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Stability and single-particle properties of bosonimed Fermi liquids
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We study the stability and single-particle properties of Fermi liquids in spatial dimensions greater
than one via bosonization. For smooth nonsingular Fermi-liquid interactions we obtain Shankar's
renormalization-group Bows to second order in the BCS coupling and reproduce mell-known results
for quasiparticle lifetimes. We demonstrate by explicit calculation that spin-charge separation does
not occur when the Fermi-liquid interactions are regular. We also explore the relationship between
quantized bosonic excitations and zero-sound modes and present a concise derivation of both the spin
and the charge collective-mode equations. Finally we discuss some aspects of singular Fermi-liquid
interactions.

I. INTRODUCTION

Landau's Fermi-liquid theory is an early example of
what we would now call bosonization. The anticom-
muting operators which appear in the bare Hamiltonian
describing the interactions among fermions disappear in
Landau's efFective theory. Instead only c-number quasi-
particle occupancies appear in the semiclassical energy
functional. That the low-energy semiclassical behavior of
the Fermi liquid can be described in terms of these com-
muting variables suggests that a fully quantum bosonic
description is obtainable.

Indeed, the Fermi-liquid state itself is an example of
a zero-temperature quantum critical fixed point. i This
fixed point is characterized by infinite U(1) symme-
try which is not exhibited by the bare Hamiltonian.
The infinite U(1) symmetry simply refiects the con-
servation of quasiparticle occupancy at each point on
the Fermi surface. ShanhLr has used the functional
renormalization-group (RG) approach to show that the
Fermi-liquid. state is a generic feature of interacting
fermions, at least at weak coupling and in the absence of
the usual superconducting and charge- and spin-density
wave instabilities. By establishing rigorous bounds, other
workers have studied the stability question at all orders
in perturbation theory, but under more restrictive condi-
tions such as a perfectly circular Fermi surface s.

Haldane has asserted recently that a fully quantum de-
scription of Fermi liquids in dimensions greater than 1 is
obtainable via bosonization. This viewpoint has been
elaborated on by two of us. In the present paper we
continue to develop this theory, first by showing that
Shanker's renormalization-group result is obtained easily
in the bosonized picture. Next we investigate the bosonic
excitations in more detail. We show that collective modes
are obtained in a semiclassical limit; furthermore, the
calculation of the single-particle boson Green's function
yields information about the quasiparticle properties. In
particular, by using the bosonization transformation we
obtain the exact fermion quasiparticle propagator. We
expand the solution to second order in fo to compare

it with earlier work and recover the well-known result
that the imaginary part of the fermion self-energy is pro-
portional to ur ln ~u~ in two dimensions and just uz in
three dimensions. We emphasize that the bosonization
method yields nonperturbative information, so a natural
next step would be to use it to study the eFects of sin-
gular interactions. We comment on the nature of several
such singular interactions.

II. RENORMALIZATION-GROUP ANALYSIS IN
THE BOSONIC BASIS

@(S;x)=
1

V
e*"'"exp i $(S;x) O(S),

t.V'4

where the dependence on time t is included implicitly in
the spatial coordinates x. S runs &om 0 to 2m and labels

Now that we know how to bosonize Fermi liquids we

may use this picture to investigate the stability of the
zero-temperature Fermi-liquid fixed point to perturba-
tions. First we reproduce the renormalization-group re
suits of Shankar4 in the bosonic basis. Three channels
of fermion two-body interactions are marginal in the RG
sense: forward scattering zero sound (ZS), exchange scat-
tering (ZS'), and Cooper pairing (BCS). For simplicity
we consider a system of spinless fermions in two dimen-
sions and a circular Fermi surface. The second assump-
tion eliminates the possibility of nesting instabilities in
the zero sound channels which might produce charge-
or spin-density waves. We also ass»me that the BCS
coupling function Vscs(S) is rotationally invariant. The
BCS interaction pairs particles of equal but opposite mo-
menta. For now we turn ofF the two zero-sound channels;
later we show that these channels have no eEect on the
renormalization of the BCS interactions.

Fermi fields Q may be expresseds in terms of the boson
fields 4 as
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the patch on the Fermi surface with momentum kg. V
is the volume of the system which equals I in two di-
mensions; the factor of V ~ is introduced to keep the
fermion anticommutation relations canonical. Both the
vP and P fields live inside a squat box centered on S with
height A in the radial (energy) direction and width A

along the Fermi circle. These two scales must be small in
the following sense: k~ && A && A. We satisfy these limits
by setting A—:kJ;/N and A—:kF/N where 0 & n & 1
and N m oo. The quantity a in the bosonization formula
Eq. (1) is a real-space cutoff given by a—:1/A. Here
0 = A(L/2m) equals the number of states in the squat
box divided by A. Finally, O(S) is an ordering operator

introduced ' to maintain Fermi statistics in the angu-
lar direction along the Fermi surface. (Anticommuting
statistics are obeyed automatically in the radial direc-
tion. )

With this connection between the fermion and boson
fields we may check a number of relationships. For ex-
ample, the fermion fields obey canonical equal-time an-
ticommutation relations,

because the boson fields in configuration space obey
equal-time commutation relations,

[~(S ) ~(~ )]
4n' bs, re(ns [» —y]), l*i —yil &&1/A

l&~ —&~ I
» 1/A

J(S;x) = V: gt(S; x)Q(S; x):
—:V lim (vga(S;x+ ens)g(S; x)

e-+0

—(g (S;x+ens)g(S;x)))
= ~4m ns 7'P(S; x) .

