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Thermodynamics and spin gap of the Heisenberg ladder
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We have developed an improved version of the quantum transfer-matrix algorithm. The extreme

eigenvalues and eigenvectors of the transfer matrix are calculated by the recently developed look-

ahead Lanczos algorithm for non-Hermitian matrices with higher efBciency and accuracy than by

the power method. We have applied this method to the antiferromagnetic Heisenberg ladder. The
temperature dependence of the susceptibility, specific heat, correlation length, and nuclear spin

relaxation rate 1/Tq are calculated. Our results support the existence of a spin gap of about 0.5j.

I. INTRODUCTION

The behavior of one-dimensional (1D) strongly corre-
lated systems and spin chains is by now quite well un-

derstood. For two-dimensional (2D) strongly correlated
systems there are many open questions. Analytic results
are much harder to obtain and there are finite-size scaling
problems with numerical methods. Ladder models (dou-
ble chains) are an interesting intermediate step between
1D and 2D systems. They are easier to treat numeri-

cally than 2D systems and show phenomena which are
not present in the 1D chains. Another reason for spe-
cial interest in ladder systems is the possibility of realiz-

ing a lattice of weakly coupled ladders in the compounds
Sr2Cu40s and (VO)2P207. '

A simple but interesting model is the Heisenberg lad-
der, consisting of two coupled spin-2 Heisenberg chains
of length L:
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boundary condition. This is however equivalent to peri-
odic boundary conditions in the y direction and a cou-

pling J'/2. The momentum along the rungs k„=0, s is
therefore also well defined.

The Heisenberg ladder shows a completely difFerent be-
havior than the single chain model. While the excitation
spectrum is gapless (des Cloiseaux —Pearson mode@) for
the spin S =

2 single chain, there exists a spin gap in the
ladder. If the interchain coupling is ferromagnetic, the
system scales to another phase, the Haldane gap state
of the S = 1 chain. We do not discuss this case here.

The Heisenberg ladder and related models, such as the
t-J ladder2'4 or the Hubbard ladder, and most of the in-

teresting strongly correlated quantum systems cannot be
solved analytically. Because of strong interactions mean-
field and perturbation theories often fail to give reliable
results either. Actually many interesting phenomena in
these models are of nonperturbative origin. Numerical
methods giving exact results are thus essential to study
such systems.

Four different methods are often used to obtain "ex-
act" numerical results for strongly correlated systems.
These are methods without uncontrolled approximations.
Two of these methods, quantum Monte Carlo (QMC) and

Here S; is the spin operator at site i (i = 1, . . . , L) on
the rung a (a = 1,2) and periodic boundary conditions
are used along the ladder (x direction) (see Fig. 1). h
is an external field in the z direction. The field h = 0,
except to calculate numerical derivatives with respect to
the external field 6, and we set gp~ ——1. The exchange
constants J and J' are positive, corresponding to anti-
ferromagnetic coupling. As the system is translationally
invariant in the x direction the momentum A: is a good
quant»m number. In the y direction we use the open
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FIG. 1. Diagram of the Heisenberg ladder with two legs in

the x direction and L rungs in the y direction. The coupling
along the legs is J and along the rungs J'.
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quantuin transfer matrix (QTM), work at finite temper-
atures. The other two, exact diagonalization (ED) for
small systems and the density-matrix renormalization-
group (DMRG) technique, are zero-temperature meth-
ods.

The QMC and QTM (Refs. 12—15) methods are both
based on a Trotter-Suzuki decomposition of the parti-
tion function. The d-dimensional quantum system is
mapped onto a (d + 1)-dimensional classical one. For
quasi-1D quantum systems, such as chains or ladders,
the partition function can then be obtained by the QTM
method. This method is very powerful. It allows
the calculation of the temperature dependence of ther-
modynamic quantities as well as correlation lengths for
infinite systems. No extrapolation is thus necessary for
the system size. It does not sufFer from the negative-
sign problem of the QMC method and has much higher
accuracy.

We have combined the usual QTM method with
the look-ahead I anczos algorithm for non-Hermitian
matrices~~ to calculate the the extreme eigenvalues and
eigenvectors of the QTM more efficiently. This method
allows us to calculate every thermodynamic quantity
with higher accuracy. Prom the numerical point of view
it is much more efEcient than the power methods that
have usually been used.

In the QMC methodi4 the partition function is calcu-
lated by statistical sampling of the corresponding classi-
cal system, instead of being evaluated exactly. The QMC
method is very powerful if the negative-sign problem is
not severe. It can be used in any dimension, on systems
with more than 100 sites, and at lower temperatures than
the QTM methods. The results are, however, not as ac-
curate as the QTM results due to statistical errors &om
the sampling. These errors can be made quite small un-
less the system investigated sufEers &oxn the negative-sign
problem. This sign problem, which occurs in many &us-
trated spin systems and in 2D fermion systems, often
makes simulations practically impossible.

Exact diagonalization. by the Lanczos algorithm~ is a
very accurate zero-temperature method. It can be used
to obtain the ground state and the low-lying excitation
spectrum for small systems (of up to about 10s states)
with high accuracy. However, the restriction to small
systems often leads to diKculties with finite-size scaling.
ED can also be used to calculate finite-temperature prop-
erties. But this requires the calculation of a significant
portion of the energy spectrum or of all energy eigenval-
ues. The QTM method in contrast needs just a few of
the extreme eigenvalues of the transfer matrix.

The DMRG technique is another zero-temperature
method. It can be used to calculate the ground state
and the low-lying spectriim for larger systems (about 100
sites). This method works exceptionally well for one-
dimensional chains. It can also be applied to higher di-
mensional systems, but there it is harder to obtain accu-
rate results.

