
PHYSICAL REVIEW B VOLUME 50, NUMBER 18 1 NOVEMBER 1994-II

Lattice dynamics af SiC palytypes vrithin the band-charge madel

M. Hofmann, A. Zywietz, K. Karch, and F. Bechstedt
Friedrich Sc-hiller Un-iversitat, Institut fur Festkorpertheorie und Theoretische Optik,

Max Wi-en Pla-tz I, 077)8 Jena, Germany
(Received 7 April 1994)

We present a phenomenological approach to the lattice-dynamical properties of various SiC
polytypes. A generalized bond-charge model is applied to the cubic and hexagonal polytypes 3C,
6H, 4H, and 2H. Th'e long-range microscopic electric field of ions and bond charges is fully taken
into account via an Ewald technique. The short-range elastic interactions are described by bending
and stretching forces between ions and bond changes. The force constants and effective charges are
fit to phonon frequencies known from Raman and luminescence measurements. The reliability of the
model is tested not only for the frequencies but also for the eigenvectors by comparison with results
of ab initio calculations for 3C- and 2H-SiC. We show that the anisotropy in the uniaxial hexagonal
polytypes is mainly due to the nonanalyticity of the Coulomb forces. The corresponding frequency
splittings are related to slight changes of the bond charges in dependence on the bond orientation.
Differences in the elastic forces parallel and nonparallel to the hexagonal axis are only necessary to
stabilize the zone-boundary phonons. The trends of the resulting frequencies and density of states
are discussed versus the percentage hexagonality. Consequences of the different phonon dispersions
for the elastic properties of 3C, 6H, 4H, and 2H polytypes are considered. We speculate about
possible mechanisms of polytype stabilization by the lattice vibrations.

I. INTRODUCTION

Silicon carbide (SiC) is a semiconductor which com-
bines very interesting physical and chemical properties.
The extreme thermal and chemical stability together
with the large electron saturation velocity and mobil-
ity make it a very prominent candidate for electronic
devices able to work under hostile environments (such
as high temperature, corrosive atmosphere, or irradia-
tion) with excellent high-power and high-frequency per-
formance. The large band gaps have made possible the
application of SiC crystals in blue-light-emitting diodes.
The different applicative possibilities are supported by
the high thermal conductivity as well as mechanical sta-
bility. Prom the physical point of view SiC has excit-
ing structural properties. It is the only IV-IV compound
forming stable and, moreover, long-ranged ordered struc-
tures, the so-called polytypes. ~ The low stacking fault en-
ergy causes that more than 100 different polytypes crys-
tallizing in the cubic (C), hexagonal (H), and rhombo-
hedral (R) system have been observed. 2 s They differ by
the stacking arrangement of the N Si-C bilayers in the
cubic [111]direction within a unit cell indicated by the
notation 3C, NH, or NR.

The understanding of the lattice-vibrational proper-
ties is important for an explanation of various inter-
esting properties of SiC, among them mechanical, ther-
mal, and structural ones. The phenomenon of polytyp-
ism can be related also to phonons. Phonons may sta-
bilize the polytypism via different contributions to the
ft.ee energy. Furthermore, it has been demonstrated how
the long-ranged interatomic interactions determining the
polytypes arise kom the phonons. Ab initio calculations

of the phonon spectra are rare. They are moreover
restricted to the zinc-blende 3C structure with one
exception concerning the wurtzite 2H-SiC. The same
holds for the phenomenological models. The normal
modes of lattice vibrations in cubic SiC have been in-

vestigated on the basis of rigid-ion models (RIM's), ~~

a deformation dipole model (DDM), and valence over-

lap shell model (VOSM). Within the RIM approaches
only short-range force constants ' ' ' or short-range
central and noncentral interactions as well as long-range
Coulomb interactions among ions of appropriate effective
charges have been considered.

In contrast to theory many experimental studies of the
vibrational properties of various polytypes exist. Raman
scattering has been extensively used to study the phonons
in 3C, 2H, 4H, 6H, 15R, and 21R. ' 0 Besides, many
in&ared absorption and reflectivity measurements have
been reported for 3C, 6H, 10H, and 15R. However,
only few luminescence studies are known for 3C, 2H,
6H, and 15R, in which vibrational frequencies have been
derived Rom phonon replica.

