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Scaling theory for the quantum spin-glass transition
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We present a scaling theory for the low-temperature phase transition of the Ising spin glass in a
transverse magnetic field (F). The theory provides relations and bounds on some critical exponents,
which are supported by results from actual calculations. A renormalization-group analysis of the
zero-temperature transition in the presence of a longitudinal symmetry-breaking field enables us to
estimate the critical exponents P and p, associated with the Edwards-Anderson order parameter
and the nonlinear susceptibility, respectively. We have found no indications of the transition being
of first order.

The interest in quantum spin glasses has been re-
newed over the past years, Rom both theoretical and
experimental points of view. In particular, the Grst
systematic measurements of quantum efI'ects, carried
out ' in the three-dimensional dipolar Ising spin glass
LiHoo $67Yo 833F4 by varying the intensity of a transverse
magnetic field I', stimulated further theoretical studies
of the transverse Ising spin glass (TISG).s s One feature
emerging &om magnetic susceptibility data 5 is that the
critical curve displays a linear dependence of T, with F;
see Fig. 1. This should be contrasted with the theoret-
ical results for the Sherrington-Kirkpatrick model in a
transverse field (see, e.g. , Ref. 9 for a list of references),
according to which T, (I') should have an infinite slope
at small temperatures for I' = I'„similarly to the pure
case. In the pure case this can be traced back to the
fact that the gap for excitations is finite (usual discrete
Ising symmetry) for any I' ( I'„ that is, one needs a
finite thermal energy to overcome the gap and destroy
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FIG. 1. Critical temperature for the Ising spin glass in

a transverse field; J is the exchange coupling, as it ap-
pears in Eq. (1). Our previous renormalisation-group re-
sults (k, Ref. 6) are compared with the experimental data
for LiHop isr Yp sssF4 (~, Refs. 4 and 5).

the transition even for I' = I', . Conversely, the finite
slope found in the experimental phase diagram for the
spin glass ' can be attributed to a vanishing configura-
tionally averaged gap for I' ( I', . We have recently ex-
amined a short-ranged TISG model in three dimensions
by real-space renormalization-group (RSRG) methods, s

and found very good qualitative agreement with the ex-
perimental phase diagram, including the finite slope at
the zero-temperature critical field, F„see Fig. 1. This
is indicative that a short-range model provides a better
description of LiHoo i67YO 833F4 than its infinite range
counterpart.

A second feature emerging &om the experimental anal-
ysis concerns the behavior of the nonlinear susceptibility
as the critical curve is approached. It diverges in the
classical regime (i.e. , small transverse fields; see Fig. 1),
with a critical exponent p 0.2, but is suppressed at
very low temperatures (the quantum regime). The mea-
sured p is quite smaller than typical (both experimen-
tal and theoretical) values for classical spin glasses, for
which p 2.5. Wu et al. attribute this unusual behav-
ior of the nonlinear susceptibility to the nature of the
T = 0 transition, which could be of first order. This is
in disagreement with theoretical expectations, since the
renormalization group-trajectory along the critical line
flows towards the thermal fixed point [i.e. , T = T,(0)j of
the classical three-dimensional spin glass. Thus, all ex-
ponents controlling the transitions at Gnite temperatures
and transverse magnetic fields should be the same as
those of the (classical) Ising spin-glass transition. To clar-
ify this point, a detailed study of the zero-temperature
transition is surely in order, and here we present the scal-
ing theory near the transition at (I'/J) = (I'/J); this is
complementary to recent Monte Carlo simulations for the
TISG at zero temperature in two and three dimensions.

For a complete scaling analysis, including the discus-
sion of the order of the transition, we must introduce
a symmetry-breaking longitudinal magnetic field. How-

ever, due to the nature of the Edw'ards-Anderson order
parameter, the local longitudinal fields H, are also ran-
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dom variables distributed according to an even probabil-
ity distribution P(H;); the field conjugate to the spin-
glass order parameter is therefore defined as the width
of P(H;),

h, L, = g[H']

where [. .
] denotes a configurational average. The trans-

verse Ising Hamiltonian then becomes

ature in this case, and one has, necessarily,

= vz.

Alternatively, one Inay consider a scaling form in terms
of the shifted variable,

g = A —A, (T); A—:I'/ J,

N N N
—PR =) Joo +r) o,*+) Ho,', (2) (10)

where the o,", p = x, z, are Pauli spin matrices, I' is the
transverse field, i and j are nearest-neighbor sites on a
simple cubic lattice, and J;~ are uncorrelated exchange
couplings chosen at random &om an even distribution.

Defining J = g[J2], where [J~] is the second moment
of the P(J;~) bond probability distribution, the renormal-
ization of J and I near the unstable zero-temperature
fixed point is described in terms of the variable g
(I'/ J) —(I'/ J)„which measures the distance to the crit-
ical point. One has

bl/v (3)

where, in standard notation, v is the correlation length
exponent for the zero-temperature transition. In the
TISG problem the renormalized temperature behaves as
a relevant field and scales as '

(4)

near T = 0, and z is the dynamical critical exponent,
which should not be confused with the ordinary model A
dynamical exponent.