The Heisenberg ladder was studied by Dagotto et al.
and Barnes et al. using exact diagonalization of lad-
ders with up to 2 x 12 sites and the QMC method on
systems with up to 2 x 32 sites. From their finite-

size results they extrapolated a spin gap of 0.5J for
the infinite-length ladder at the isotropic point J = J .
A calculation by White and Noack using the density-
matrix renormalization-group technique (DMRG) gives
a spin gap of 4 0.5037J and a correlation length of
( = 3.19(1) for J = J'.

The Heisenberg ladder was also treated in a mean-field
approxixnation by Gopalan et al. They calculate the
spin gap and the excitation spectrum. The dispersion of
the spin-triplet excitations agrees well with ED results.

Using the QTM method we have studied the tempera-
ture dependence of the correlation length (, the suscep-
tibility g, and the specific heat C directly for the infinite
ladder for temperatures down to T = 0.2J. The spin gap
and the temperature dependence of (, g, C and of the nu-

clear spin relaxation rate I/Ti at low temperatures were
calculated by combining the QTM with ED results on
the excitation spectrum.

II. QUANTUM TRANSFER MATRIX METHOD

The QTM method has been widely used to study spin
models numerically. ' The method is based on a
mapping of the d-dimensional quantum mechanical sys-
tem onto a (d+ 1)-dimensional classical one. For some
models, e.g. , Bethe ansatz solvable models, the parti-
tion function of the corresponding classical model can
also be calculated analytically by using a transfer matrix
method. The QTM of a 1D spin-1/2 model is equiva-
lent to the diagonal-to-diagonal transfer matrix of the
eight-vertex xnodel, 22 which can be solved exactly using
the Bethe ansatz. 1D models treated analytically include
the Heisenberg model, XXZ xnodel, XYZ model, 4'

and Hubbard model.
The first step of the QTM method is the Trotter-

Suzuki decomposition of the grand canonical partition
function of a, quantum model x6 The Hamiltonian is de-
composed into two parts H = Hq + H~, each of which is
easy to diagonalize. A standard choice is the decomposi-
tion into two sums of commuting terms:

i even i odd

H 'i = JS;.S,+i ——(S;+S;+,) .
2

A similar decomposition, shown in Fig. 2(b), can be used
for ladder models. For the Heisenberg ladder it is

with [H~'l, H~~l] = 0 for i, j both even or both odd. The
two sums Hq and H2 do not commute in general. The
simplest decomposition for a chain with only nearest-
neighbor interactions is the so-called "checkerboard
decomposition. " There all terms on odd-numbered
bonds are collected in IIq and the even-nuxnbered bonds
into H2 [see Fig. 2(a)]. This is the standard decomposi-
tion used in most calculations. We have used it in this
paper for the ID chains. For the 1D Heisenberg model
the H&'& are
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in the Trotter-Suzuki decomposition. (a) The
checkerboard decomposition, the simplest de-
composition for 1D chains. (b) A "checker-
board" decomposition for ladder models.
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a=1,2
JI

+—(S; i S;2+ S;+i i S;+i,2)
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(4)

Using this decomposition it is possible to approximate
the partition function in the following way:

Z=Tr(e ~
) =Tr (U],U2) + O(«)

) (»Ill~2M)(&2MIU2lr2M 1) X

~1 ) ~ ~ )~2M

x (t31U1112)(t21 U2 lrr) + o(a~'),
where P—:1/T denotes the inverse temperature (imagi-
nary time), M is the Trotter number, and b,r = &M. The
lip) are a complete orthonormal system of the states

—a~H&*)e
—AKHy

U
—A Hg —a~H&*~e

~ ~ h

i odd

Note that all the factors in each product commute with

each other. Since Hq and H2 are chosen to be easy to di-
agonalize, the evaluation of the matrix elements (ilUi li')
is straightforward.

The decomposition leads to a systematic error which
is of order Ar2 (x I 2. We can extrapolate to A7. ~
0 (M ~ oo) by fitting the results for difFerent Trotter
numbers M to a polynomial in Ar2.

The above Eq. (5) can be interpreted as an evolu-
tion in imaginary time (inverse temperature, also called
"Trotter" direction) of the state lii) by the "time evo-
lution" operators Uq and U2. Within each time interval
A~ the operators Uq and and U2 are each applied once.
This leads to a graphical representation of the sum on
a square lattice, where the applications of the operators
U&~) = exp( —b,rII(&) ) are marked by shaded squares (see
Fig. 3). The configuration on each time slice corresponds
to one of the states lis) in the sum (5) for Z.

The QTM exchanges the space and imaginary time
directions. The problem is reformulated in terms of
column-to-column transfer matrices Vj and V2 as shown
in Fig. 3. The partition function can be written similarly
to Eq. (5) as

Z = Tr (V,V, )
' +O(b,~') = Tr(V ')+O(67'),

U
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FIG. 3. Graphical representation of
the TrotteraSuzuki decomposition of a
one-dimensional quantum chain using the
checkerboard decompositioa. Also showa is
the formulation in terms of the usual row to
row transfer matrices U and in terms of col-
umn to column transfer matrices V. The
matrices that are altered for measurements
are indicated by a lighter shading and are la-
beled. Refer to the text for details.
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1&i&2M; i odd

1&i&2M; i even

V(')

where V:—Vj V2 and L is the length of the chain. Here
we have used periodic boundary conditions in the space
direction. Again the transfer matrices are products of
sparse matrices V~'):

such as the magnetization or the internal energy directly
from the eigenvectors.

