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Low-lying energy states of an S=
2

ladder model are investigated by applying the numerical diagonal-

ization method to finite clusters. This model has the antiferromagnetic intrachain coupling J (J & 0) and
the ferromagnetic interchain one —M (A. & 0). Both the inverse correlation length g 11,) and an energy

gap are shown to be finite at least for A, ~ 0.05, the former of which is shown to approach the same value

as that of the S =1 antiferromagnetic Heisenberg chain with increasing k. A generation mechanism of
the gap is also discussed in terms of a simple model by using the Lieb-Mattis theorem.

I. INTRODUCTION

H=H +H, +H, ,

where

H = go';'o';+i
i=1

(2)

&.V —1

FIG. 1. The quantum spin ladder with S=
~ spins. The spin

operator on site i (o.; and z;) is coupled with —A, for all E.

Haldane predicted that the antiferromagnetic (AF)
Heisenberg chain with integer spins has a finite energy
gap (Haldane gap) above the singlet ground state (Hal-
dane state) and that the ground-state correlation func-
tions decay exponentially with respect to the spatial dis-
tance, while the AF Heisenberg chain with half-odd-
integer spins has no energy gap above the singlet ground
state and the ground-state correlation functions exhibit a
power-law decay with respect to the spatial distance. '
His prediction has been supported by a number of numer-
ical, experimental, and theoretical works. ' In the last
few years, various double-chain models with S=—,

' spins
have been investigated in relation to the Haldane
gap problem of the chain with S =1 spins. We have in-
vestigated an S=—,

' ladder model as one of them. This
model has an AF intrachain coupling J (J& 0) and a fer-
romagnetic interchain coupling —AJ (A, & 0) and is
schematically shown in Fig. 1.

Letting J be the unit of energy, the Hamiltonian is
written as

with cr x+ I
=n I and v x+ I

=v I if we select periodic
boundary conditions for the ladder with the length X.
This model is fitted to study properties of the Haldane
systems since we can prove that the model is reduced to
an S=1 AF Heisenberg chain of which exchange cou-
plings are —,

' in the limit A,~~. ' Hida obtained the fol-

lowing results using the numerical diagonalization
method, the projector Monte Carlo method, and a per-
turbational theory.

(1) A finite energy gap appears when A, is large enough.
(2) With the decrease of A, , the energy gap decreases

rapidly between A. =1.0 and 0.6 and it is undetectably
small for A, &0.6.

(3) The gap for small A, is, if it exists, of higher order in
k or essentially singular at A, =O.

Further, Hida mapped the model with spin-space an-
isotropies to a coupled nonlinear 0. model in a semiclassi-
cal limit and accordingly argued that A.&, at which an ex-
citation gap opens, might be finite in a vortex gas picture
of the nonlinear o model even if we approach the isotro-
pic limit. Takada and the author transformed the mod-
el with open boundary conditions to a ferromagnetic
model with Z2 XZ2 symmetry using the Kennedy-Tasaki
transformation, ' and consequently showed that the
ground state is fourfold degenerate in a whole region
k) 0 with using a mean-Geld-type variational wave func-
tion, the degeneracy of which ground state is due to an
edge effect of the Haldane state ' and is accompanied
with a finite value of a string order parameter proposed
by den Nijs and Rommelse and by Tasaki. The au-
thor, Nornura, and Takada applied Wilson's
renormalization-group method to the bosonized Hamil-
tonian of the model and thereby concluded as follows.

(1) A.c =0.
(2) An inverse correlation length increases gradually

with the increase of k as that does above Tc of the
Kosterlitz- Thouless transition.

