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Hyperuniversality of a fully anisotropic three-dimensional Ising model
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For the fully anisotropic simple-cubic Ising lattice, the critical finite-size scaling amplitudes of
both the spin-spin and energy-energy inverse correlation lengths and the singular part of the reduced
free-energy density are calculated by the transfer-matrix method and a finite-size scaling for cyclic
L x L x oo clusters with L = 3 and 4. Analysis of the data obtained shows that the ratios and the
directional geometric means of the above amplitudes are universal.

I. INTRODUCTION

Conforming with the Privman-Fisher hyperimiversal-
ity hypothesis, the finite-size scaling (FSS) equations for
the inverse correlation lengths and the singular part of
the reduced &ee-energy density near the bulk phase tran-
sition of a system have, respectively, the form (for reviews
see Refs. 1 and 2)

Ic; 1,(t) h) = L X;(CitL" C2hL"")

and

f '
(t, h) = L Y(C,tL",C hL"") . (2)

A, =my,
7l C

+f 6

where g and g, are the exponents of the decay law corre-
spondingly of the spin-spin and energy-energy correlation
functions (rI = 1/4 and rl, = 2 for the fiat Ising model)
and c is the central charge of Virasoro algebra (c = 1/2
for the two-dimensional Ising lattice).

All foregoing statexnents are applied to the 8patially
isotronic systems. Lattice anisotropy is a marginal
effect and hence the amplitudes and their coxnbina-

tions, strictly speaking, must depend on anisotropy
parameters. However in the case of the anisotropic two-

Here L is a characteristic size of finite or partly finite sub-
system, the index i labels the types of correlation lengths
[spin-spin (t' = 1), energy-energy (i = 2), etc.], d is the
space dimensionality, t = (T —T,)/T, h is an external
field, yT and yp, are the critical exponents, X;(z, y) and
Y(x, y) are the scaling functions which, within the liin-
its of universality classes, can otherwise depend on the
type of boundary conditions and the subsystem shape; all
nonuniversality of a model is absorbed in the metric fac-
tors Ci and C2. Equations (1) and (2) allow one to find
the universal combinations for the FSS amplitudes at the
phase-transition point t = h = 0. In particular, the am-
plitudes for the inverse correlation lengths A, = Xi(0, 0)
and A, = X2(0, 0) and for the free energy Ay = Y(0, 0)
must be universal themselves. In the case of strips with
periodic boundary conditions, they are (see, e.g. , Ref. 2)

dimensional Ising model, it has been established3 that
although the inverse correlation-length and &ee-energy
amplitudes get a nonn~iversal factor, R (a labels the
directions along which an L x oo strip is infinite; here,
a = z, z), it is common and the directional geometric
mean R = (RsR, ) ~ is a constant (equaling the unity).
Therefore, the universality is preserved for the ratios and
the directional geometric means of these amplitudes.

In the light of above, it would be interesting to clear
the matter up in three dimensions. Such an attempt is
undertaken in the present paper. We consider the three-
dimensional Ising model on a simple-cubic lattice with
different interaction constants J, J„, and J, along all
three spatial directions. The lattice is approximated by
the I x L x oo bars with periodic boundary conditions
in both transverse directions. Such boundaries eliminate
undesirable surface effects and hence improve the quality
of approxiination. By the transfer matrix (TM) method
coxnbined with FSS analysis for the subsystems with sizes
L = 3 and 4, we deterxnine at first the critical tempera-
tures depending upon anisotropy parameters J /J, and
J„/J . (We consider a system at least with two nonzero
couplings; unless otherwise stated, the L x L x oo par-
allelepipeds are taken infinitely long in the z direction. )
After this, the FSS amplitudes of the inverse correlation
lengths and the free energy are calculated at the critical
points found. The obtained results demonstrate the inde-
pendence of the amplitude ratios on the parameter J / J,
when J„/J is fixed. Moreover, the analysis shows that
the ratios are also independent on the second anisotropy
parameter J„/J at any rate in the region J„/J 1. Fi-
nally, our calculations give evidence in the constancy of
the directional geometric mean of the spin-spin inverse
correlation length amplitude in three dimensions. To-
gether with an invariance of the ratios, this implies that
the directional geometric means of other amplitudes must
be universal also.