Let us 6rst consider the thermal average of a local
quantity such as the o. component of the spin S, the
particle density n, or the energy density. %'e will call
this observable we want to calculate A. We can calcu-
late the thermal average of this quantity anywhere on the
lattice due to translational invariance. The effect of the
measurement is to locally change one of the weights:

The matrix V~') can be calculated quite simply &om
the corresponding matrices U~~). Let oq and o2 denote
the states on the lower left and right corners of a square
and let v~ and 72 denote the states on the upper corners,
as shown in Fig. 4. Then

(A)r, = —Tr(A V V ~ ') = —Tr(AV i ')
g '' z

where A—:AiV2. The matrix Ai is Vi with just the
matrix V~ ) altered:

(CT2& 72lv'*1 lo'i, Ti) = (CTi, O', IU & '
ITi& T2).

In order to describe most of the thermodynamic prop-
erties of the system, it is enough to know the extreme
eigenvalues and eigenvectors of the QTM. This follows

&om an interchangeability theorem, which allows us
to interchange the limit of system size L + oo and the
limit of Trotter number M ~ oo. The &ee energy den-

sity (per site or per rung for a single chain or ladder,
respectively) f = —

&&
ln 2 in the thermodynamic limit

1s

f = —lim lim ln Tr(V ~ )
Lmoo M-woo I&

1
hm lnAg,

2P M-woo

1 Ag
lim —ln—

M-+oo 2 A2
(10)

All thermodynamic quantities can be calculated as
derivatives of the &ee energy. The magnetic susceptibil-
ity could, for example, be calculated as a second deriva-
tive of the free energy density f with respect to the mag-
netic 6eld h. However, numerically it is much better to
calculate it just as a simple derivative of the magnetiza-
tion. Indeed it is possible to calculate local quantities,

where Aq denotes the largest eigenvalues of V. As we will

see later the ratio of the two largest eigenvalues deter-
mines the correlation length of the most dominant Quc-

tuation:

I

3&i&2M; i odd

where A~ 1 is the matrix Vigil modified by the measure-
ment

WU~O) + U~o)~
0'y, 02

2
T] )72 e

g, (y, lv'~'Av'~' 'Iy,)-
2, (&'Iv"'l4')

(&i IAI@P)
(@'I&")~ (I4)

Thus local quantities are easy to obtain from the eigen-
vector corresponding to the largest eigenvalue. The spe-
ci6c heat C can now be calculated by a numerical deriva-
tive of the internal energy:

To simplify this further we can rewrite the trace in
terms of the right and left eigenvectors IQR) and (@~l of
the transfer matrix V. Let us again exchange the limits
M ~ oo and L ~ oo. For simplicity we will not write
the limit limM~ in the following equations, but it is
always assumed that this limit is taken. The application
of the transfer matrix V projects out the eigenvector of
the largest eigenvalue Aq in the limit L m oo:

The magnetic susceptibility y can be calculated as a nu-

merical derivative of the magnetization with respect to
the external 6eld 6:

FIG. 4. Rotation of the transfer matrix: The matrix U~')

propagates a state along the imaginary time direction. V(~)

propagates along the space direction.

Similarly we can calculate correlation functions, such
as spin correlations. Let us calculate the correlations
of the Quctuations of such a quantity around its mean
value A; = A; —(A) between sites i and i + d. In the
limit L ~ oo this is
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for odd d, and

(0g I&i(V2V1) +2lfp)
(/LID~ + y Iy&)

(~1 lx~v2(v, v, ) -"&~V210p)
(yr, IP( + )I Iyz)

lim (A,A,+q)d-+oo

(&il&l@.")H.'l&l@P) &~ &
"

(g, Ig, )A, A gA, y

(@'I&l&.")(@.'I&l&"),
„

A is the largest eigenvalue with nonzero overlap

(Qz IAI@+)(vP IAIQP). If the state AIQP) is in the same
invariant subspace as IQP) (e.g. , if A = S'), then it is
usually the second largest eigenvalue in this subspace,
otherwise (e.g. , if A = S or A = S") it is usually the
largest eigenvalue in the invariant subspace that contains
AIQP). In Eq. (20) it was assumed that there is only one
eigenvalue with absolute value IA I. The generalization
of the above formula to the case of multiple eigenvalues
with the same absolute value (e.g. , a complex conjugate
pair) is straightforward.

The correlation length ( is

for even d. These correlations are sixnple to calculate for
short and intermediate ranges d. Often more interesting,
and much simpler to calculate, is the correlation length,
defined as

1= —lim —ln(A; A;+g) .
dmoo d

As we want to take the lixnit d m oo it is sufBcient if we
consider the case of even d. In the limit d ~ oo formula
(18) becomes

of the Hamiltonian. ED is restricted to small system
sizes, as we have to store three vectors of the Hilbert
space in the main memory of the computer. In the QTM
method we have exchanged the space direction with the
imaginary time direction. The length of the chain can
now be made as large as one wishes. The price we have
to pay is that we have to store the vectors of possible
states in the imaginary time direction. We are restricted
to a sxnall number of tixne slices and thus to the high-
and intermediate-texnperature regixnes.

The main problem is that, while both Vj and V2 are
Hermitian, their product is no longer Hermitian, since
the two matrices do not commute. Until recently there
was no efficient way to calculate eigenvalues and eigen-
vectors of non-Hermitian matrices, since the usual Lanc-
zos algorithm is numerically unstable for non-Hermitian
matrices, and usually does not converge. Therefore
the eigenvalues and eigenvectors were calculated using
power methods. Recently however a variant of the Lanc-
zos algorithm, the look-ahead Lanczos algorithm, was
developed. ~ This is almost always numerically stable
and convergent. Very rare exceptions, so-called "incur-
able breakdowns, " can usually be circumvented by using
different starting vectors. We have never encountered
such an incurable breakdown in our calculations.