(3) The string order parameter is finite for A, & 0.
As for the case in which the interchain couplings are

antiferromagnetic (A, (0), Barnes et al. showed existence
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of a finite energy gap, the A, dependence of which gap
does not obey the function Eg p c]k+c2A, near X=O
using the Monte Carlo method with a guiding-random-
walk algorithm. In the limit N ~ ao, the linear
coefficient c& is finite and negative, and the quadratic
coefficient c2 diverges linearly with N. In that case, Hsu
et al. concluded that the interchain couplings are
relevant with numerica11y examining level distributions of
finite clusters. Their results seem to support our previ-
ous results since we can show that the Kosterlitz-
Thouless-like behavior near A, =O also occurs even if we

apply our bosonization technique to this case. Further,
Hida's argument is not conclusive since the vortex gas
picture applied by him does not hold in the isotropic lim-
it. Our argument is, however, neither conclusive since we
neglected the intrachain umklapp terms in bosonizing the
Hamiltonian, although Schulz succeeded in explaining
the ground-state phase diagram of the S = 1 AF Heisen-
berg chain with a single-ion anisotropy in the same ap-
proximation. In conclusion, further studies are neces-
sary to determine whether A, c =0 or not.

A ladder lattice system is realized in the laboratory by
the vanadyl pyrophosphate, (VO)zPz07, and was experi-
mentally studied by Johnston et al. Although the lat-
tice structure is a ladder, they reported that both the
magnitude and the temperature dependence of its mag-
netic susceptibility accurately agree with those predicted
by Bonner et al. ' for an S=—,

' bond-alternating AF
Heisenberg chain of which alternation ratio Jz/J, ( =—a)
is 0.6. The bond-alternating chain is reduced to the S =1
AF Heisenberg chain in the limit a~ —00. The point
a=0.6 is located in the Haldane-phase region in the
ground-state phase diagram of the bond-alternating chain
according to Hida. The temperature dependence of the
susceptibility of the material further resembles
that of the typical Haldane gap material, NENP
[Ni(CzHsNz)zNOz(C104)]. These facts suggest that
(VO)zPz07 is one of the Haldane gap systems although we
cannot exclude the possibility that an energy gap arises
from another mechanism.

In this paper, we investigate low-lying states of the
S=—,

' ladder model for A, &0 with open boundary condi-
tions and show evidence suggesting A,c=0. We further
intend to clarify a gap-generation mechanism of the
ladder model for A, &0 in terms of a simple model with
some defect using the Lieb-Mattis theorem.

In Sec. II, we estimate values of an inverse correlation
length for several values of A, using the numerical diago-
nalization method. It is shown that the inverse correla-
tion length approaches that of the S =1 AF Heisenberg
chain in increasing A. and that A,c is less than 0.05. Our
results also suggest that an energy gap opens for A, ~ 0.05.
Section III is devoted to discussion.

I
I

I
I

I I I I
I

I

E

2. c

0 — A gx«~x
I

2.

FIG. 2. Low-lying levels measured from the lowest one for
N =6. The solid dots, open dots, and crosses are used accord-
ing to S„,=1,2, and 0, respectively.

I
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are measured from the lowest energy. We show the ener-
gies with different symbols according to S«„which is
defined by Ig, (cr;+r, )J =S„,(S„,+1). The solid dots,
open dots, and crosses denote the state with S„,=1, 2,
and 0, respectively. We use the open squares at points A,
B, and C to show low-lying states for A, =O. For N =6,
the lowest state is a singlet, which is proved with the
Lieb-Mattis theorem. The second lowest state is a triplet
and is connected to the point B in decreasing A,. The
third and fourth lowest states cross at Xs, one of which
states is the triplet connected to the point B in decreasing
A, and the other is the qunituplet connected to the point C
in decreasing A, . It is further found that the energy
difference between the points A and B is numerically
equal to that between the points B and C. A similar
feature is observed for the other even N (N =4, 8, and
10), and we thus discuss the case of N =6 as an example
of general even N's. We are interested particularly in

II. NUMERICAL RESULTS 0. 2.

We show low-lying states of the ladder models with
N =6 and 5 in Figs. 2 and 3, respectively. The energies
are calculated within the subspace in which the total
number of the Z components of the spins are zero, and

