticle velocity, which involves z, but near
the Fermi level that term is negligible and

~
k

~

=kF for all
practical purposes (kF and kr on either side). What

1 2

remains is a matching problem.
The spatial structure of X„,is the same as that of X~.

Within a moment expansion, Xo is an effective potential
profile, X

&
and X2 contribute to an "effective mass

profile. " The effect on the reflection coefficient is the
same. For a given co, and within the choice (19), what is
conserved in the absence of a barrier is the effective ve-
locity defined earlier, which involves BX/Bk.

We conclude that the reflection coefficient of a renar-
malized quasiparticle at an interface depends an the non-
locality of X (its k dependence) and not on its retardation
(its co dependence). The conclusion holds for normal ma-
terials as well as for Andreev reflection on superconduc-
tors. It is especially relevant for heavy fermion materials

What emerges from the above discussion is that the
study of metallic contacts (Zb «1) gives access to the
effective velocity vz, while the measurement of the coher-
ence length gives access to the quasiparticle velocity
VF VF Z.

In principle, the measurement of the normal-state
resistance of a pure metallic contact (Zb =0) is sufficient
ta obtain the ratio between the effective Fermi velocities
of the two electrodes: Z is determined from Eq. (3}and r
from Eq. (1). But in practice the value of the Sharvin
resistance Ro is generally not known accurately (for in-

stance because the size of the contact is not known),
hence the value of Z cannot be deduced from the mea-
sured R„.

The Andreev reflections that occur when one af the
electrodes is superconducting provide us with an easier
method to determine u~, because the shape of the V(I)
characteristics is then directly sensitive to the value of Z.
One difficulty remains, which is that we do not have an
independent determination af Z&. Assuming Z& =0 gives
us only a bound on uz (a lower bound in the case of heavy
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fermions).
We note again that UF is, in general, not equal to the

bare (band) velocity, as shown in the previous section.
Indeed, it has been found that for YBCO (Ref. 4) and

LSCO (Ref. 5) the lower bound for u~ obtained with the
above procedure is in fact somewhat larger than calculat-
ed band velocities, ' suggesting that in these materials
BX/Bk is not negligible. '"

A comparison between U+ and the quasiparticle veloci-
ty Uz gives directly the mass renormalization factor z. v~
can, in principle, be obtained from a number of normal-
state low-temperature measurements such as that of the
electronic heat capacity. But in the case of high-T, ox-
ides the upper critical field H, 2 is so high at low tempera-
tures that these normal-state measurements are quite
difficult. Also, low-temperature measurements are very
sensitive to the presence of a small concentration of mag-
netic secondary phases. An easier method to obtain UF is
to determine the value of the coherence length. This can
be done through a measurement of H, z( T)
=[$0/2m@~(T)], and extrapolating to low temperatures

using the theoretical temperature dependence of H, z.

g(t) can also be obtained from proximity efFect experi-
ments.

Thus combining the study of Andreev refieetions with
a determination of the coherence length gives us a gen-
eral method to obtain z, or rather a bound for z. It is pre-
cisely the discrepancy, by about a factor of 5, between the
velocity obtained from point-contact. measurements and
that obtained from g for YBCO (Ref. 5) that raised origi-
nally the question of the exact meaning of the former.
Our interpretation of this result is that for this oxide
z ' & 5. What part of the mass renormalization is due to
the electron-phonon interaction, and what part is due to
the electron-electron interaction is another question.
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