The Lanczos algorithm~ ' is an iterative method to
tridiagonalize a matrix V. The extreme eigenvalues of the
recursively generated tridiagonal matrix converge very
rapidly to the eigenvalues of the original matrix. As the
matrix V is needed only in the form of matrix-vector
products Vv the Lanczos algorithm is ideally suited to
calculate the extreme eigenvalues and eigenvectors of
large, sparse matrices.

The Lanczos algorithm recursively generates the tridi-
agonal matrix and two sets of vectors (v;) and (m;)
(i = 0, . . . , N —1) starting from the vectors vo and ufo.
These basis vectors span the Nth Krylov subspace of V
and Vt,

lim —ln
1 Ag

Mmoo 2 A~
(21)

span((v;)) = span(vo, Vve, . . . , V vo}, (23a)

and the wave vector of the most dominant Buctuation k
can be calculated &om the phase of A

span((ur;)) = span{ms, Vtmo, . . . , (Vt)N ms), (23b)

and they are biorthogonal:

k = lim —arg
I I

+ nn
Mmoo 2 (Ay )

(n = 0 or 1). (22)

The ambiguity arises because the transfer matrix in this
forxnulation propagates over two sites and cannot dis-
tinguish between k and k + m. It can be resolved by
comparing the correlations for odd and even d.

III. LOOK-AHEAD LANCZOS ALGORITHM

The numerical problem in the QTM method is the cal-
culation of the extreme eigenvalues and the correspond-
ing eigenvectors of the transfer xnatrix V. This is a sim-
ilar problem as in exact diagonalization (ED). In ED we
want to calculate the lowest eigenvalues and eigenvectors

(v, , m;) = b,~. (24)

The Lanczos algorithm terminates regularly when an
invariant subspace of V or Vt has been found and v~ ——0
or ca~ ——0. For non-Herxnitian matrices a breakdown oc-
curs when the vectors vN and mN are orthogonal. Then
v~ g 0 and m~ g 0, but (v~, w~) = 0 and the normal-
ization [Eq. (24)] cannot be fulfilled. In finite precision
arithmetic there can also be near-breakdowns when v~
and m~ are nearly orthogonal and the algorithm becomes
numerically unstable.

The Lanczos algorithxn is most often used for Hermi-
tian matrices, where such breakdowns cannot occur. If
we choose vo ——mo, then we have v; = m; for all i since
V = Vt. The normalization Eq. (24) then becomes sim-
ply
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( w, ~N) = ( N, iv) =
ii Nll'

This is zero only in the case of regular termination, where
VN ——mN ——0.

The look-ahead Lanczos algorithm relaxes the condi-
tion of tridiagonalizing the matrix. As long as there are
no breakdowns or near-breakdowns it is equivalent to the
usual Lanczos algorithm. If a breakdown would occur
in calculating vN and mN, it tries to skip over that it-
eration. The simple three-term recurrence relations of
the standard. Lanczos algorithm are then replaced by
more complex relations including not only the vectors
vN 2)vN i) VVN i and AN 2)u)N i, v tUN i but also
&'&iv-i, . , &'&sr i(&-)'~~-i, . , (& )'ious i, . -
is the look-ahead length. The look-ahead Lanczos al-
gorithm then generates a block-tridiagonal matrix with
blocks of size / instead of a tridiagonal one. Usually a
look-ahead of l = 2 or 3 is sufhcient except in rare cases.
In extremely rare cases we would encounter breakdowns
with any number of look-ahead steps. This case is called
an ineuruble breakdown. For details we refer to the origi-
nal literature. " An implementation of the eigenvalue al-
gorithm is available in electronic form.

The look-ahead Lanczos algorithm allows us to calcu-
late the extreme eigenvalues of the QTM very efficiently
and with high accuracy. We need much fewer iterations
compared to the power method. We found that the look-
ahead Lanczos algorithm often converges in just a few
d.ozen iterations.

Another advantage is that the eigenvectors can be cal-
culated without any problems by the Lanczos algorithm.
This allows us to calculate quantities such as the inter-
nal energy or the magnetization directly via Eq. (14).
These results are more accurate than the calculation as
numerical derivatives of the free energy.

We have compared the algorithm to exact results for
the 1D XY and Heisenberg models. 2 We found that our
results are very accurate down to quite low temperatures
(T = 0.1J) for results extrapolated from M = 1, . . . , 10.

The spin gap also leads to an exponential drop of the
speci6c heat, as shown in Fig. 6. At high temperatures
there is again good agreement with the high-temperature
expansion. The &ee energy per site is

and the specific heat

0.2
(a) J'/J = 0.1

0.1

0.05

In Fig. 7 we show the temperature dependence of the
correlation length ( for the Heisenberg chain and the
Heisenberg ladder, calculated by the QTM method. The
wave vector of the dominant correlation is k = (x, m) for
the ladder, which corresponds to antiferromagnetic cor-
relations. In the high-temperature limit the correlation
length is similar in both models. With decreasing tem-
perature the correlation length becomes longer for the
ladder. This is because antiferromagnetic correlations
are enhanced faster in the ladder due to the larger num-

IV. RESULTS FOR THE HEISENBERG LADDER
0.20 - (b) 0.1

A. Quantum transfer matrix results
0.15-

As an application of the new algorithm we have stud-
ied the Heisenberg ladder. Speci6cally we have calculated
the correlation length $, the specific heat t, and the mag-
netic susceptibility y as a function of the temperature T.