II. MODEL AND SOLUTION OF THE
EIGENPROBLEMS

The Hamiltonian of Ising xnodel on a simple-cubic lat-
tice with nearest-neighbor interactions reads
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~ = -) .S;,'(J.S;+». + J,S;,+»+ J.S;,.+.) (4)
ijk

The spin-field variables S,~I, are located in the lattice
sites and take the values +1.

The transfer matrix V of an I x I x oo subsystem is
introduced by elements

gradient method and, if necessary, used also the library
functions tred2 and tqli. Calculations were run on IBM
PC-486 computer in the operating system I INUX.

III. CALCULATION OF THE CRITICAL
AMPLITUDES

(S-,S-, , S«I~IS„, „, , SL,I.)

exp[2K (S,&S;+» + S,'zS,'+». )
~ ~ 1 ~

i,j=1

+2K'(S,~S~+i + S,', S,',+, ) + K,S,~S,', ],
where K = J~/k~T (now n = z, y, z); S;I+i ——S;i and
Si,+~~ ——S~~ by all i, j = 1, 2, . . . , I. The matrix V is
real, symmetric, and has an order of 2 where N = L2

equals the number of chains in a system; that is dense
and all its elements are positive.

The principal task is to find the eigenvalues of V be-
cause, for example, the density of a &ee energy measured
in units of —k~T is given by

fi, = N lnAp,

where Ao is the largest eigenvalue of a TM. The inverse
longitudinal correlation lengths (mass gaps) equal

and

A, = I.Kg I. ,

where ~q L, and +2L, have been taken at the phase-
transition point T, (by h = 0). This point itself was
determined &om the renormalization-group equation

LK, 1,(T.) = (I, —l)K, L, ,(T.) (l0)

with I = 4. The amplitude for the singular part of a &ee-
energy density, Af, is found from a system of equations

fl, = fp+ L "Af

So, the FSS amplitudes for the inverse correlation
lengths of the spin-spin and energy-energy correlation
functions are equal to

r.; I, = ln(AO/A;), (7)
where Ai, A2. . . are the next (after Ao) dominant eigen-
values of TM for the subsystem.

In order to solve the TM eigenproblem for I as large
as possible, we reduce the TM's to the block-diagonal
forms using a symmetry under the transformations of
the group Z2 x T A |2~. Here Z2 is a group of global spin
inversions S ~ —S, T is a group of translations in the
transverse directions of a bar, and C2„ is the point group
consisting of rotations around the axis of a subsystem at
angles multiple to m and the re8ections in planes going
through this axis and the middles of opposite sides of an
L x L x oo parallelepiped.

There is no necessity to perform the full quasidiago-
nalization of TM's because the leading eigenvalues are
distributed only among two subblocks. Owing to the
Perron theorem, Ao lies in the subblock of an identity
irreducible representation. Aq is located in the other sub-
block —it is built on the basis functions which are sym-
metrical under all transformations of the space subgroup
T h C2„and antisymmetrical under the transformations
including a spin inversion. A2 is situated again in the
subblock of an identity irreducible representation. (In
connection with this see, for example, Ref. 3.)

As a group-theoretical analysis shows (see Appendix
A), both subblocks containing the largest eigenvalues
have sizes of 18 x 18 in the case of 3 x 3 x oo cluster.
For a cylinder 4 x 4 x oo, the TM 65536 by 65536 is
reduced to a block-diagonal form in which the required
subblocks have the orders 787 and 672. The final ex-
traction of needed eigenvalues of TM's was carried out
by a numerical solution of eigenproblems for the corre-
sponding subblocks. By this, we applied the conjugate

(g(~)g(~))i/2;f J ()

(A(*)A(")A( ))i/s f J g 0
(12)

where A, is the amplitude of the spin-spin inverse cor-
relation length when the bar L x L x oo was stretched
(for given J,J„,and J,) along the a direction.