In this paper we develop a phenomenological model
for the description of the lattice dynamics of cubic 3C-
SiC and hexagonal 6H-, 4H-, and 2H-SiC. This ap-
proach does not only give correct frequencies and their
trends with the hexagonality but also reasonable eigen-
vectors, i.e., atomic displacement fields. For reasons dis-
cussed below we choose the adiabatic bond-charge model
(BCM). In Sec. II the elastic forces and electric charges
are related to different polytypes. The free parameters
are fitted to &equencies known from different experi-
ments. In Sec. III the results for the phonon band struc-
tures and the densities of states are discussed versus the
percentage hexagonality. We study the reasons for the
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anisotropy, in particular the angular dispersion and the
splitting of the modes in the zone center. Consequences
of the differences in the lattice dynamics are discussed
for structural and thermal properties of the polytypes.
Finally, in Sec. IV a brief summary is given.

II. LATTICE DYNAMICAL MODEL
AND POLYTYPE STRUCTURE

A. Bond-charge model

Phonon &equency dispersion relations present a useful
test for a reasonable description of the lattice dynamics
of crystals. However, it has been pointed out dynami-
cal matrix uniquely. Only the combination of eigenval-
ues and eigenvectors does this. Indeed, different models
can predict very similar &equencies but quite different
eigenvectors. ' This holds especially for the longitu-
dinal modes, as clearly shown for the [111]direction in
silicon. Among various lattice-dynamical approaches,
as e.g. , the valence-force-field model (VFFM),30 the
BCM, and the partial-density model (PDM), 3~ only the
BCM correctly describes the behavior of the longitu-
dinal mode along the A direction apart from Ob initio
calculations.

Starting point of the lattice-dynamical model is the in-
troduction of bond charges (BC's) according to Phillips32
and Martin. The three types of bonding in the system—
metal-like, covalent, and ionic bonding —are represented
by different short-range and long-range interactions as
schematically indicated in Fig. 1. The massless BC's
carry the effective (screened) charge —ZBc in a near mid-
bond position. These electrons are transferred from the
atoms. Because of the tetrahedrally coordination they
carry the ion charge 2ZBc. The partially ionic bonding
is modeled by displacing the BC from the midbond po-
sition between Si and C by a relative shift p (0 ( p ( 1)
toward the carbon atom. The limiting cases p = 0 and

p = 1 represent completely covalent or ionic bonding.
The relative shift is thus a measure of the ionicity or
heteropolarity of the bond. For the zinc-blende struc-
ture we choose p =

3 according to the maximum posi-
tion of the total valence electron density derived within

gpss 2z

c's

an ab initio density-functional calculation. ' This value
is somewhat larger as in the case of III-V compounds,
where the bonds between anions and cations are shared
in a 3:5 ratio instead of 2:3. ' It reflects the remarkable
differences in the covalent radii as well as electronegativ-
ities of Si and C. The total electrostatic energy of the
arising system of point charges is calculated by means
of the Ewald method. The bond lengths are kept fixed
according to the experimental lattice constants a (in the
cubic case) or c and a (in the hexagonal cases).ss The
small atomic relaxations and the variation of p around

(Ref. 34) are neglected for the hexagonal polytypes.
The BC ZBg is used as a free parameter, and varied in
accordance with the bond orientation.

Besides the Coulomb forces at least three types of
short-range elastic interactions are taken into account
(cf. Fig. 1). The metal-like bonding behavior in the sys-
tem is represented by a nearest-neighbor two-body force
with a potential 4s; c between the Si and C ions. Similar
central forces are assumed between a BC and a neigh-
boring ion with potentials @s; Bc and 4c gc. They de-
scribe effects of the covalent bonding. Furthermore bond-
bending forces are taken into account. A bond-bond

(BB) interaction of the Keating type is very important for
the stability of the structures. It gives rise to effective
noncentral forces with potentials 4&'B and 4&& between
the ions. An additional parameter, which is modifying
the bond-bending forces and was necessary for a reason-
able description of the lattice vibrations of diamond, 2 is
not introduced. In order to take into account the strong
bonding in the presence of carbon atoms we consider cen-
tral forces between second-nearest-neighbor atoms as well
as first- and second-nearest-neighbor bond charges with
the potential~ 4si-si& @c-c& @i, and C2.