In Fig. 5 we show the susceptibility per spin y as a
function of the temperature for diff'erent values of J/J'.
At high temperatures the results agree well with a third-
order high temperature expansion

0.10

0.05—

0.00
0.0

I

0.5
I

1.0
T/J'

I

1.5 2.0

At low temperatures we observe an exponential drop of
the susceptibility, caused by the gap in the spin excitation
spectrum. This drop is steeper for smaller values of J/ J',
indicating that the gap b, / J' decreases with increasing J.
The spin gap will be studied in more detail in Sec. IV B.

FIG. 5. Temperature dependence of the magnetic suscepti-
bility of the Heisenberg ladder for difFerent values of J/ J' = 1,
0.5, 0.2, and O.l. (a) A logarithmic plot of y as a Function of
the inverse temperature P. (b) X as a function of the temper-
ature T.
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B. Spin gap and low-temperature thermodynamics

04

QTM results

0.2

0.0
0

FIG. 6. Temperature dependence of the speci6c heat of the
Heisenberg ladder for J' = J.

To calculate the spin gap and the thermodynamic
quantities at low temperatures we start &om the limit
J/J' -+ 0, where a simple description of the whole ex-
citation spectr»m is available. In that limit, each eigen-
function of the total system can be written as a direct
product of one-rung states, which are either spin singlets
or one of the triplets (0 = —1, 0, 1), and the ground state
is that with all singlets. Accordingly, each eigenenergy
is given by J'N, where N is the number of triplet rungs,
measured &om the ground state energy —

4 J'L, and the
energy spectrum shows a tower structure consisting of
equidistant multiplets with separation J'. Each multiplet
is labeled by the number of triplet rungs N. The first ex-
cited multiplet consists of the states with one triplet rung
and therefore belongs to the sector of Sq q

——1, and its
multiplicity is 3L. In general, the Nth multiplet, which
consists of the states with N triplet rungs, has the mul-

tiphcity g(L, N) = y (w), where the grat factor yw

ber of nearest-neighbor sites. At low temperatures the
correlation length saturates to a Bnite value ( = 3—4) )

which agrees with ( —3.19, determined by the DMRG
calculation for zero temperature. This finite correlation
length corresponds to a finite spin gap via the relation
( a/b, , where a is a constant of the order of a charac-
teristic spin velocity. For smaller ratios of J/J' the gap
is larger and the correlation length thus expected to be
smaller. From the results shown in Fig. 7 we can esti-
mate ( 1.5 for J/J' = 0.5, ( = 0.7 for J/J' = 0.2,
and ( 0.4 for J/J' = 0.1. In the gapless single chain,
on the other hand, the correlation length diverges like

( v, /(vrT) (v, is the spin velocity) as predicted by
conformal field theory.

E

2J'

0

4" 32L(L-1)/2 two-magnon states

. ::„.;,.;,„:~@~.::.':
" ",. ::::" 2J 3L one-magnon states
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FIG. 7. Correlation length of the Heisenberg chain and lad-
der as a function of temperature. In the gapless Heisenberg
chain ( diverges for T m oo, while it remains Suite for the
Heisenberg ladder which exhibits a spin gap. For the Heisen-
berg ladder the results for difFerent values of J/J' = 1, 0.5,
0.2 an& 0 1nd Owl are shown. The inverse temperature is in units of
J for the single chains, and in units of J' for the ladder.

0

0
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FIG.. 8. (a) Evolution of the energy levels when the interac-
tion J is turned on. (b) Qualitative picture of the dispersion
at small J/J', (c) at J = J'.
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comes &om the spin part.
A small but finite value of J lifts the degeneracy of

these states. A schematic picture of the energy levels is
shown in Fig. 8. The one-triplet excitations then form a
threefold degenerate band of collective excitations with
dispersion eg ——J'+ J cos k and z component of spin o =
—1,0, 1, where we set the ground state energy Eg, ——0.
The minimum of this band is at a momentum k = vr

along the ladder. The momentum along the rung is k„=
We will call these excitations "magnons" although

there is no magnetic long range order in the ground state
order. To second order in perturbation theory the gap
1S32

f1 ——— [1 + 2 cosh(ph)] ) e

1= ——[1 + 2 cosh(ph)]z(p),
2

(32)

T —+ oo the number of bosons at each k would diverge
and we would not obtain the correct entropy for T m ac.

At low enough temperatures T && 4, the magnon
density is very low and it is sufhcient to include up to
one magnon for each k and 0. Therefore, both residual
magnon-magnon interactions and the kinematical inter-
actions are negligible. The free energy per site in that
limit is

4 = J' —J+ —J2/J'.1 2

2
(29) where we have replaced the suxn by the integral

The higher excited states form a continuum of excited
states, with k„=0 and a minimum at k = 0. They can
be viewed as two-"magnon" states. In low-order pertur-
bation theory the magnon-magnon interaction is repul-
sive. The minimum of the continuum is thus at energies
slightly larger than twice the gap 2A.

With increasing J the collective one-"magnon" branch
crosses into the two-"magnon" continuum [see Fig. 8(c)].
The exact diagonalization and mean-field results indi-
cate that even then the spectrum can still be described
by the above picture.