IV. DISCUSSION

Consider first the behavior of absolute amplitudes.
For the three-dimensional systems, available information
about them is very scanty. In the periodic cylinder ge-

with L = 3 and 4. Here fo denotes the regular (back-
ground) part of a free-energy density; fs and f4 are taken
again at the critical points.

The critical temperatures, amplitudes, and back-
ground fo calculated at difFerent values of the anisotropy
parameters J /J and J„/J are collected in Table I. In
Eq. (ll), the spatial dimensionality has been put d = 2
for J„=0 and d = 3 for J„P0. It should also be noted
that, for finite L, Eq. (7) leads to the wrong values for
r.2 I, in the limit of noninteracting strips (J„=0). Due
to Ai ) AoA2 (Ap ) Ai ) A2 are the largest eigenvalues of
a transfer matrix for the strip), A2 ——(AoAi) by L = 4
and therefore r2L, = In[As/(ApAi) ] = 2~i I, . However,
the correct values are given by formula +2,L, = ln(Ap/A2)
which has been used to build up the Table I.

In Table II, we present the data for the directional ge-
ometric mean of the spin-spin inverse correlation length
amplitude A, . Calculations were performed by the equa-
tion
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TABLE I. Critical temperatures, background, critical FSS amplitudes, and their ratios for dif-
ferent values of the anisotropy parameters J / J, and J„/J .

J„/J
1.0

J/J,
1.0
0.1
0.01
0.001

ksT, / J,
4.58104
1.35037
0.65458
0.40917

As
1.4401
0.3613
0.0723
0.0115

A
4.9627
1.2847
0.2576
0.0411

A, /A,
3.44
3.55
3.56
3.57

Ay
0.4189
0.1044
0.0208
0.0033

fo
0.773
0.959
1.576
2.451

Af/A,
0.290
0.288
0.287
0.286

0.75 1.0
0.1
0.01
0.001

4.18009
1.27931
0.63312
0.39985

1.3345
0.3317
0.0653
0.0103

4.5795
1.1712
0.2310
0.0365

3.43
3.53
3.53
3.54

0.3953
0.0973
0.0191
0.0030

0.775
0.985
1.623
2.508

0.296
0.293
0.292
0.291

0.5 1.0
0.1
0.01
0.001

3.73973
1.19903
0.60815
0.38882

1.2288
0.3005
0.0580
0.0090

4.0812
1.0251
0.1981
0.0309

3.32
3.41
3.41
3.43

0.3924
0.0943
0.0181
0.0028

0.782
1.019
1.683
2.578

0.319
0.313
0.312
0.311

0.25 1.0
0.1
0.01
0.001

3.22427
1.10117
0.57655
0.37453

1.1256
0.2665
0.0500
0.0076

3.3542
0.8151
0.1533
0.0235

2.97
3.05
3.06
3.09

0.4407
0.1016
0.0190
0.0029

0.803
1.073
1.767
2.675

0.391
0.381
0.380
0.381

0.0 1.0
0.1
0.01
0.001

2.32081
0.91079
0.51058
0.34346

0.8917
0.1856
0.0327
0.0048

5.9901
1.3661
0.2418
0.0349

6.71
7.36
7.39
7.27

0.2952
0.0616
0.0108
0.0016

0.914
1.232
1.983
2.915

0.331
0.331
0.330
0.333

ometry, it seems to be known only the estimates for the
correlation-length amplitudes found by Monte Carlo sim-
ulations on the fully isotropic (J = J„=J,) lattices
L x L x 128 with L = 4, 6, 8, and 10 (Ref. 8). For
the inverse correlation-length amplitudes, these estimates
(L = 10) yield A, = 1.342 and A, = 4.78. Appealing to
Table I, one can convince oneself that our calculations
conform with these values. Note also that the avail-
able high-temperature series for the &ee energy of a fully
isotropic simple-cubic Ising lattice yields fo = 0.77711
at criticality. Our estimate for the background, 0.773, is
in good agreement with this magnitude.