FIG. 3. Low-lying levels measured from the lowest one for
%=5. The solid dots, open dots, and crosses are used accord-
ing to S„,=1,2, and 0, respectively.
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how these spectra change in increasing X. At the first
step, note that there are the two open AF Heisenberg
chains with X spins of S=—,

' when A, =O. The eigenstate
associated with point 3 is a singlet {S„,=0) since this
state is composed of the two lowest states (S =0) of both
chains. Point B is the junction of two triplets (S„,=1),
which reflects the eigenstates associated with this point
are composed of the lowest state (S =0) of one chain and
the second-lowest one (S =1)of the other chain. Point C
is the junction of another singlet (S„,=0), another triplet
(S„,=l), and the qunituplet (S„,=2), but both the
singlet and the triplet will be ignored in this argument.
This situation reflects that the eigenstates associated with
point C are composed of the two second-lowest states
(S =1) of both chains. [Here, the difference between the
lowest and the third-lowest energies of the chain is larger
than 2b, ,(N) for even N, where b, ,(N) denotes the
difference between the lowest and the second-lowest ener-
gies of the chain. ] At the second step, let us define
h, (N, A, ) and b', (N, A, ) for even N as the differences be-
tween the second-lowest and the lowest states and be-
tween the quintuplet and the second-lowest ones, respec-
tively. The difference A, (N, A, ) is expected to approach
zero in increasing N, according to b, (N, A, )

ocexp[ —N/g(A, )] for A, )0, where g(A, ) diverges in the
limit A. ~O. If k& approaches zero in increasing X, then
we expect

0

0

s...=](o)

s...=2(l)

= even ( odd )

S=0(1)

= even ( odd )

](0)

S=O(1)

as an energy gap in the limit N~ ~ for A, )0, since the
quintuplet approaches the lowest excited state in increas-
ing X. If k& was finite in the limit N~ ~, then a cross-
over of the gap generation might occur at kz in varying
A, , as seen in Fig. 4(a).

However, Fig. 5 showing A, & against N ' makes us ex-
pect A,z=O in the limit X~ao. In Fig. 6, we show
b, I(N, A, )

—bI(N, A. ) for even N. The energy gap in the
limit X~ 00 looks to open for k 0.05, since in increas-
ing N the gap shows no N dependence at A, =0.05.

Let us examine the odd-X case. See Fig. 3 for E =5.
The lowest state is a triplet, which is proved with the
Lieb-Mattis theorem. Two singlets cross at A, T, one state
of which is connected with point A in decreasing A. and
the other is connected to point B in decreasing k. The
singlet state connected to point A, further, crosses over
the triplet state connected to point 8 at kz in increasing
A, . A similar feature is detected for X =7, 9, and 11, and
we thus argue the case % =5 as an example of general
odd X's. We are interested particularly in how these
spectra change in increasing X. At the first step, note
that there are the two open AF Heisenberg chains with X
spins of S =

—,', when X=O. Point A is the junction of the
lowest state (S =1) and a singlet (S =0), which refiects
that the eigenstates associated with this point are com-
posed of the two lowest states (S=

—,
'

) of both chains. On
the other hand, point 8 is the junction of the upper trip-
let (S„,=1) and the other singlet (S„,=0), which
reflects that the eigenstates associated with this point are
composed of the lowest state (S=

—,
'

) of one chain and the

FIG. 4. The expected spectrums of the infinite volume ladder
model with S=

2 spins are shown in (a) and (b) when A, z is finite

and zero, respectively.

second-lowest state (S=—,') of the other chain. At the

second step, let us define b, , (N, A, ) and b, ', (N, A, ) for odd N
as the differences between the singlet state connected to
point 8 and the lowest state and between the upper trip-
let and the lowest states, respectively. The difference