In the explicit fit each of the central forces is repre-
sented by two different farce constants, a longitudinal
and a transversal one. The longitudinal (transversal)
force constant is related to the second (first) derivative
of the corresponding potential, i.e., 4'x v or @~'&2 (4x &
or 4"~&2) with X, Y =Si,C,BC. On the other hand, the
noncentral forces are characterized by only one param-
eter Ps; or Pc in dependence on the chemical nature
of atom involved in the three-body interaction. Fortu-
nately, all force constants are not linearly independent.
For instance, the transversal constants follow from the
equilibrium conditions. Consequently, in the zinc-blende
case with two atoms per unit cell the adiabatic BCM
employs ten disposable parameters, nine force constants
and one BC. In the uniaxial systems 2H, 4H, and 6H
under consideration the number of free parameters in-

creases according to the different elastic interactions for
bonds parallel or nonparallel to the c-axis as well as the
anisotropy of the BC's.

B. Dynamical matrix and atomic geometry

FIG. 1. Schematic representation of the interactions within
the adiabatic bond-charge mode1. The indicated force con-
stants and charges are defined within the text.

within the cubic zinc-blende structure of 3C-SiC two

atoms, Si and C, and four BC's belong to a unit cell.
Labeling the six particles by tc = 1—6 the corresponding
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positions are described by the vectors

r, = (o, o, o),

r2 = —(1,1, 1),

r3 = (1 +p) —(1, 1, 1),

r4 = (1 + p) —(1, 1, 1),

rs ——(1+p) —(1, 1, 1),

rs ——(1+p)-(1, 1, 1).

When the position of the unit cell is described by a
Bravais-lattice vector R~, the most important exam-
ples of the matrices of the short-range force constants

1(~,& = *,u, ~)
g

K K )
are 2~'4~

(0 0~
4' p I, 2 I

= -4's;-c+ — 'd'(» u
—1)

)

@np I 1 3 I

= C's-ac+ — (3b p —1)
(0 0~ 1 „24s-ac

3 ' 3 1+pd
1+—Ps;(2b p

—1),
@' p I 3 6 I

= Ps;(1-2&-.)
(0 0)

6) 4 1 nz

+-4"(1 —b', ) (1 —b'p, ),

(2)

~01) 1
@~@ I 1 1 I

= —@s -s. (1 —b, ) (1 —h&, ),] 1 ) 2

with d = i/3a/4 as the bond length. The other important
interactions follow by an exchange of Si and C in the Eqs.
(2).

The elastic energy of the lattice of ions and BC's fol-
lows inimediately from the force-constant matrices of
the type defined in Eqs. (2). However, because of the
charged particles, the long-range Coulomb interactions
have also to be taken into account. Their most im-
portant contribution is related to the Madelung energy
—2aM (2Znce) /d, where aM denotes the Madelung con-
stant of the considered structure. For the considered cu-
bic case it amounts aM = 5.044. The variations of the
total elastic energy with respect to the bond length d as
well as to the position of the BC, defined by the heteropo-
larity parameter p, give the eqni&ibrium conditions2~

((1+ p)@S-BC + (1 p)@C-BC) + 2@S-C

+—o.M(2Znce/d) = 0, (3)

(@s-Bc ~c-Bc} 2
™

(ZBce) /d = 0.
p

The variation of the Madelung constant with the bond
polarity is about 8aM/Bp = 4.029. A reasonable as-

sumption is the vanishing of the first expression in
parantheses. 2~ It completes the system of equations for
the three transversal force constants C's; Bc, 4c &c, and
@s;-e.