The momentum-space charge current is defined by

J(S;q)—:) 8(S;k+q)8(S;k)(Qq~+ g i, —b oni, j
k

where 8(S;k) = 1 if k lies inside the squat box of di-

mensions A x A centered at S and equals zero otherwise.
Given this definition, plus the fact that the Fermi fields
in momentum and real space are related in the usual way
to preserve the canonical anticommutation relations with
conventional normalization,

vj(S;x) = ) 8(S;k) e'"'" Q(k),
V

(6)

the two currents are related by a Fourier transform,

J(S,x) = ) e'~ "J(S;q) .

Here J denotes directions perpendicular to the surface
normal ns at patch S, and e(2:) = 1 for x & 1; otherwise
it equals —1. Normal ordered charge currents are defined
in configuration space in terms of both the Fermi and
Bose fields as

The unusual prefactor of & &~ appearing in the bosonic
Hamiltonian compensates for the anomalous right hand
side of the boson commutation relations, Eq. (3), and
thereby reproduces the correct spectrum.

The next step is to bosonize the BCS interaction. To
simplify the following algebra we set the Fermi velocity
equal to 1 (v~ = 1). A fermion in patch S of the Fermi
surface is paired with a fermion in patch —S which is
directly opposite patch S. (Note that in angular coordi-
nates, patches S and —S correspond to 8 and 8++, not 8
and —8.) The BCS action expressed in terms of the four
Fermi fields is

S; g[Q gt] = ) dt d z gt( Sx)—
kF

xgt(S x) g(T; x) Q( T; x) . —

Here, S and T only range over half of the Fermi surface to
avoid double counting the pair interactions. The dimen-
sionless coupling function Vacs must change sign under
inversion because the fermions are spinless (Pauli exclu-
sion principle) so Vncs(8) = —Vncs(8+7r); also the inter-
action must be Hermitian so Vncs(S T) = Vncs (T——S).
To avoid sign mistakes it is important to keep track of
the order of the fermion operators during the transfor-
mation to bosons. Formally the correct sign is set via
the ordering operator O(S) but in practice it is easier to
determine the sign by direct inspection of the fermion op-
erators. To bosonize the interaction, each Fermi field is
replaced by the right hand side of Eq. (1) which converts
the interaction into the exponential of four P fields.

Both currents Eq. (4) and Eq. (5) are dimensionless.
The &ee Hamiltonian, written in terms of the Fermi
fields, may also be bosonized and the result is quadratic
in the P fields,

Ho = vx ) J d'x @~(S;x) —kx) g(S;x)
S

y f a*x ((xx &)0(&;x))'
S

x cos
~4~
0 (10)

where Ps(x) = $(S;x) + P(—S;«).
Before implementing the RG transformation, first we

discuss scaling at the zero-loop level. Since we are con-
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cerned with scaling in the direction parallel to the sur-
face normal ng, the integral over x space should be fac-
torized into separate integrals over directions perpen-
dicular and parallel to the Fermi surface normal. So
d x = dx~dxII with only dxII changing under scale trans-
formations. Thus A ~ A, A ~ A/s, and a -+ sa with
8 ) 1. Clearly, dxII ~ s~xII and dt —+ sdt. The boson
field P is invariant under the scale transformation as this
leaves both the quadratic part of the action, So, and the
BCS interaction invariant (marginal).

Now we perform the renormalization-group transfor-
mation on the BCS interaction to derive the flow equa-
tion. The fast parts of the P(T;k) fields are integrated
out of the functional integral. To be precise, modes with
momenta A/2s ( ]k nT

~

( A/2 will be eliminated. In
practice, since it is easier to carry out the calculation in
real space, instead we integrate out fields over short dis
tance scales 2a ( x nT & 28a. Next, we rescale space
and time: nT"x ~ BnT x and t + St. After performing
these two operations we obtain the new BCS interaction

I

coefficients pcs�(S—T; s) and we may repeat the process.
The integration over the fast modes is accomplished

via the usual functional integral

exp( —S[P; s]) =
2a& Ix-nT

I
&2sc

17 P(T;x)

x exp( —So —S;„t) .

Since only the fast modes are integrated out it is conve-
nient to break the boson fields into two parts, the slow
modes gV and the fast modes P. Now we may express
the right hand side of Eq. (11) as (exp( —S;„q)) where
the contraction is performed only over the fast g fields.
The renormalized interaction is obtained by treating the
interaction perturbatively and expanding (exp( —S; t)) in
powers of pcs. The first nontrivial term arises at sec-
ond order, 2 (S;,), and since the interaction is diagonal
in real space, it is readily evaluated with the use of the
real-space boson correlation functions

(P(T;x) P(T; 0)—yP(T; 0)) ln . , ]z&A] &&1
47I' ix ' nT' + t7 )

(i2)

Here and in Eq. (11) we have made a Wick rotation to imaginary time to avoid the poles along the real-time axis.
The evaluation of the cosine-cosine correlation function that appears in 2 (S;,) is carried out by decomposing terms
of the form

cos [Ps (x) —4T (x)]
~4~

into exponentials involving the slow and fast fields, and then using the identity

e e =: e +:exp(AB + 2 (A + B )) .