With Eqs. (3) and (4) we can discuss the scaling func-
tions in the so-called extended form. For example, the
free energy density close to (I'/J), is

f =(g( (5)

where

—= vz (6)

is the exponent describing the crossover induced by the
temperature field, and one should note the use of the un-
shifted variable g in Eq. (5). The function %0(2: = 0) has
a constant value such that the exponent a is associated
with the singularity of the ground state energy density
at the T = 0 transition. The shape of the critical curve
at low temperatures is given by

(7)

defining the shift exponent g. Therefore, the crossover
temperature T", as given by the invariance of the scaling
variable in Eq. (5), is proportional to the critical temper-

Inverting Eq. (7) gives A, (T) = A, (0) + A Ti~&, where
A is a nonuniversal amplitude. In this case, (T/J)' in
Eq. (4) should also depend on g,

ii i2 and so the invari-
ance of the scaling variable in (10) defines the crossover
temperature as

g~ if/&P
g&T if Q & pT .

This implies that the shift and crossover exponents are
not related in principle, and the former should be de-
termined independently. Nevertheless, the analyticity
of the renormalization-group equations in this case de-
mands that g i be an integer (usually 1 or 2).i2 At this
point it is worth mentioning that the choice between the
usual and extended forms is not obvious a priori. An ex-
act RG treatment would, in principle, select one of them,
since the forin (10) would arise f'rom the coupling of the
two competing variables (e.g. , T and g in our case) under
a change in length scale. In the absence of exact results,
however, one has to adopt a di6'erent strategy, collect-
ing as much information as possible, especially the shift
exponent Q, which can, in principle, be estimated di-
rectly from the shape of the phase boundary. If Q = Pr,
both scaling forms are equivalent and the final choice is
dictated by a mere convenience; if, on the other hand,
g g P~, then Eq. (10) is the apropriate scaling form.
With a few notably exceptions (see below), the equality
g = P~ seems to be satisfied for the majority of crossover
phenomena, especially in disordered systems.

We recall that all exponents appearing so far are associ-
ated with the zero-temperature fixed point, where quan-
tum Huctuations replace thermal ones. As a result, the
spatial dimensionality d in the scaling laws is replaced by
d + z; see, e.g. , Ref. 15. For instance, the hyperscaling
relation becomes

(d+ z) v = 2 —n. (12)

I et us first discuss the scaling for the pure transverse
Ising model (TIM), in which case configurational aver-
ages are absent. The critical behavior at zero tempera-
ture is the same as that of the (d+1)-dimensional classical
Ising model, and we have z = 1, so that PT = v. In
addition, a scaling analysis suggests that Q = 1/2 (

0.63 in two dimensions, and @ = P~ = 1/2 in three
dimensions.

In the presence of disorder, the equivalent classical sys-
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tern corresponds to d-dimensional hyperplanes with the
same disorder configuration; these hyperplanes are cou-
pled through nonrandom coupling constants along the
"time" direction, just like in the pure case. Due to this
constraint, it is no longer true that the disordered TIM
at T = 0 is equivalent to a d+1 uncorrelated classical dis-
ordered Ising model. Because of this, time (r) and space
do not scale proportionally to each other, but to a power:

('. As mentioned before, spin-glass disorder wipes
out the effective excitation gap, suggesting a behavior
similar to systems with continuous symmetry, at least as
far as indicating that one should expect z & 1. ' In-
deed, in Ref. 6 we estimated z 1.4, consistent with this
inequality and with Monte Carlo results, z = 1.5 6 0.05
and z 1.3 in two and three dimensions, respectively.
It is interesting to notice that, unlike the pure case, z
seems to be dependent on the dimensionality. Equation
(8) then yields

ground state energy is given by

("I/I')

with

in terms of which the Edwards-Anderson spin-glass order
parameter q is calculated as

(17)

Using Eq. (12), one has

P = v(d —9).

Similarly, we obtain the nonlinear susceptibility as
@=/~ &2/d, (13)

where we have used the rigorous inequality v & 2/d. i9

In order to test these bounds, we recall our previous
estimate, s g 1.23, as determined directly &om the
critical curve. With the above value for z, one then has
v 0.87, which also compares very well with v 0.8, ob-
tained &om Monte Carlo simulations. s The bounds (13)
are clearly satisfied for d = 3. For the sake of com-
pleteness, it is also worth noting that, in two dimensions,
a Migdal-Kadanoff approximation at zero temperature
yields v = 1.0, in excellent agreement with Monte Carlo
simulations, ~ v = 1.0 6 0.1. On the other hand, if one
scales with the shifted variable as in Eq. (10), the value

g = 1 seems to be the appropriate one, satisfying both
the experimental data and the analyticity requirement;
the discrepancy with the value g 1.23, obtained &oxn
the RSRG method, should be attributed to finite-size ef-
fects. If one further assumes the equality P~ = Q = 1 to
hold, the bounds (13) are still satisfied and we could use
our results z 1.4 to estimate v = g/z 0.71; in this
case, the error of about 10%%uo relative to v obtained &om
Monte Carlo simulations is also acceptable in the con-
text of RG approximations. In principle, the exponent
v could be calculated independently &om the recursion
relations at zero temperature, which we were unable to
do in a reliable way due to rounding numerical errors.
To sum up this discussion, our estimates for critical ex-
ponents are consistent with both scaling forms, and so
they cannot be used to single out either of them.