In the two-dimensional case (J„= 0), there exists,
vice versa, complete information concerning the FSS
amplitudes for the inverse correlation lengths and the
&ee energy in the rectangular lattice with arbitrary
anisotropy:3'4

and

sinh(2J /k~T, )
sinh(2 J,/k~T, )

sinh(2 J /k~T, )
12 sinh(2 J,/k~T, )

where the critical temperature T, satis6es to the equation

t'2J I . (2J, I
sinh/ Isinh/

'
/

= l.
(k/T j (k/T )

Our numerical results reproduce these rigorous depen-
dencies with acceptable accuracy. For the isotropic
square Ising lattice, the critical free energy is (see Ref. 10)

fo ——2G/vr + z ln 2 = 0.929695. . . (17)

1.0
0.1
0.01
0.001

0
0.891
0.833
0.577
0.294

0.25
1.57
2.00
2.02
1.48

0.5
1.46
1.87
2.01
1.51

0.75
1.43
1.80
2.01
1.54

1.0
1.44
1.76
2.02
1.57

vr sinh(2 J /kgyT, )
4 sinh(2 J,/kgb T,)

TABLE II. Directional geometric mean of the spin-spin in-
verse correlation length amplitude A, by diferent values of
J /J and J„/J .

(G = 1 —3 + 5 —. . is Catalan's constant). Ap-
propriate value from Table I (fo at J = J, and J„=0)
agrees to within 1.7% with the given exact quantity.

Inspecting Table I, we see the amplitudes vary in wide
limits reaching several orders. The behavior is changed
into a contrary one for their ratios. First what draws
attention is that the ratios A, /A, and Af/A, stay prac-
tically unchanged with variation of J /J, on three or-
ders (1 —10 ) by given J„/J . In the two-dimensional
space (J„=0), the mean (here and below, over J /J )
value of Af/A, equaling 0.331 conforms with the true
value 1/3; the mean of A, /A, equals to 7.2 that agrees,
in order of magnitude, with the exact value, 8, for the
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A, /A, [see Eqs. (13)—(15)]. For the three-dimensional
lattice with J = J&, the mean value of Af/A, is 0.288.
This quantity agrees with the estimate Af/A, = 0.272
which follows &om the calculations of relative ampli-
tudes for the inverse correlation lengths and the &ee en-
ergy in the Hamiltonian limit of a three-dimensional Ising
model (square lattices L x L with sizes L up to 5). Ac-
cording to Table I, the ratio for the inverse correlation-
length amplitudes is A, /A, = 3.53(6) in the discussed
case. This estimate is in agreement with the mean values
A, /A, = 3.62(7), Ref. 12, and A„/A, = 3.7(l), Ref. 8.
Thus, the amplitude ratios A, /A, and Af/A, are not
only universal with respect to the J /J, but also their
values agree quantitatively with available estimates in
two limited cases: J„/J = 0 and l.

We now discuss the dependence on J„/J in the inter-
mediate region. In the limit J„/J ~ 0, the L x L x oo
bar decomposes into L of independent strips I x oo and
consequently the TM of the bar is factorized into the di-
rect product of TM's for the strips. Since the TM of the
bar is finite by finite I, its eigenvalues are continuous
functions of model parameters. Hence there must exist
the xf = 3 ~ d = 2 transition region when J„/J ~ 0. To
estimate its sizes by using L, we have calculated the criti-
cal exponents v and p/v. The calculation was performed
via the ordinary FSS forxnulas (see, e.g. , Ref. 13):

ln[L/(I. —1)]
ln[LK'x ~/(L —1)~x ~ x]

(18)