Since pcs(S —T) = pcs(T —S) we obtain

(i4)

~4~—(Sz„,) = — d7.d z ) cos [Pz(x) —Ps(x)] ) VBcs(R —T) Vacs(T —S)
2 '"'

~
27r

~
(k~a)' - 0

1 1
x — dv du~~ + (irrelevant operators),

"II +~

where u~~ is a spatial variable in the direction parallel to
the surface normal at patch T and v is an imaginary time
variable. The second step is to replace all the variables
with the rescaled ones. This procedure does not change
Eq. (15) since pcs(S —T) is marginal. Thus the P
function is

dVBcs(R —S; s)
d ln(s)

0 ) VBcs(R —T; s)VBcs(T —S; s) . (16)
Vkp

The equation may be diagonalized by a Fourier trans-
form over the interval [0,2z'): V = f z

e' VBcs(&).

I

Note that only odd modes appear due to the requirement
Vacs(8) = VBcs(8+ vr). Then

dV 1

d ln(s) 2

which agrees with Shanhar's result in the fermion basis at
one-loop order. Clearly, a BCS instability exists if any
of the channels are attractive (V ( 0). If all the chan-
nels are repulsive, the Fermi-liquid 6xed point is locally
stable.

We now turn on the other two marginal interactions,
forward and exchange scattering, and ask whether the
Fermi-liquid interactions f,(S —T) which involve the ZS
and ZS' channels alter the RG Bows.
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Ho + Ho+ — ) f d x f (8 T) d~(Six) @(S'x) dt(T x)'@(T x)
S,T

= Ho+ q ) f d x j (S —T) ]nx Vd(S;x)] ]nx Vd(T;x)] .

S,T
(18)

Unlike the BCS interaction, the forward and exchange in-
teractions are quadratic in the boson fields and therefore
parametrize different Gaussian fixed points, each with
the infinite U(1) symmetry. This symmetry is refiected in
the fact that the Hamiltonian Eq. (18) is invariant under
changes in the phase of the fermions by difFerent amounts
in each patch: Q(S; x, t) ~ e's~slg(S; x, t) Her.e we see
the advantage of the bosonic representation: the Fermi-
liquid parameters are incorporated in a nonperturbative
way into Ho. We carry out the calculation of the modi-
fied bosonic correlation function in Sec. IV; here we just
note that these modifications are subleading corrections
to scaling that do not infiuence the leading RG fiows of
the BCS interaction. For example, though bosons in dif-
ferent patches are now correlated, this correlation is only
of order

&
times that of correlations within the same

patch. So the leading behavior exhibited in Eq. (15)
is unchanged. Thus we have the remarkable result that
the leading-order stability of the Fermi-liquid fixed point
against Cooper pairing is unaffected by the existence of
either small or large Fermi-liquid parameters.

Actually, there is a subleading order instability: the
Kohn-Luttinger effect. 4 The bare V 's due to, say, a
short-range repulsive interaction are all positive but tend
rapidly to zero at large m. The ZS and ZS' channels, on
the other hand, generate irrelevant contributions in the
BCS channel (down by a positive power of A/I(:F) which
renormalize the bare BCS interaction and therefore can
make some of the V 's slightly negative (unstable) at
sufficiently large m. Because of the small size of these
coefficients, this effect is important only at extremely
low temperatures and therefore we expect that the essen-
tial physics remains controlled by the Fermi-liquid fixed
point.

III. INTERACTING BOSONS IN THE
SEMICLASSICAL LIMIT

Now that we have seen that the Fermi-liquid fixed
point is locally stable in the absence of attractive BCS
interactions, we turn to the problem of diagonalizing the
bosonic Hamiltonian that describes the fixed point. As
we shall see, the problem is not as simple as it might seem
at first because the current operators behave as both cre-
ation and annihilation operators. So we begin with an
approximate semiclassical solution that bypasses this dif-
ficulty and yields the familiar collective-mode equation.

The particle-hole excitations of Fermi liquids have a
bosonic character. Furthermore, the excitations are of
either the charge or spin type: the bosonized Hamilto-
nian may be written as H = H + H, to exhibit this
factorization into charge and spin sectors. The charge

sector in D dimensions (the voluxne V = LD now) is de-
scribed by a Hamiltonian that is bilinear in the current
operatorss J(S;q),

H, = — ) ) V, (S,T;q) J(S;—q) J(T;q),
S,T q

(19)

where 0 = ( 2 ) i(2 ). The Fermi-liquid interactions
are f,(S,T) = F,(S,T)/N(0), where the density of states
at the Fermi surface, summed over both spin species, is
given by N(0) = "~ for the case of the two-dimensional
Fermi gas. These interactions are incorporated into V, as
matrix elements that couple currents in different patches:

V, (S,T; q) = —0 'v~hs ~ + —f,(S —T) . (20)

Note that with this definition, and given the relationship
between the currents and the P fields, Eq. (4), the charge
Hamiltonian H, of Eq. (19) agrees (up to a factor of 2 due
to spin) with the forxn we found in the previous section,
Eq. (18). The charge currents obey the equal-time U(1)
current algebra,

[J(S;q), J(T;p)] = 2b& z b + oOq. ns, (21)

this algebra can be derived either &om Eq. (3) and Eq.
(4) or directly Rom Eq. (5) with the use of the canonical
anticommutation relations for fermions. The quadratic
form of this Hamiltonian implies immediately that it de-
scribes a fixed point invariant under the scale transfor-
mations A ~ A/s. Similarly, the spin sector is described
by

H, = —) ) V(S, T;q)J(S; —q) J(T;q),
S,T q

(22)

[J (S;q), J (T;p)] = —

bshe

P Oq nsb~~~, o
D—1 eb

+its ~'e 'J'(S;q + p)

(fa, b, c} = (x, y, z} label the three components of the
spin). Fermi-liquid spin-spin interactions f, appear in
the Hamiltonian as coefficients that couple spin currents
in different patches,

V, (S,T; q) = —vp (S)O hs ~' + —f, (S,T) . (24)

Here we consider only the case of Fermi-liquid interac-
tions which are independent of the wave vector g. For
regular interactions, q dependence only gives rise to ad-
ditional irrelevant operators which do not change the be-

where the spin currents commute with the charge cur-
rents and obey the more complicated SU(2) current
algebra3
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havior of the system at leading order. With singular in-

teractions, on the other hand, divergences arise as q m 0
and these divergences may in some instances introduce
relevant interactions that destroy Fermi-liquid behavior.