In order to obtain a scaling form for quantities such as
the order parameter or the susceptibility it is necessary to
introduce a new exponent 0, associated with the scaling
of the field conjugate to the order parameter close to the
unstable fixed point,

(19)

Alternatively, as one lowers the temperature with
(I'/J) = (I'/J)„ the nonlinear susceptibility diverges as

T ~~ ', see Ref. 12. This is a very useful result in
the sense that the ratio p/vz can be directly measured
experimentally.

Equation (19) allows one to relate p with 8:

p = v(28+ z —d), (20)

p = v(d + z) and P = 0. (21)

Note that in general one has p ( v(d + z), since for a
second-order transition 8 ( d.

and it is easy to check that the exponents n, P, and p as-
sociated with the zero-temperature transition are related
through the usual scaling law n + 2P + p = 2.

If the zero-temperature transition is of first order, the
scaling exponent associated with the field conjugate to
the order parameter, hL„ is equal to the dimension of the
system, i.e., 8 = d. In this case we would have

(i4)

The connection with the nonzero-temperature scaling
theory of spin glasses is achieved by taking hl. oc h,„~,
where h „q is the applied external uniform longitudinal
magnetic Geld. o

The invariant form of the longitudinal-Geld-dependent
FIG. 2. Clusters used in the RG transformation in three

dimensions. The terminal sites are labeled 1 and 6.
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We can obtain estimates for the magnetic exponents

P~ from a RSRG calculation along the lines described
in Ref. 6, using the hierarchical Migdal-KadanofF cells
shown in Fig. 2. At zero temperature, the density matrix
becomes the ground state projector, which is nondiago-
nal in the basis ~mim2 . . mN ), where o,'~m;) = m;~m;).
Within a diagonal aproximation, the projector is re-
ferred to the ~mim2. . .mg) basis, and the RSRG trans-
formation is defined by the mapping of diagonal elements
only; in spite of this truncation, quantum effects are
being taken care of. Further, disorder is incorporated

I

through a statistical RSRG treatment; i.e., one follows
the evolution of the full probability distributions of the
parameters in the Hamiltonian, Eq. (2). For a given
disorder configuration, the RSRG transformation for the
clusters in Fig. 2 is defined by

(mims (
p'(K') (mims) = (mims( p(K) (mims), (22)

where K' = (J', H', t ') are the renormalized quantities
in the two-site cell, K = ((J;~), (H;)) refers to the orig-
inal cluster, and

(mims~p(K)~mims) =
YAQ TA3 m4 ms

(mim2msm4msms~ p(K) ~mim2msm4msms)

is obtained by performing the partial trace on the internal
spins, keeping those on the terminal sites fixed (see Fig.
2). We recall that p in the above equations should be
understood as a ground state projector.

Equation (22) provides all inatching conditions re-
quired to solve the problem in the zero-temperature limit.
We have obtained approximate recursion relations, cal-
culating the corrections for the Hamiltonian eigenvalues
and eigenvectors up to second order in the field H, since
we are interested in the limit H m 0. We considered zero-
mean Gaussian probability distributions for both the lo-
cal fields,

l H2
P(H;) = exp

2z Ii~~ 2hr

and for the exchange couplings,

(24)

where J—:(Jjl'), is the critical width and we took h1,
10 . When dealing with disordered magnetic fields, one
must consider the total field acting on a spin on a given
site as being a sum of n fields, where n is the coordination
number of that site. Thus, to perform the iteration we
choose at random 8 bonds and 16 magnetic fields (see

Fig. 2), according to Eqs. (25) and (24), respectively.
The scaling exponent 8 is defined through Eq. (14) and
we obtain 8 = 1.46. Taking into account our previous
estimates, z 1.4 and v 0.87, one has Pn = 2.5,
P = 1.34, and p = 1.16. The latter is much smaller than
the upper bound p = 3.83, which would be expected for a
first order transition, as predicted in Eq. (21); evidently,
the same conclusion can be drawn if the values for z and
v used were those from Monte Carlo simulations. Thus,
a second-order transition is more likely in this case, with
the exponent for the nonlinear susceptibility being about
half of the classical value.

In summary, we presented a scaling theory for the
three-dimensional Ising spin glass in a transverse field
near zero temperature, from which bounds on critical
exponents and relations among them were established.
In particular, our renormalization-group estimates sat-
isfy the available bounds and indicate that the zero-
temperature spin-glass transition is of second order. In
view of this, an alternative explanation for the experi-
mentally observed suppression of the nonlinear suscepti-
bility at low temperatures should be sought.
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