0 0.1 0.2
I I I I I I I I I I I I I I I I I I I I I I I I

-0.15

-0.1

-0.05

N=odd
N =even

0.5-

0.1 0.2 0.3
1/N

FIG. 5. The extrapolation of A,z and XT in terms of A
The inset shows A.z(X) and A, T(X) redefined by fitting Az(N —1)
and A~(%+ 1) linearly and fitting A, ~(X—1) and XT(W+ 1 )

linearly, respectively.
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FIG. 6. The energy gap against A,. The crosses display the
energy gap of the infinite volume ladder. FIG. 7. gz '(X) from N =7 to 11 against A, '. The open dots,

solid squares, open squares, solid diamonds, and open diamonds
display the data for N =7, 8, 9, 10, and 11, respectively.

b, ,(N, A, ) is expected to approach zero in increasing N, ac-
cording to h|(N, A, ) ooexp[ —N/g(A, )] for A, &0. Since
both A, T and A,& approach zero in increasing N, as seen in
Fig. 5, we expect

h(A, )= lim [b, ', (N, }(,) —b, ,(N, A, )]~
Q —+oo

as the energy gap in the limit N —+ ao. This means that
the upper triplet connected to point 8 approaches the
lowest excited state as N increases. In Fig. 6, we show
b|(N, }(.) —b, |(N, A, ) for odd N. Since it shows no N
dependence at A, =0.05 in increasing N, the energy gap
looks to open for A, &0.05.

We summarize both results for odd and even N as fol-
lows. Figure 4(b) shows an expected energy spectrum in
the limit N~~. Here, it has been assumed that the
ground state becomes fourfold degenerate in the limit
N~ oo since the lowest state with S„,=O (l) and the
second-lowest state with S„,=1 (the singlet connected to
point B) are mixed when N is even (odd). The total spin
of the lowest excited state in the limit N ~ oo is two (one}
for even (odd) N. Figure 6 suggests that A, c is less than
0.05 even in the limit N~ (x). In this figure, the crosses
depict the energy gap in the thermodynamic limit, the
gap of which is given as follows. We have fitted b, (N, A, )
defined as 6', (N, A, )

—b, ,(N, }(,) with the formula

4(N, k) =Q( oo, g}+Qg(g}N &x'e

in a least-squares fit for even and odd N, respectively. At
that time, a(A, ) was chosen by hand in order to make the
difference of b, ( oo, A, ) for even and odd N as small as we
can. We regarded the mean value and the difference of
b, ( oo, }(,} for even and odd N as the extrapolated energy
gaps and the error bars for several values of A, , respective-
ly.

Let us define a variable approaching the inverse corre-
lation length, gz'(}i,), in the limit N ~ oo:

h, (N —2, A, )
(6)

Figure 7 shows extrapolations of gz'(I, ) in terms of A,

We can fit the data linearly and estimate (~=4.0, 4.8,
4.6, 5.4, and 5.0 for N =7-11,respectively.

These values roughly agree with those of the S= 1 AF
Heisenberg chain calculated by Kennedy. ' This fact
re6ects that the S=—,

' ladder model is reduced to the
S =1 AF Heisenberg chain in the limit A,~~. ' On the
other hand, we extrapolate g~'(A, } in terms of N ' in a
region of small A, in Fig. 8 and show g (A, ) in Fig. 9 for

0 0.1

~ A = 0.05

0.

Flax. 8. g~'(A, ) defined in the text. The data for k=0.20,
0.10, and 0.05 are shown by the solid squares, open dots, and
solid dots, respectively. The line shows the linear fit in terms of
N
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0.1 0.2

FIG. 9. The extrapolated inverse correlation length for small
A.. The error bars show differences between the maximum and
the minimum values obtained by fitting g~'(A, ) and gz' 2(A, )

linearly.

FIG. 10. The ladder model with the S =2 quasiparticle. This
quasiparticle is regarded as an artificial particle with S =2 and
is depicted by the solid square. The solid dots depict the S =

2

spins.