The equations of motion for the charge and spin cur-
rents yield the corresponding collective-mode equations
in the semiclassical limit. Using the Heisenberg equa-
tions of motion and the U(1) current algebra we readily
obtain

n—) = 6(ski —k~),
T

(26)

for the charge sector. The first term on the right hand.
side has its origin in the free dispersion relation for
particle-hole pairs of momentum q at patch S. The sec-
ond term couples currents in diferent patches. Note that

i—J(S;q) = [J(S;q),H, )
. 8

= vpq ns J(S;q)

+q ns ) f,(S —T)J(T;q)
20

T
(25)

so the second term reduces to the usual integral over the
Fermi surface in the N ~ oo continuum limit. The equa-
tion of motion for the non-Abelian spin currents contains,
in addition to these two terms, a third term which makes
the spins precess, when the system is magnetically polar-
ized, in the local internal magnetic field:s

i—J (S;q) = [J (S;q), H, j

= vpq nzJ (S;q)+ —q nz —) f, (S —T)J (T;q) ——e ) J (S;k) ) f, (S —T)J'(T;q —k) .
T k T

(27)

Note that the factor of 2/3 multiplying the Fermi veloc-
ity v~ in the free part of Eq. (24) does not appear in Eq.
(27). The origin of the 2/3 factor is easy to understand in
the Sugawara construction of the free fermion Hamilto-
nian out of current bilinears:s it reffects the SU(2) invari-
ance of the spin currents which permits the replacement
J(S;q) J(S;—q) + 3J'(S;q) J'(S;q) for the purpose
of computing the spectrum. The derivation given here,
on the other hand, does not rely on this argument as
spin rotational invariance is respected explicitly. Rather,
the factor of 2/3 in Eq. (24) cancels contributions to the
free spectrum which arise from both the 6 and the ie s'
terms in the non-Abelian anomaly.

When an external magnetic field is applied, and ~q~ is
small, the third term in Eq. (27) dominates. In the op-
posite limit of zero applied magnetic Beld, the spin equa-
tion is identical in form to the charge equation. Evidently
bosonization captures all of the physics of charge and spin
collective modes. The derivation is straightforward and
relies only on the existence of the quadratic Hamiltonian
and the Abelian and non-Abelian current-current com-
mutation relations. In fact this approach may be useful in
the study of highly spin-polarized Fermi liquids, a prob-
lem which has been examined recently by Meyerovich and
Musaelian via the Green's function approach. io

As it stands these operator equations are exact, at least
in the N -+ oo limit in which the current algebras Eq.
(21) and Eq. (23) become exact. The difficulty in obtain-
ing exact solutions to either of these equations originates
in the fact that neither algebra is equivalent to the canon-
ical commutation relations for harmonic oscillators. Even
the U(1) charge current algebra, Eq. (21), is nontrivial
because the right hand side, the "anomaly, " has indeter-
minate sign as g - ns can be either positive or negative.
Therefore, even to diagonalize Eq. (25) requires a gener-
alized Bogoliubov-unitary transformation which appears

not to be reducible into a product of separate Bogoli-
ubov and unitary transformations. This difficulty is in
contrast to that found in one spatial dimension where a
simple 2 x 2 Bogoliubov transformation is sufficient to
decouple the currents associated with the left and right
Fermi points. s Of course the equation of motion for the
spin currents, Eq. (27), is even more difficult to solve as
it is nonlinear.

In the next section we will diagonalize the charge cur-
rent equation of motion by resumming the perturbative
expansion for the propagator. First we find the semi-
classical solution by taking the expectation value of both
sides of these equations and identifying

(J(S q)) =- u(S q) (28)

and

(J (S q)) -=~ (S q) (29)

l@luj}
= exp I).):8(q ~1) ' J(s; —q)j[o),

u(S; q)

S q
20'. ns

(30)

as the amplitudes for charge and spin collective modes.
Note that the collective-mode amplitudes are real valued
in x space because Jt(S;q) = J(S;—q). The replace-
ment of the current operators by the c numbers u and S
may be accomplished formally by introducing a coherent
state basis that spans the space of geometric distortions
of the Fermi surface. For example, the charge collective-
mode coherent states are generated by exponentials of
the charge current operator,
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where IO) represents the quiescent Ferini liquid. A siinple
computation then shows that

(~[ ]IJ(T;p)l~[ ])
(~[ ]l~[ l)

(e[ull J(S;q, t)J(S;-q, o) le[u])
(~[ ll~[ l)

where

J(S;q, t) = exp[iH, t]J(S;q) exp[ —iH, t] (33)

consistent with our definition Eq. (28). In the spin equa-
tion we also must decouple the expectation value of the
product of two spin current operators [the third term on
the right hand side of Eq. (27)] into the product of ex-
pectation values S(T;k) x S(T;q —k). This decoupling
is exact in the semiclassical limit of a macroscopically
occupied zero-sound spin mode.