(19)

in which we put I = 4. Here ~z L is the derivative of Kq I,
with respect to the temperature and gL, q and yl. are
the magnetic susceptibilities of subsystems at the phase-
transition point. (Formulas for the susceptibilities are de-
rived in Appendix B.) How the calculation gives the crit-
ical exponents v and, especially, p/v are practically con-
stants with respect to J /J, (= 1 —10 s). Their depen-
dences on J„/J are shown in Fig. 1. Within the section
0.2 & J„/J & 1, the exponents v and p/v preserve the
unchanged values equaling, respectively, 0.67 and 1.97
that agrees with available estimates for these exponents
in the case of the fully isotropic three-dimensional Ising
model (Ref. 14 and references therein). By J„=0, our
calculation yields v = 1.06 and p/v = 1.74. These mag-
nitudes conform closely with the exact values of discussed
exponents in two dixnensions: v = 1 and p/v = 7/4. In
Fig. 1, the region 0 & J„/J & 0.1 —0.2 is clearly dis-
played where a smooth transition occurs from the d = 3
exponent values to the d = 2 ones. Consequently, one
does not consider the L x I x oo lattice with I & 4
as a three-dimensional one when J„/J & 0.2. In or-
der to support this conclusion, we have calculated the
"effective" lattice dimensionality solving the system of
Eq. (11) with L = 2, 3, and 4 and treating d in it
as an unknown continuous variable d'. (For the fully
anisotropic 2 x 2 x oo Ising lattice, there is an exact an-
alytical solution. i

) The conclusion is that xf* does not

FIG. 1. Critical exponents v and p/v (left scale) and the
efFective lattice dimensionality d' (right scale) vs anisotropy
parameter J„/J .

A, /A,

!

2
1

A,Af/A2

FIG. 2. The amplitude ratios A, /A, and A, Ay/A, against
the anisotropy parameter J„/J . The curve parts which are
considered as nonphysical ones are shorn by a dashed line.

depend on J /J, and its plot on J„/J is also presented
in Fig. 1. This plot has a more qualitative character be-
cause in the calculation a cluster with an extremely small
size L = 2 has been used. Nevertheless, the presented de-
pendence indicates that the lattice dimensionality d is
less than three by J„/J & 0.3.

As mentioned in Sec. III, the energy-energy inverse cor-
relation length r2 x, (and hence the amplitude A, ) has a
false behavior in the limit J„/J m 0 due to finite sizes L.
The scaling amplitude Af obtained froxn Eq. (11) with
I = 3 and 4 suÃers &om a similar defect. By finding
of A, and Af, it is not allowed to interchange the order
of the limits L -+ oo and J„jJ ~ 0. (Note in passing
that the calculation of K, q 1. and A, is &ee upon such re-
quirement. ) Taking into account these circuxnstances, let
us consider in Fig. 2 the obtained dependencies of ratios
A, /A, and A, Af/Az. The plots of both dependencies
have the horizontal sections by small deviations of J„/J
from unity. Thus, the amplitude ratios do not depend on
the second anisotropy parameter J„/J in this region of
its values. As Jz/J is decreased, both quantities tend
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K*,j, (0, 0) = L R X;(0,0) (2o)

and

to the incorrect limits.
The recognized properties of the critical FSS ampli-

tudes by a given orientation (n) of an L x L x oo bar
in the anisotropic Ising lattice can be described by equa-
tions

ground for the fully anisotropic three-dimensional Ising
model have been carried out. The data obtained allow
one to make the following inference concerning the struc-
ture of critical FSS amplitudes of the inverse correla-
tion lengths and the &ee energy: Similarly to the two-
dimensional case, a11 lattice-anisotropy parameters are
absorbed in a separate prefactor which is common for
named amplitudes and the directional geometric mean of
which is the unity.

fj~'~ (0, 0) = L R Y(0, 0) (21)

where X;(0,0) and Y(0, 0) are amplitudes of the isotropic
model and R = R (Jv/J Jli/J ). The given equations
are true at J„/J = 0 and, according to the presented
data, when J„/J -+ l. Equations (20) and (21) are
likely to be valid also over the wider range of J„/J
This is con6rmed qualitatively by the calculation of Ay
Rom Eq. (11) with L = 2, 3, and 4 (without supposition
that d = 3 for all Js j0).