A, =0.05,0. 10, . . . , 0.25.
In Fig. 8, we have succeeded in fitting data of g~'(A, )

linearly for small k and consequently show that A,c is less
than 0.05 and that g(A, ) is estimated at nearly 29, 39, and
52 for A, =0.2, 0.1, and 0.05, respectively. In Fig. 9, we
show the shape of g '(A, ), which shape resembles that of
the energy gap b, ( co, i, ) in Fig. 6.

III. DISCUSSION

To make sure of the conclusion obtained in the previ-
ous section, we discuss the case with a finite A.s. In that
case we unexpectedly reach the idea with different origins
for the energy gap for A, & A,s and I, )A,s. [See Fig. 4(a).]
For A, ) A,s, the qunituplet (the upper triplet) connected to
point C (B) approaches the lowest excited state in in-

creasing even (odd) N. For A, &A,s, the upper triplet
(singlet) connected to point B ( A) approaches the lowest
excited state in increasing even (odd) N.

At the first step, compared with the quasiparticle pro-
posed as the elementary excitation related to the
valence-bond solid state by Knabe, we discuss the
quintuplet (the upper triplet) connected to point C (B) for
even (odd) N. Let us regard the ground state for A, )0 as
the S =1 Haldane state, where two S=

—,
' spins connected

ferromagnetically by an interchain coupling form a trip-
let pair. In order to propose a candidate of the elementa-

ry excitation, we create a quasiparticle on the ground
state of the ladder model. We consider SMM+, and

S~~+, defi~~d by SM~+, =—~M+~~+~~+, +~~+,
and SM M+I(S~ M+, +1)=—((SM sr+, ) ), respectively.
Since SM M+& =0 or 1 in the VBS state for all M, we ex-

pect that two AF couplings between the sites M and
M+1 are cracked to form the SM ~+,=2 state. We de-

pict such an artificial S=2 quasiparticle by the solid
square in Fig. 10.

Note that we can select X —1 values of M from M = 1

to M =X—1. We assume that the state with the S =2

quasiparticle is approximated by a superposition of the
ground states of N —1 different ladder models with S =2
quasiparticles. Applying Lieb-Mattis theorem to this
ladder model with the S =2 quasiparticle, we can prove
the following lemma.

(1) For even N, the total spin of the ground state of this
ladder model is two if the S =2 quasiparticle stays at
sites with M being odd and is zero if it stays at sites with
M being even.

(2) For odd N, the total spin of the ground state of this
ladder model is one.

We thereby expect that the S =2 quasiparticle prefers to
stay at sites with M being odd for even N. This feature is
numerically observed in the quintuplet connected to
point C for N =4, 6, 8, and 10. (See Fig. 11 for N = 10.)

N=10
3i I I I I I I I I

I I I I I I I I I I I

5 30
M

FIG. 11. (S~ ~+, ) are plotted against M (1 ~ M ~ X—1) for
W =10. The solid squares and solid diamonds depict the data
calculated in the third-lowest state for A, =1.0 and 2.0, respec-
tively. These states are in the quintuplet connected to point C.
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Since (Sf z) and (Sz, z) are less than (SM~+, ) for
M in the middle of the chain, as seen in Fig. 11, it is
seemed that the S =2 quasiparticle tends to avoid both
edges. It may be caused by the effect of a local staggered
order, which is a characteristic of the S=1 Haldane
state. For odd N, the numerical result obtained shows
that (SM ~+, ) is larger in the upper triplet connected to
point B than in the singlet connected to point B. We
therefore found that the S =2 quasiparticle appears in
the qunituplet (upper triplet) connected to point C (B) for
even (odd} N

At the second step, we discuss the upper triplet
(singlet) connected to point B ( A) for even (odd) N. As a
candidate of the excitation in the state, we create some
defect on the ground state. We consider S~ and S~
defined by SM=rr~+rsr and SM(SM+1)=((S~} ), re-

spectively. Compared with the S=2 quasiparticle, we
expect that a triplet pair of ca~ and ~~ is cracked to
form a singlet pair with SM=O. We depict such an
artificial spin-0 particle by the solid triangle in Fig. 12.