To shed light on the relationship between the semiclas-
sical limit and the quantum regime, we present an alter-
native derivation of the collective-mode equation based
on the usual identification of the pole in the two-point
Green's function, but now in the presence of a back-
ground collective-mode field u(S;q). For simplicity we

focus on the charge sector. First note that H, is diago-
nal in q space: the Hilbert space breaks up into a direct
product of subspaces with difFerent q and —q. (States
with —q on the hemisphere of the Fermi surface with

q ns & 0, which we may call the "left" hemisphere, are
coupled to states of +q on the opposite "right" hemi-

sphere due to the indeterminate sign for the quantum
anomaly. ) Thus we may treat each (q, —q) sector sep-
arately. Now we wish to compute the retarded Green's
function

where E[u] is the c-number energy given by

(@[u]l[J(S;q, t), H, ]J(S;—q, 0)l@[u])
(@[u]IJ(S;q, t) J(S;—q, 0)I@[u])

20 1

V u(S; q)

x ) f, (S —T)u(T; q) (35)

Thus the Green's function is

G„t([u];S; q, t) = lu(S; q) I
exp(iE[u]t}t))(t); (36)

its poles in frequency space at (d = E[u] clearly corre-
spond to solutions of the collective-mode equation Eq.
(25) in the semiclassical limit.

IV. QUANTIZED BOSONS

In this section we calculate the exact boson Green's
function in the quiescent state, that is, in the absence
of macroscopic excitations. In this case the semiclassical
approximation is inapplicable and the problem must be
treated quantum mechanically. To simplify the calcula-
tion we restrict our attention to the case of spherical (cir-
cular in two dimensions) Fermi surfaces and only a single
Fermi-liquid parameter, the constant term Fo. Further-
more, we consider only spinless fermions and again set
the Fermi velocity equal to 1. None of these simplifica-
tions is essential.

First we write the currents in terms of boson operators
that satisfy canonical commutation relations. The choice

is the current operator in the Heisenberg picture. We

may choose ns q & 0 so that J(S;—q, 0) creates a
particle-hole pair at time t = 0 while J(S;q, t) destroys
a pair at a later time t ) 0. The crucial step in our cal-
culation is to ignore operator ordering within the time
evolution operators exp[kiH, t]. This approximation is

exact so long as the zero mode has macroscopic occupa-
tion since in this case the errors introduced by ignoring
operator ordering are small compared to the total energy.
In other words, we should think of the operator J(S;q)
as removing just one quantum out of the large number of
quanta that make up the macroscopic zero mode. Macro-
scopic occupation corresponds to Iu(S;q)l » Olns . ql
which in physical terms means that there are a large num-

ber of quanta at each point in momentum space on the
Fermi surface. (Macroscopic occupancy is possible only
in the u limit of A » lql; in the opposite q limit the Pauli
exclusion principle keeps the occupancy small. ) Assum-

ing macroscopic occupancy we have

exp(iH, t}J(S;q) exp& —iH t}

J(S'q) = QOlfls . ql[a(S'q)e(ns ' q)

+at(S; —q)e( —ns . q)] (37)

with

[ (S;q) '(T p)] =~ (38)

Hp: & ( ) S(ns q)(ns q)aP (S;q)a(S; q)
q S

+) 8(—ns q)( —ns q)aP(S; —q)a(S; —q)) (Ss)

and 8(z) = 1 if z & 0 and zero otherwise, satisfies the

U(1) commutation relations Eq. (21) up to a factor of 2

which does not appear here since the fermions are spin-
less. The Hamiltonian Eqs. (19) and (20) can now be
written as H, = Ho+ H;„t, where

= J(S;p) exp&iE[u(S;q)]t}, (34)



50 STABILITY AND SINGLE PARTICLE PROPERTIES OP. . . 1357

H; t ——) gR ) .8(6s . q)8(6v . q) g(fis . q) (fi . q)n (S;q)o(T; q)
q S,T

+gL, ) 8(—ns . q)8( —nq . q) g(—ns . q)(—nq . q)a (S; —q)a(T; —q)
S,T

+g) 8(ns . q)8( —ny q)g(ns q)( —nY q)u(S;q)a(T; —q)
S,T

+g) 8(—ns q)8(ns q)g( —ns q)(ns q)a (8; —q)a (T;q)),
S,T

(40)

Awith couplings g~ = gL, = g = g = fo(2 )o. It will be

convenient to denote a(S;q) and a(S; —q) by aR(S;q)
and ar, (S;q), respectively the right and left moving fields.

The generating functional for the zero-temperature
correlation functions is given by an integra, l over the co-
herent state eigenvalues a;(S;q, t) and a,'. (S;q, t):

'G'(S q ) =( '(S q )n,'(S q ))

is related to the propagator of the P fields by

(42)

(4*(S q ~)4*(S -q -~))

(n'(S q ),'(S q )) . (43)
0

4xns q

We now calculate the propagator perturbatively with the
use of the bare right and left propagators:

iG&(S;q, u) = (a&(S;q, v)a&(S;q, u))o

(d —ns . q+ iT) sgn(~)
(44)

Z = Ba'Va exp i dt ia,' —a; —H a', a

(41)

where there is an implicit sum over i = L, R and
the patch index S which has been suppressed. The
momentum-&equency space propagator

iGL (S;q, ur) = (ar (8;q, (G) aLt (S;q, ur) )o

(d+ ns q+iTi sgn((G)
' (45)