Discuss now the behavior of the directional geomet-
ric mean of the spin-spin inverse correlation length am-
plitude (Table II). In the two-dimensional case (column
with J„/J = 0), A, loses a stability when J /J, & 10
This is obviously connected with small widths of strips by
which we approximate the system The situation is per-
ceptibly better in three dimensions. Here A, = 1.7(3),
i.e. the percentage error equals 18%. With such accu-
racy, we may consider A, as a constant.
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APPENDIX A: QUASIDIAGONALIZATION OF
THE TRANSFER MATRI CES

V. CONCLUSIONS

In this paper, the TM-FSS calculations of critical tem-
peratures, exponents, amplitudes, and &ee-energy back-

The group Z2 x TA C2„has an order g = 8L . Its gener-

ating elements are a spin inversion I, translations on one

step t and t„, and reBections in the symmetry planes o.

and 0„'. In the transfer matrix space ~S11, S12, . . . , Sjj),
they are de6ned as

IIS1» Sl» i SIL) —
I Slli S12~ ~ ~ ~

~ SLL) (A1)

tvlS11) S12) ' ' ) Sljj S21& S22& .
& S2jj j Sjl& SL2& ) SI,I,)

~S1L) Sll} r S1L 1 j S2L) S21—) g S2L li SLLy SL1&. —
y SLL 1) y (A2)—

ty ~Sill S12) ) S1Li S21& S22& ' ' '
& S2Li ' ' ' i Sjl& SL2& ' ' '

& SLL)

~S21) S22& ) S2L j j Ll& SI 2& '
y LL j Slip S12& ' '

y S1L) y ( 3)

+v~Sllr S12& y Sljj S21& S22&. . .
y S2I j . j SLl & SL2&. . .

y SLL)

~Sjl y SL2 y
.

& SLL j ~ ~ ~ j S21 ~ S22)l ~ ~ ~
~ S2L j Sll)1 S12).. .

~ S1L) ) ( )

I
Ov ~Slip S12y ~ y S1I j S21y S22& ' s S2Lj ~ i SI1&ISL2)1 & Sjj)

—~S1j~. . . , S12~ Sll, S2L, . . . , S22, S21', SLL&. . . , SL2, Sjl) . (A5)
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Other transformations of the group are the corresponding
combinations of above operations. Multiplying kom the
left the equations like (Al) —(A5) on conjugate vectors
and taking into account the orthonormality condition

(S„,S, , . . . , SLLIS,S, . . . , S L)

6t o
6tyo„'

TABLE III. Characters of the group Z2 x 7 h, C2„ in the
case I = 3; here T h C2„C3 x C3„.

E 3o. 9o.„o.„' 2t I, 3Io„,3Io.„'

9Icr o.„', 2It, 2It„
4t t„4It t„,6It o„,6It„o„'

= hs„s„hs„s„.. . hs..s., (A6)

(Sss = 2lS+ S'l is a Kronecker symbol), we find the
original representation I' of the group.

All matrices of representation built commute with V.
For instance, using Eqs. (5) and (Al), we have

(S» S» " S«ll 'VIISii Si. " SI.L, )

= (—Sii, —Si2, . . . ,
—SLL, lVl —S,'„—S,'„.. . ,

—Sl L, )
= (S,S, , . . . , S lVlS', S', . . . , S' ) (A7)

(v)'
+p, = —g gigi Xi

g
(As)

so that [V, I] = 0. The same is valid for all other trans-
formations of the group.

The traces of matrices built are characters of repre-
sentation I'. For the 3 x 3 x oo case, the characters of
original representation together with characters of irre-
ducible representations I'( ) and I'( ) to which correspond
the subblocks containing the largest eigenvalues are given
in Table III. Using this table and utilizing the formula for
counting the multiplicities with which a given irreducible
representation enters into an original representation (see,
e.g. , Ref. 16)

r = is(r~'~ + r~2l) + " (A9)

It follows &om here that in a basis where the representa-
tion I' is completely reducible the transfer matrix of 512th
order will take a quasidiagonal form in which both sub-
blocks corresponding to the one-dimensional irreducible
representations I'( ) and I'(2) will have the sizes 18 by 18.