Note that we can select N values of M from M = 1 to
M =N. We assume that the state with S =0 quasiparticle
is approximated by a superposition of the ground states
of N different ladder models with S =0 quasiparticles.
We expect that SM is approximately zero, and then apply
Lieb-Mattis' theorem to the ladder model with the S =0
quasiparticle. We can thereby derive the following re-
marks.

(1) For even N, the total spin of the ground state of the
ladder model with the S =0 quasiparticle is one.

(2} For odd N, the total spin of the ground state of the
ladder model with the S =0 quasiparticle is two if the
S=O quasiparticle stays at an even site and zero if it
stays at an odd site.

For odd N, it therefore turns out that if the S =0 quasi-
particle appears in the singlet connected to point A, then
it prefers to stay at odd sites. This features is actually ob-
served in numerical results for N =5, 7, 9, and 11. (See
Fig. 13 for N =11.)

In this figure, S~ which is defined as —,'+ (cr~ r~ ), is

calculated in the singlet connected to point A and is thus
found to be lower for odd M than for even M. For even

N, our numerical data show that S~ is less in the upper
triplet connected to point B than in the lower triplet con-
nected to point B. In the upper triplet, both SM and

Sz ~+ &
are less for odd M than for even M for M &

—,'N.
These features reflect that the S =0 quasiparticle appears
in the singlet (upper triplet} connected to point A (B) for
odd (even) N, which state crosses over the state with the
S =2 quasiparticle at A,s as A, is increased.

We have further calculated the energy of the S=O
quasiparticle for small A, as follows. First, a quantity
b,z(N) is defined as the energy difFerence between the
upper triplet connected to point B and the second-lowest
states (between the singlet state connected to point A and
the lowest state) for even (odd) N. Next, we applied Eq.
(5) with a(A, ) chosen by hand to bz(N) vs N ' for even
and odd N, respectively and found that hz( ~ } are rough-

ly same for even and odd N for a value of a(A, ). Then, we
regard b, &( ~ ) for the value of a(A, ) as the energy of the
S=O quasiparticle. For small A, , the energy b,z(oo) is
larger than the energy of the S=2 quasiparticle we have
calculated using b, ', (N, A, ) —h, (N, A, ) in the text. This situ-
ation suggests that A,z approaches 0 in increasing N.

Finally, we summarize the concluding remarks. We
showed a finite energy gap for A, &0.05 and thus conclud-
ed that A,c must be less than 0.05, the gap of which was
obtained as 6', (N, A, )

—h, (N, A, ) by numerical calculations
of finite clusters we have used. For small A, , we extrapo-
lated gz(A, ) calculated with Eq. (6) in terms of N ' and
found that the inverse correlation length g '(A, ) is finite

A =0.2

w
&bI

iL
0 F

0.8-

0.6-
N=11

FIG. 12. The ladder model with the S =0 quasiparticle. This
quasiparticle is regarded as an arti6cial spinless particle and is
depicted by the solid triangle. The solid dots depict the S=

2

spins.

0
I

10

FIG. 13. S~ against M(O~M&N) for odd Nand A, =0.2 in
the singlet state connected to point A.
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for k ~ 0.05. However, we cannot have found a
Kosterlitz-Thouless-like behavior of g '(A, ) for small iI.,
the behavior of which is predicted by the author and oth-
ers using a bosonized Hamiltonian. [It is noted that
Solyom and Timonen suggest the absence of the behavior
in a vicinity of the massless point (A, =O) using another
type of double-chain system. j This contradiction of the
ladder model for small A, may be, if the behavior exists,
due to the fact that ht(N, A, ), which is the finite-size
correction to the energy, is too large, compared with
b, I(X,A, ) —b, &(X, i(, ). It is further shown that the elemen-
tary excitation of the ladder model is similar to the quasi-
particle proposed by Knabe.
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