The bare propagators are depicted in Fig. 1(a).
At first order in H~„t there is only one connected con-

tribution to the right two-point function and it is given

by

iG& ——(—i) (iG&)gz(ns q) (iG&), (46)

where we have suppressed the patch, momentum, and
frequency labels of the Green's function. Amputating
the external legs, we find that the first order contribu-
tion to the self-energy is just Z( )(S;q, (d) = gR(ns q).
At higher orders it is easy to see that the anomalous
couplings g and g occur in pairs. In particular at sec-
ond order there are two contributions to the one-particle
self-energy, and these are shown in Fig. 1(b). As we
build up the complete set of contributions to the right
moving propagator, we split each scattering process, for
example those shown in Fig. 2, into a forward scattered
contribution (which involves an intermediate state in the
same patch S) and a remainder in which the boson has
been scattered into a virtual state in a different patch.
We can then construct the Dyson equation, depicted
schematically in Fig. 3, where the irreducible self-energy
Z (S;q, (88) comprises all amputated diagrams that can-
not be split into two by'cutting a single bare right moving
propagator. At the second order the contribution to the
irreducible self-energy is therefore

Z~ ~(qq ta) = g (ns q) ) 8(fi q)(ng q)Gs(Tq ta) + ) 8(—ns q)(—ns q)Gs(Tq, —ta)).
TgS T

(47)

Now we specialize to the case of two spatial dimensions.
The sums over patches can be converted to integrals in
the N —+ oo limit where A ~ 0 as

(R)
(a)

2' 2'
A) = k~ dP = 2TrN(0) dP,

S 0 0
(46)

~(') (~; q, (G) = fo, (~s . q) x'(q-, ~) (49)

where N(0) = ~~ for spinless fermions in units where
e~ ——1. The second order contribution to the self-energy
can now be written more concisely as

I
I

$ I ~ t $

(b)

$
T

$

FIG. 1. Boson Green's functions. (a) Right and left mov-
ing bare boson propagators Gn(S;q, (G) and GL, (S;q, (G). (b)
The two second order contributions to the self-energy which
involve virtual states on the right and left sides of the Fermi
surface.
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(a) x'(q ~)
1+ f0X0(q, ~)

(52)

S S = SV-S

(b)

I I
I I

I
/

V $
T 8 S Here we see that the equilibrium Fermi-liquid stability

criterion F0 = f0N(0) ) —1 is necessary to keep the
self-energy nonsingular in the q limit of ~x~ && 1. Also,
the self-energy diverges at frequencies and momenta cor-
responding to the solutions of the collective-mode equa-
tion, as it should. A little algebra then shows that the
exact right moving boson propagator can be written in
the compact form

V V V

iGR(s;q, u) =
~ —ns q 1+

&,'~, 1 — Oy q, ~

(53)

PIG. 2. Self-energy at second and third order for the bo-
son propagator. (a) The second order contribution to the
self-energy which involves virtual states on the right side of
the Fermi surface. The first diagram on the right hand side
of the equation (with two crosses) represents scattering into
and out of the same patch S. The second diagram represents
scattering into and out of a different patch T g S (denoted
by a dashed line with a slash). (b) Some of the third order
contributions to the self-energy. Not shown are contributions
which involve virtual states on the left side of the Fermi sur-
face. Of the diagrams shown, only the 6rst (with two dotted
lines) contributes to the irreducible self-energy Z; the re-
maining three diagrams break into two pieces when one of
the bare propagators is cut.

Despite the fact that a perturbative expansion has been
used as an intermediate step to obtain Eq. (51), all terms
in the expansion have been summed to give the exact
non-perturbative result valid for arbitrary dimension D.
For example, in D = 1 the resummed expansion yields
the well-known exact result for a Luttinger liquid. s

Quasiparticle damping occurs in the q limit when the
Lindhard function has an imaginary part. In this regime
we may write

Im foOO(o) = Im (
FpA0 (z)
+ 0 0 Z

A000(z)
1 —do[1 —Ao(o)] )

where

dP cos(P)
2x cos(P) —z —i' sgn((d)

= nr(o) (x —I*l gz' —1 gl —z'

= Aoizi,

where Ao = ~++ and the boson Green's function then1+ 0
reads (for small A0)

A0Aicui
iGR(S; q, )0=/i (d —vt/nR q+ ins q 2xkp ~q

(55)

= N(0) 00(z) (50)

Z (S;q, (d) = (ns q)[1 —fog(q, (d)j,(2s.)2 (51)

where

is the two-dimensional Lindhard function and z-:—.
l~l'

The exact solution of the Dyson equation Fig. 3 is then
given by

where the velocity is slightly renormalized &om its bare
value of unity: v& ——1+F0(1 —F0)2 &

. The boson
lifetime is now finite because of scattering into different
patches. Note, however, that as the self-energy Eq. (51)
scales to zero as A -+ 0 it represents an irrelevant cor-
rection. In particular, the pole in the boson propagator
remains unchanged as N ~ oo. We expect this to be true
generally, regardless of the shape of the Fermi surface, the
details of the Fermi-liquid parameters, or whether the
fermions have spin or not. The renormalization-group
calculation of the second section therefore holds, without
alteration, when the Fermi-liquid interactions ZS and ZS'
are turned on.

V. FERMION QUASIPARTICLE PROPERTIES

FIG. 3. The Dyson equation for the self-energy. The dou-
ble line represents the exact one-particle boson propagator.

In the previous section we saw that Fermi-liquid in-
teractions modify the boson propagator. Though BCS
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processes were ignored, small-angle scattering processes
made the boson lifetime finite. With these results we can
use the bosonization formula Eq. (1) to infer the fermion
quasiparticle lifetime. Since bosonization is carried out in

(x, t) space we must carry out three operations. First we

Fourier transform the boson propagator into real space.
Next the exponential of the resulting expression yields
the fermion propagator in real space. Finally an inverse
Fourier transform of the fermion propagator back into
momentum space allows us to extract the self-energy.