Using these results on the excitation spectrum we can
calculate the low-temperature thermodynamics of the
Heisenberg ladder. First we start f'rom the simple limit
J = 0. Each rung can be either in the singlet state or in
one of the three triplet states. We obtain for the partition
function of the ladder of length I

Z = (1+ P(&+") + ~+ + ~(+ "))I

= (1+ [1+2cosh(Ph)]e ~ )
and for the magnetic susceptibility

OO

z(P)—:— dke ~'" = de p(e)e ~',
27/ ~ 0

(33)

h, =o

= pz(p). (34)

For a simple form eg = 4 + a [~k~
—7r~" we can perform

the integration

where we extended the integration over k to infinity. At
low temperatures the magnetic susceptibility then is

X(n) (T) (n ) —1/n T 1+1/n —D/T—I'(~h
e (36)

If we replace the magnon band by the quadratic approx-
imation (n = 2), we get

which is a Laplace transform of the magnon density of
states p(e). The susceptibility then is

c)' e
—~

2LP t9h2 ~=o 1+3e-)s'1 '
1

(T) A/T—
2 7lGT

(37)

which drops like Pe ) + for low temperatures.
If J is nonzero, we have to take into account the disper-

sion of the spin excitations. We assume the magnon exci-
tations to have a dispersion eI, +crh, where 0. = —1,0, 1 is
the z component of the spin. In the limit T ~ 0 the inter-
actions between these magnons become negligible since
the magnon density goes to zero due to the gap.

The "magnons" are bosonlike in the sense that one
can excite more than one excitation with the same quan-
tum numbers, the wave number k, and the spin 0, but
they are not real bosons, since the Hilbert space is re-
stricted. One cannot excite two "magnons" at the same
rung, which might be described by a hard-core repulsion
in the boson representation. This was first pointed out
by Dyson for real magnons in a ferromagnetic state, usu-

ally referred to as kinematical interactions. The kine-
matical interactions become important with increasing
temperature, and are essential to get a correct tempera-
ture dependence. Otherwise, for example, in the limit of

Similarly we can calculate the specific heat as

(~) 1/n (T) 2 —1/nT, (Tl)
''

x I (—) + 2I'(1 + —) —+ I'(2 + —')
~

—
~qb, )
(38)

In the quadratic approximation,

1/2 2/2

1+ —+-
i

—
~

T 3 (Tl)' a T

4 qA)

The low-temperature result Eq. (36) motivates a first
estimate of the gap based on the logarithmic derivative
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This derivative is 4 —(1 —1/n)T at low tem-
8J9

peratures for a susceptibility (36). This derivative goes
to zero on the other hand if the susceptibility is nonzero
for T = 0 or vanishes following a power law.

In Fig. 9 we show —8&~ for some gapless systems, the
1D Heisenberg, and XY models, to compare with the
Heisenberg ladder. This plot clearly shows the existence
of a spin gap for the ladder.

The size of the gap however is not easy to estimate kom
the data. For J = J' we can reach only temperatures
T/J' = 0.2, which is below the gap but not yet in the
asymptotic region.

To determine the size of the spin gap more precisely,
we need a fitting function which describes the whole tem-
perature range. This function should give correct results
in both low- and high-temperature limits. To get a cor-
rect high-temperature limit, one has to take into account
the kinematic interactions, as discussed before. We have
found a simple way of including kinematical interactions
in the thermodynamics based on reasonable physical ar-
guxnents. Our formula not only gives correct low- and
high-temperature limits, but the overall agreement also
turns out to be good.

In our new formula, the grand partition function is
calculated as follows. The main problem of the boson
description is that as the number of triplet rungs, N,
increases, the number of the corresponding boson basis

states diverges like g (I, Nn) = (
+,
w ), while the

correct dimension is g(L, rr) = kw (w). Therefore, the

basic idea is to reweight the N-magnon part in the parti-
tion sum, [g(L, N)/g~(L, N)]Zb, „(Nmagnon), so that
each multiplet contributes the correct entropy. This can
be done with slight modification of the boson partition

1.0

function

Z~(L, N) = ) exp —P) (eg,. —h,o., )
/k'-, n~)

(4o)

This corresponds to a sum neglecting the indistinguisha-
bility of bosons. Aside from the global factor, the differ-
ence kom the original boson sum are the terms in which
two or more bosons have the same quantum numbers

(k, o'). However, the number of these terms is smaller

by at least order one with respect to L and we neglect
those corrections. Since there are (3L)+ terms in Zc,
the reweighting should work as follows:

L
Z= )- '(' ")Z.(L„N)

(3L)~N=O

= ) ~
~

L ) [1+2cosh(Ph)] e
N

N=O 4 )
ldk ... A

1 + [1 + 2 cosh()9h)] —) e ~'"1
(41)

There are 4~ terms in total in the above partition sum,
giving the correct total entropy, since we reweighted to
get the correct number of excitations. Note that here

(i) we assume that all excitations could be described as
multimagnon excitations and (ii) all residual magnon-
magnon interactions are neglected. The assumption (i)
is obviously correct in the limit of J/J' -+ 0 and there
is no indication of a breakdown of the arg»ments of an-
alytic continuation with respect to J: e.g. , the spin gap
is always finite as far as J is nonzero.

The &ee energy per site is

0.8—

0.6—

J/J'=0. 1 o QTM results
------ fit 1---- fit2--- fit3
—-- fit4

f = ——ln(1+ [1+2cosh(Ph)]z()9)),
2

(42)

where we have taken the limit L + oo and again replaced
the sum over k by an integral.