The basis vectors of irreducible representations on
which the transfer matrix takes the discussed block-
diagonal form are built with the help of projection
operators. In the case of an I = 3 subsystem, the basis
vectors for the irreducible representations I'( '2) are

(g; is a number of elements in ith class, gI"l is a character
of element from the ith class in pth irreducible represen-
tation, and y; is a character of element from ith class
in an original representation) we find the composition of
representation I':

= (ui + uei2)/V 2,(1 2)

(i,2)
V's

(1,2)
V'5

(1,2)
V'7

(1,2)
pg

(1,2)

{1,2)
&13

{1,2)
~15

(1,2)
&17

) Gi( 4u7+ u439)/~6

) 'G;(u2 + ueii)/3i/2,

) G'(uio 6 u503)/3ii2

) 'G*(u70 +u434)/3V&,

).'G ( -+--.)/6,

) Gi(ui6 6 u4g7)/6
z) 'G;(u30 + u463)/6,

) G;(u12 + u501)/6~2,

(1,2)
V'2

(1,2)
V'4

(1 2)
V'6

(1,2)
&8

(1,2)
V'1O

(1,2)

(1,2)
V'14

(1,2)
&16

(1,2)
+18

).'G'(us + u505)/v 6,

).'G'(us5 + u42s)/2~l 3,
z

) G'(u4 + u500)/3V 2,
z

) Gi(u2s + u465)/3V 2

).'G'( -+ -.)/6,

).'G'( -+ -.)/6,

) G (u76 6 u437)/6

) 'G;(us4 +u420)/6,

) 'Gi(use +.u427)/6v 2,

(A10)

where

ui = ll, 1, 1;1,1, 1;1,1, 1),
1, 1, 1; 1, 1, 1; 1, 1, —1),

uei2 ——
l

—1, —1, —1; —1, —1, —1; —1, —1, —1) .
(Aii)

The plus and minus signs correspond to the basis vectors
of irreducible representations I'{ ) and I'( ), respectively.
For shortening of a listing, only the I-conjugated pairs of
generating orths are shown in Eqs. (A10). The numbers
of orths in a pair (n and n') are connected by a relation
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n' = 2 + 1 —n. Acting on such orths by operators
G, 6 T A C2 and taking on each step only the new
u-orths (this peculiarity is marked by prime on the sum

symbol), we obtain the expressions for the basis functions
in explicit form.

Finally, having the basis vectors for the irreducible rep-
resentations, one can find the matrix elements of sub-

blocks with the transfer matrix eigenvalues under search.
For the 3 x 3 x oo task, the matrix elements of sub-
blocks corresponding to the irreducible representations
r(") have been given with all necessary coefficients in
Ref. 15.

In the case of 4 x 4 x oo subsystem, the basis vectors
of I'( ) and I'( ) can be taken in the form

= (e1 + ee553e)/v 2,(1,2) ) Gi (e2 + ee5 535) /4~2(1,2) I

~ ~ ~

(1,2) (1,2) IG;(e13570 6 e51ee7)/4&2, @57'2 ——) G;(e13574 6 e51353)/8v 2,
z

(A12)

i.(1)
~t'6y3 —

2 g .G'&256 ~ ~ ~ 6737 (e23 131 + e42 40e)/K2
(1)

where

e1 = ll, 1, . . . , 1), , e2 ——ll, 1, . . . , —1), . . . ,
ee553e

l 1,1, . . . , —1) . (A13)

The basis functions (A12) from 1 to 672 and then from
673 to 787 are ordered with the numbers of the first
generating e-orths increasing. Using Eqs. (5), (A12),
and (A13), we evaluate the matrix elexnents V;

(1,2)+ (1,2)Vg. ' for subblocks corresponding to the irre-

ducible representations I'( ' ). The matrix elements are

8

V, = " go" + 2) gt"l cosh(23K, ).~n;n e=l
x exp[21 (m; + m )K + 2 (m; + m )K„] (A14)

APPENDIX B:FORMULAS FOR THE
CALCULATION OF SUSCEPTIBILITIES

In deriving of formulas for yl„we will point out Rom
a Buctuation-dissipation relation connecting the suscep-
tibility with a magnetic moment M (see, for example,
Ref. 17):

1 . 1
yL, (T) = lim (At ) . (Bl)