It is difficult technically to perform these steps in all
generality. It will be sufficient for our purposes to first
expand the boson propagator in powers of fo, perform the
three operations on each term, and then reassemble the
pieces to find the fermion self-energy. Further, as we are
interested only in the leading (second order) contribution
to the imaginary part of the self-energy, we can avoid the

first of the two Fourier transforms. The real-space and
time boson Green's function may be written as

«G4, (S;x, t) =—(P(S;x, t)P(S; O, 0) —P (S;O, O))

= Z(«G4, )
= Z('G,")+'G,'"+'G~') i"-),

where E represents the Fourier transform operation that
converts the variables (q, ur) to (x, t). In the second line,
iG~ which is given by Eq. (43) has been expanded in
powers of fo Th.e Fourier transform of the leading term,
E fiG& ), is given by Eq. (12). Rather than Fourier
transforming the first and second order corrections, we
exponentiate this expression to obtain the fermion prop-
agator:

iGg(S;x, t) = (@t(S;x,t) Q(S;o, o))

0;«, .„ t 4«re' '" exp iGp(S;x, t)
Va

*II
(I+ &[Gp"]

—-'(&[G4, '))'+ &[G4, ']+ o(fo') ) (57)

where in the last two lines we have assumed Iz~AI && 1
and in the last line we have absorbed the factor of 4vr/0

into G& = (4«r/0 )G& . We are interested primarily in

the imaginary part of the fermion self-energy. The first
order contribution to the boson self-energy contained in

iG&~ is purely real and therefore does not contribute.
The leading contribution to the imaginary part of the
fermion self-energy comes from iG&, which is given by

iG~ (S;q, ~) = i —2—y (q, (u)
(z) . 0 foA

4X 2m 2

x [(u —
q(( + ig sgn((u))

Since Ix~AI && 1 this contribution to the boson propa-
gator must be integrated over q~, using Eq. (50) for y,
and we obtain

A/2 4p —
q((«Im dm. X'(S m. q(( ~) = —«N(0)l~l »

—A/2

The appearance of the logarithm in this equation is pe-
culiar to two spatial dimensions. In three dimensions
the integral is a two-dimensional one over the two coor-
dinates perpendicular to the Fermi surface normal and
the resulting imaginary part of the fermion self-energy is
proportional simply to A~ /kz+O(~ /kz). The appear
ance of the cutoff A in this expression agrees with results
from traditional Fermi-liquid theory. s

We now take the inverse Fourier transform E ~. Ex-
panding the fermion propagator as G~ =- G~o+bG~+
the leading imaginary contribution to the fermion prop-
agator in (k~~, ur) space is given by

.f,'N(o)
«bGvp(I«g ~) = «

2K «

1
X

[~' —
qadi

+ «9 sgn(~')]' [(~' —~) —
(q[[

—I [[) + «9 sgn(~' —~)]
(6o)

The integral may be performed by complex integration; no divergences occur since all the poles in the complex q((
plane lie on either one side of the real axis or the other unless cu lies between 0 and cu. Thus, except for this limited
range of &equencies, the contour in the q(( plane may be closed without enclosing any poles. The result is



1360 A. HOUGHTON, H.-J. KWON, AND J. B. MARSTON 50

ibGg(k(~, u)) = —— . sgn(ur) [ur y (ur —k)() /4] ln
1 f,'N(O)
2 2' z cu —

k() + ivy sgn (s)

+[sr —(u) —k(() /4] ln
l~+ k(ll

2
——(2ur —k)i) (61)

and therefore the fermion self-energy at this order is given by

Im Z~f )
(k((, ~) = — sgn((u) [u) + ((u —

k~)) /4] ln

+[~ —(~ —k„) /4] ln
l~+ kill

2
——(Sts —

k~~)) . (62)

The imaginary part of the self-energy at the quasiparticle
pole is the inverse of the quasiparticle lifetime. The lo-

cation of the pole has been shifted &om its bare value to
~ = v&k~~ due to renormalization of the Fermi velocity,

v&
——1+Fo(1—Fo) 2 &

. As a result the imaginary part
of the self-energy at the pole is given by

rm Z, (~)lp., ——,sgn(~)(2) 1 fO N(0)
2 2vr ~

the form of which we immediately recognize &om pre-
vious work on two-dimensional Fermi liquids. The
quantity in braces is always negative since A~ && A k~.
Despite the appearance of the logarithm, the weight of
the quasiparticle pole, Zp, remains nonzero at the Fermi
surface; the regular Fermi-liquid interaction Fo does not
destroy the Fermi-liquid fixed point. We expect that
more general regular Fermi-liquid interactions, the in-

clusion of the spin sector, or extensions to nonspherical
Fermi surfaces, will not change this result qualitatively.

f(k, k') = a+b (p q)'+

(k + k') . (k —k')

Ik + k'Ilk —k'I
(65)

1
V, (S,T; q) = —0 vFbs Y'

VN(0) i (ks ks)s+ 4ss

for q = k —k' and p = k + k'. This interaction vanishes
if k and k' lie on the Fermi surface and approach the
same point. If, on the other hand, both momenta lie
away &om the surface then the interaction approaches a
nonzero, but finite, limiting value as the two momenta
converge.