This partition functions gives a susceptibility

0.4
C

0.2

z(~)
1 + 3z(P)' (43)

0.0

-0.2
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Temperature dependence of the logarithmic deriva-
tive of the magnetic susceptibility with respect to the in-
verse temperature P. Shown is the magnetic susceptibility
for the gapless 1D XY and Heisenberg chain and for the gap-
ful Heisenberg ladder with J/J' = 1 and J/J' = 0.1. Also
included is the St which is described in the text. For J/ J' = 1
the four different fits are shown. The temperature is in units
of J for the single chains, and in units of J' for the ladder. es = J'+ Jcosk = E+ 2Jcos (k/2), (44)

which is correct in both limits T -+ 0 and T ~ oo. For
very low temperatures we recover the result of the low-
temperature approximation (34). For high temperatures
we obtain the correct Curie law y = 4T.

We will now try to fit the QTM results to the above
model. The function z(P) depends on the dispersion eg
we use. First we discuss the small J/J' region. As the
correction term in the Trotter-Suzuki decomposition is
of order Ps Js /M2 we can reach quite low temperatures
T/J' when J « J'. For J = 0.1J' we can reach temper-
atures below T/J' = 0.04. These temperatures are low

enough to see the asymptotic behavior. In that limit the
dispersion is of the form
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with 6, = J —J'. For J/ J' = 0.1 we can reach quite low
temperatures and a fit to the above Eq. (43) using the
dispersion (44) is excellent. The resulting fit of y(T) is
shown in Fig. 10. A least squares fit gives a gap of 4 =
0.9Q9, which is in excellent agreement with the second-
order perturbation result 4 = 0.905 [Eq. (29)j.

At J = J' the gap is harder to estimate. This is caused
by two facts. First we cannot reach as low temperatures
as in the small J region, as the Trotter "time" step PJ/M
is now larger. The lowest temperatures we can reach are
about T/ J = 0.2. Additionally we do not know the exact
shape of the dispersion.

We can guess the form of the dispersion from exact
diagonalization data and mean-field calculations. The
dispersions obtained by both the perturbation result Eq.
(44) and the mean field are quadratic close to the min-
imum at k = m. At larger lk —vri exact diagonalization
and mean-field results indicate a more linear behavior.
We have used several functional forms for the dispersion.
Good fits were obtained by the following dispersions:

TABLE I. Gap and fitting parameters obtained by fitting
the numerical data for the susceptibility using various disper-
sions.

Dispersion
(&)
A:

(2)
le

(3)
k
(4)

~i

4/J
0.496
0.517
0.438
0.395

a/J
3.17
2.62

e„=QE2+ 24a(k —~)2,

(s) 6+ a([k[ —~) if [/k) —vri ( —',
+ ciiki —x[ otherwise,

~

~

e~() = 4+ ciiki —iri.

(45b)

(45c)

(45d)

The dispersion (45a) is the functional form obtained by
the mean-field calculation.

In Table I we show the gap, the curvature a

, and the other fitting parameters obtained

——Qb, 2 + 4b, a(l + cos k) 2, (45a)

0.2

(a) 0.2

0.1

J/ J' = 0.1 0. 1

i

- ---- QTM results
fit

o QTM results
fit

0.0
0.0 0.5

T/J'
1.0

0.0—
0.0 0.5

T/J
1.0

10
J/ J' = 0.1

0.2

(b)

10

10 0.1

10
~ QTM results—fit

—QTM results
—--- fit

10
0 10 20

0.05

FIG. 10. Temperature dependence of the magnetic suscep-
tibility of the Heisenberg ladder with J/J' = 0.1. (a) X as a
function of the temperature T; (b) a logarithinic plot of y as
a function of the inverse temperature P.

FIG. 11. Temperature dependence of the magnetic suscep-
tibility of the Heisenberg ladder with J' = J. The solid line
is the fit discussed in the text. (a) y as a function of the
temperature T; (b) a logarithmic plot of y as a function of
the inverse temperature P.
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by a least squares fit of the QTM results for in' to the
above dispersions (45). The overall shape of the disper-
sion is in good agreement with the spectrum calculated
using exact diagonalization by Barnes et al.

The discrepancies between the 6ts arise because al-
though we can simulate at temperatures below the gap
T —0.4L, we are not really in the low-temperature
regime where the interactions between the excitations
and the exact shape of the dispersion become unimpor-
tant. This can be seen best in the plot of —&&" in Fig.
9. In Fig. 11 we show the fit of the susceptibility for the
dispersion (45a). The susceptibilities obtained using the
other dispersions differ only slightly.

The dispersion e& is not realistic as it is not quadratic,
but linear close to the minimum at k = m. It underesti-
mates the gap, since the density of states is too small
near the minimum. For the same reason we believe
that the dispersion e& underestimates the correct gap.
Similarly a dispersion that is too Bat close to the mini-
mum overestimates the density of states there and thus
also the gap. We estimate the gap to be in the range
0.45J & 4 & 0.5J, which is in agreement with the exact
diagonalization and DMRG results.

C. Nuclear spin relaxation rate

The dominant Quctuations in the ground state are anti-
ferromagnetic, leading to a maximum in the equal-time
spin structure factor at q = (s', s'). However, these dom-
inant antiferromagnetic fiuctuations (mlS'Ig. s.) of the
ground state near q = (7r, 7r) do not contribute since they
have an energy gap of E —Ez, & 4 )& uo. The only
relevant contributions arise &om Buctuations of the ex-
cited states with small momentum transfer q.