I

required to store the g-coefficients for a triangle part of
symmetric matrix V( ). The values of coefficients g," lie
in the range from —28 to +40 and we alloted in addition
the 1809024 bytes of a memory for the g-coefficients of
matrix V(2).

and

8

V = 2
*' ) gt"~l sinh(23K, )qn;n,

x exp[2(m, + m )K + 21(m; + m )K„],
(A15)

Here M = P, & S,". where S,"—:S;zs is the total mag-
netic moment of L xI xIperiodic subsystem; the brack-
ets refer to average on Gibbs distribution. Taking into
account the translational invariance of a cluster in the
longitudinal (z) direction, one can write Eq. (Bl) in the
form

where n; are lengths of basis vectors, m; and m~ are the
reduced partial energies of spin configurations in orths
of ith vector. All coefficients g," are non-negative and
satisfy to the "sum rules" (B2)

M —1

XL, (T) =
L2~ T J1m ) .((S11+S12+ "+ Sz,L, )

=0
(Sk+ + Sk+ + + Sk+ ))

8

g,"'+2) gt*'l = min(n;, n,.) .
e=1

(A16)

To calculate the statistical means, we use the transfer
matrix technique. Let us introduce in addition the spin
matrices making by this the one-dimensional order of pair
of indices i, j ~ t = L(i —1) +j:

We did not keep the coefficients g0" but restored them

for each xnatrix element Vt from Eq. (A16). As the

calculation shows, the coefficients gt*' l with s g 0 are
not greater than 60. Hence, it is enough to take one byte
for every element of the g-array, i.e., to use the data type
"char" in C code. Thus, 2480624 bytes of a memory are

S~ = 1 x . -. x 1 xcr x 1 x . . x 1,
l—1 N —1

(B3)

where 1 denotes the unit matrix of second order and 0
is Pauli's z matrix; N = L . This allows one to rewrite
Eq. (B2) as
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M —1

yL, (T) = lim ) Tr[(S, + + S~)

xV"(Si+. + SN)VM "] . (84

Prom here, by passing under the trace symbol into diag-
onal representation of the transfer matrix and by taking
into account the nondegeneracy of its largest eigenvalue,
we obtain

where

m; = {9,3, 3, 3, 7, 5, 5, 1, 1, 5, 3, 3, 1, 1, 1, 1, 3, 1}, (88)

mi is the magnetic moment of spin configurations in the
ith basis vector. As a result, we obtain &om Eq. (85)
the following work formula for a calculation of the sus-
ceptibility:

18 {2)
(89)

18

) - f(P) (i) (86)

where f, are c. omponents of eigenvector answering to
the largest eigenvalue (Ap) of subblock of the identity ir-
reducible representation. Using Eqs. (A10), we find that

S "=m (87)

where I"o, I"1, . . . are eigenvectors of matrix V correspond-
ing to its eigenvalues Ao, A], . . . . Further, the operator
S = S1+ . . + S~ is invariant with respect to all purely
spatial transformations and breaks the Z2 symmetry.
Therefore, the matrix elements entering into Eq. (85)
are not zero only for "transitions" &om the identity irre-
ducible representation I ~ ) just into the irreducible rep-
resentation I'~ ).

Vector I'0 is a linear combination of basis functions
only of the identity irreducible representation. In the
case ofsx3x oo,

Here f ' are components of ith eigenvector correspond-

ing to eigenvalue A~ ) for the subblock of irreducible rep-

resentation I't ).
Analogous formula take place for the I = 4 subsystem:

X4(T) =
672 (2) 672

1 ) Ap+A; ) (p) (,)
16k~T . - p

(810)

All quantities entering in this expression should be taken,
of course, for the 4 x 4 x oo model.

Therefore, the calculation of susceptibilities requires
the solution of a part eigenproblem for the subblock of
an identity irreducible representation and the solution of
a full eigenproblem for a second subblock which corre-
sponds to the irreducible representation I"~ ). The part
eigenproblem was solved again by the conjugate gradient
method and the full one —by using the library C pair
tred9 - tqli.
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