The bosonized Hamiltonians Eq. (19) and Eq. (22)
generalize Fermi-liquid theory in a different way: S and
T lie on the Fermi surface but q need not be zero. Nev-
ertheless, the interactions mentioned above have natural
counterparts in the bosonized theory. The T ln T con-
tribution to the specific heat is recovered in this picture
by setting k = ks + q and k' = k~ —q in Eq. (65), to
obtain

VI. SINGULAR INTERACTIONS (66)

f (k, k') = b
b

(k+k') . (k —k')

N(0) '
lk —k'I2

x8(lkl —kp)0(kp. —Ik'I) . (64)

Note that both k and k' lie off the Fermi surface (respec-
tively above and below it). Thus this interaction is of
a more general sort than the type Landau originally en-
visaged in the phenomenological theory. The interaction
diverges like )~ ~,

~

as k m k'. It is related to the regular
interaction that arises at second order in a Taylor-series
expansion of the Landau function. In three dimensions
this regular interaction gives rise to a T lnT contribu-
tion to the specific heat:

Singular Fermi-liquid interactions in two-dimensions

(2D) were proposed by Anderson~4 and studied pertur-
batively by Stamp. ' The interaction studied couples
opposite spins and diverges as k ~ k':

Note that this contribution to the specific heat is a sub-

leading correction which just refiects the fact noted above
that any q dependence of regular Landau parameters is
irrelevant to the leading-order behavior. That both gen-
eralizations yield the same nonanalytic thermodynamic
behavior suggests that they are equivalent up to irrel-
evant terms. Therefore we proceed to make the same
substitution in the singular interaction Eq. (64) of An-

derson and Stamp to find in the spin sector

1
V, (S,T;q) = —0 'verbs ~'

b k~2 ]2ns. q/41~
VN(0) (ks —k~) 2 + 4q

(67)

where p interpolates between the Anderson-Stamp inter-
action (p = 1) and the regular interaction (p = 2) (now
for the spin sector). We will assume that S g T in the
second term (otherwise the linear dispersion relation is
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destroyed at the outset) and consider the scaling of the
largest part of the interaction as we take N -+ oo. Ob-

serving that the largest contribution comes from nearest-
neighbor patches S and T, and ~q~ & A && A, we see that
the interaction scales as

b
N

VN(0)
(68)

where the exponent o. was defined in Sec. II by the equa-
tion A = Ity /N, and therefore the interaction is singular
only if P & 2o. & 2. The strong dependence on the ex-

ponent p may indicate that no fixed point exists for the
Anderson-Stamp interaction.

The Anderson-Stamp interaction is singular only as
8 ~ T. An example of an interaction which is singular
for all 8 and T and which has more obvious physical
significance is afForded by the Coulomb interaction. The
bare interaction may be factorized into contributions to
the three channels (ZS, ZS', and BCS). We assume that
the BCS channel renormalizes to zero since it is repulsive.
Birthermore, for small ~q~ the ZS' exchange channel is
much smaller than the ZS direct channel. In this limit
we find

1 ~ 2 1 4xe
V, (S,T;q) = —0 vpbz T+—

2 V q

VII. DISCUSSION

in three spatial dimensions with V, containing only regu-
lar interactions. It would be interesting to determine the
efFect of the bare interaction Eq. (69) on the single quasi-
particle lifetime. If the technical problem of performing
the Fourier transforms mentioned in the previous section
can be overcome, the bosonization method would yield
nonperturbative insight into the efFect of singular inter-
actions on the Fermi liquid.

of single-particle bosonic excitations about the quiescent
state, unlike the collective modes, must also remain gap-
less.

The fact that the bosonized Hamiltonian separates into
a sum of charge and spin parts, H = H + H„raises
the specter that, as in one dimension, the quasipar-
ticle propagator might also exhibit spin-charge separa-
tion, even in the case of regular Fermi-liquid interac-
tions. Spin-charge separation in dimensions larger than 1
would, however, destroy the Green's function approach to
Fermi-liquid theory as the key element in that approach,
the pole of the single-particle Green's function with spec-
tral weight 0 & Z & 1, would be replaced by a branch cut
and Z would equal zero. This does not happen because,
as we saw at the end of Sec. IV, the location of the pole
of the boson propagator is unchanged from its free value
in the A ~ 0 limit. Consequently the spin and charge
velocities are equal and spin-charge separation does not
occur.

Finally we note that our bosonic analysis of the
renormalization-group fiows near the fixed point does not
rely on a particular form for the fermion propagator. For
example, by hand we could set v, g v, by introducing
a third sort of singular interaction: one that couples the
charge current in any given patch with itself. Because
the renormalization Qows separate into charge and spin
sectors, they are not modified by spin-charge separation
and we would conclude that a fixed point with different
spin and charge velocities is locally stable provided the
BCS interaction is repulsive. Thus RG in the boson ba-
sis is more general than RG in the Fermi basis, 4'5 which
assumes that the one-particle propagator retains a Fermi-
liquid form; consequently, non-Fermi-liquid fixed points
are ruled out from the outset of the calculation. The
bosonized theory contains nonperturbative information;
only technical difficulties prevent us from evaluating di-
rectly the nonperturbative fermion propagator. It should
be possible to surmount these difficulties.

The Coulomb interaction Eq. (69) mentioned in the
previous section illustrates the difference between collec-
tive modes and single-particle excitations. If we substi-
tute the Coulomb interaction Eq. (69) into the charge
collective mode Eq. (25), and compute the spectrum,
we find in three dimensions a gap comparable to the
plasma frequency. i7 Thus charged Fermi liquids do not
support low-energy collective modes in the charge sec-
tor. This should not be confused with the single-particle
spectrum, which remains gapless. Thus, the spectrum
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