At low temperatures we assume the one-magnon states
to be independent. We restrict the sum over n to the
independent one-magnon states Ik, o) with momentum)

k and z component of spin e = —1,0, 1. As uo && 6
and momentum is conserved only the states Ik + q, o)
contribute to the sum over m:

8, (q, (up) = ) l(k + q, o ls'lk, 0) I bp„,p
k, cr

xb(eI,+p. —eg —up)e (50)

8.(q uo) = ).I(k + q* (rlS'lk, (r)
I bp„,oe ~"

where Ik, 0) is a one-magnon state with momentum k and
z component of spin cr = —1,0, 1. From the excitation
spectrum it is obvious that only for q„=0 and q 0 or
q —2k do we have a nonvanishing 8, (q, up). Using a
second-order Taylor expansion of the dispersion we can
write 8, (q, up) in terms of b functions of q:

Another quantity of interest is the nuclear spin relax-
ation rate 1/Tq It can .be written in terms of the dy-
namical susceptibility perpendicular to the field:

b(q ) + b(q + 2k)
X

[v(t)[gt —2~os, i„)
(51)

' ) IAI'"('')
q

(46) where we have set &up ~ 0 in the b functions. v(k) = &'&

is the group velocity. The matrix elements are

where IA&l (x (2L) is the form factor, p is the nu-
clear gyromagnetic ratio, and coo the nuclear resonance
&equency, which is a very small energy scale, typically of
the order of mK. The main problem here is the calcula-
tion of the imaginary part of the susceptibility g&(q, up).
This can be related to the dynamical structure factor by
the Buctuation-dissipation theorem

X~(q, ~o) = 8i(q, ~o)(1 —e ') = 8i(q, ~o)P~o, (47)

l(k ~IS~*.,.) lk ~)l' = 2L~' ~ (52)

1 2I(-»&IS(-2s,o)I»~) I' = o 5
2I

We estimated the matrix element I(—k, 0 IS*2&plk, o)I2
by exact diagonalization on finite ladders of up to ten
rungs. For J = J' it is nearly constant for s'/2 ( Ikl ( x:

where we have used the fact that uo 3 mK && T. As
the Hamiltonian of the system is invariant under spin
rotations and there is no long range order present, the
susceptibilities in all directions are equal: y~ ——y, and

8g(q, ~p) = 8, (q, ~p)

=) I{mls;In)l'b(E -E„~p)eI'~-/Z, -

(4S)

] ) f dq 8~(g ~a).
1 q„=O,m

(54)

At low temperatures the main contributions arise &om
k m, where q = (0, 0). We replace the matrix elements

IApl by its value IApl = Ap =—A /2L at q = (0, 0).
Replacing sums by integrals we get in the quadratic ap-
proximation for the dispersion in the temperature range
~o &(&((&

where Im), In) are complete sets of eigenstates with en-
ergy E and E, respectively, and

2+2 —~k, /T
dk

2og(~ —k)' + ~o/a
(55)

gz 1 iq-r gz
/2L , (49)

Which states contribute to 1/Tq at low temperatures' ?

2e ( Ko( ), (56)

where Eo is the modified Bessel function of the second
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kind. In the temperature regixne where our approxi-
mation is valid we can expand Kp(P&) = —t j ln4-
ln((up/T) = 0.80908 —1n((up/T). C = 0.577216 is Eu-
ler's constant. Thus finally we have for the nuclear spin
relaxation rate

e [0.809 08 —ln(urp/T)],
2A2

A T
Tl 16am 2 (57)

in the temperature range uo 3 mK « g « &.
main feature is the exponential drop with temperature
caused by the gap. In addition there is a logarithmic di-
vergence ln (dp of the prefactor caused by the Van Hove
singularity at the band minimum in the density of states
of spin excitations. Although the equal-time spin corre-
lations have a maximum at q = (vr, vr), these fluctuations
do not contribute since they have a large energy gap. As
the main contribution to the nuclear spin relaxation rate
comes from g (0, 0) and not &om q (vr, z) we expect
the temperature dependence to be similar for Cu and 0
sites in a copper oxide ladder. This differs &om the case
of copper oxide planes, where there is a marked differ-
ence in the temperature dependence, because there are
low energy fluctuations around q = (vr, z ) that contribute
to I/Tx at Cu sites but not at 0 sites. ss

values and eigenvectors of the QTM with very high ac-
curacy. The algorithm converges xnuch faster than usual
power xnethods. The calculation of the eigenvectors of
the transfer matrix with high precision by the look-ahead
Lanczos algorithm allows a direct calculation of the mag-
netization, internal energy, magnetic susceptibility, spe-
ciflc heat, and similar quantities for an infxnite-length
system.

In this paper we have reported on the thermodynam-
ics of the Heisenberg ladder. The QTM xnethod by it-
self is restricted to high and intermediate temperatures
(T ) 0.2J). By combining the QTM method with exact
diagonalization results for the low-lying excitation spec-
truxn we are able to calculate the temperature depen-
dence of the speci6c heat, magnetic susceptibility, and
the correlation length for the entire temperature range.
This also allows an estimation of the spin gap. Finally
we have calculated the temperature and kequency de-
pendence of the nuclear spin relaxation rate I/Tx.

We note that Barnes and Riera also report on a cal-
culation of the temperature dependence of the magnetic
susceptibility by exact diagonalization.

An interesting question arising here is what happens
to the spin gap upon doping of holes (t-1-ladder model).
This is currently being investigated. '

V. CONCLUSIONS

We have developed an improved version of the quan-
turn transfer matrix (QTM) algorithm. Quantum trans-
fer matrix methods do not suffer &om the sign problem
of the quantuxn Monte Carlo method. Therefore they
are ideal to investigate models where the sign problem
is severe. Examples include &ustrated spin systems or
fermionic ladder models like the t-J ladder.

We have combined the QTM method with the look-
ahead Lanczos algorithm to calculate the extreme eigen-
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