Besides the mentioned short-range interactions be-
t~ee~ io», @si-c, and io» and BC's, @si-ac and @c-nc,
as well as the Keating potentials, 4'&'B and 4'cnB, we
consider central forces between neighbored BC's (4i)
and second-nearest-neighbor ions (Cs; s; and 4c c) and
BC's (42). However, we assume that the accompany-
ing transversal force constants are zero, i.e., Cs; s;
@c-c +1 Q2 = 0. Indeed, a fit of these con-
stants leads to negligible values in most cases. In ad-
dition the assumptions 4i' = —4z' ——z(Ps; —Pc) and
@s'-s' = 4c-c are introduced to reduce the number of
&ee constants. 43 These assumptions correspond to those
well-known &om the covalent case, where the central
forces between BC's and second-nearest-neighbor ions are
completely neglected.

Similar equations as given in Eqs. (2) and (3) are used
in the hexagonal cases. There is an additional approxi-
mation, which however is nearly fulfilled. We neglect the
small bond length and bond angle variationss9 by fixing
the ideal ratio of the lattice constants c/(Na) = (2/3) ~.
This assumption is supported by the small variations of
the Madelung constant aM and its derivative 8aM/Bp
(cf. Table III). The unit cells of the hexagonal polytypes
2H, 4H, and 6H are shown in Fig. 2 together with the
hexagonal representation of the 3C zinc-blende structure.
The positions of the atoms as well as the bond charges are
indicated. This figure makes evident that in the uniaxial
crystals, at least, two different types of bonds (and con-
sequently bond charges) have to be distinguished. One
sort of bonds is parallel to the c axis, whereas the other
one forms angle with that axis of about 70.5'. Since all
central forces act along a bond, we therefore introduce
two different kinds of force constants of the ion-ion in-
teractions labeled by II or J in correspondence to the
bond orientation. In the case of the BC's the situation
is more complicated. The orientation dependence of the
three-body forces and the second-nearest-neighbor inter-
actions is less pronounced. Therefore, we apply the same
constants 4"i', @2', ps;, and pc for all SiC polytypes. The
anisotropy related to the BC's is assumed to be only
caused by the long-range Coulomb interactions. Gen-
erally, we double the number of elastic force constants
going from the cubic case to the hexagonal polytypes.

In the hexagonal polytypes the stacking sequence of
Si-C bilayers in the cubic [111]direction in the form AB
(2H), ABCB (4H), or ABCACB (6H) instead of ABC
as known from the zinc blende induces automatically an
anisotropy in the long-range electric field accompanying
the atomic displacements. Thereby, the anisotropy is
similar to case of artificial superlattices on the base of
polar III-V compounds. However, the origins are differ-
ent. Whereas in the case of semiconductor superlattices
the different atomic masses are most important, the ar-
rangement of ions and bond charges governs the effect
in hexagonal SiC crystals. Nevertheless, we learn during
the fit procedure that this natural electrical anisotropy
has to be increased by splitting and changing the mag-
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TABLE II. Phonon frequencies (in cm )
of zone-boundary modes from luminesence measurements for
hexagonal polytypes (Refs. 25, 26) and Raman studies for
zinc-blende SiC (Ref. 19). The high-symmetry points L, X,
M, and K in the taro Brillouin zones are indicated.

Mode
LO

TOg
TOQ
LA

TAg
TAQ

3C (L)
838

766

610

266

3C (X)
829

761

640

373

6H (M)
863
771
840
430

372, 293

2H (K)
806.2
737.3
832.7
498.6

498.6, 424.3

TABLE III. Parameters of the bond-charge model used for
the SiC polytypes. The screened BC's are in units of the
electron charge, whereas the force constants are given in N/m.
The Madelung constant and its derivative are dimensionless.

smaller as in other group IV and III-V materials. For Ps;
we even find a negative value. Such a tendency is already
observed for III-V compounds such as A1Sb (Ref. 43)
with large electronegativity differences. In any case it
holds z(P~»~„—P«t;~„) ) 0 (Refs. 27, 35, 43) for the
asymmetric part of the BC-ion-BC forces.

The BC ZBC, which is an indirect measure of the
strength of the covalent bonds in the system, is relatively
large. It reaches larger values than in Si, Ge, and III-V
semiconductors, but slightly smaller ones than in dia-
mond. The force constants for the bond-stretching po-
tentials of BC's and second-nearest-neighbor ions remain
relatively small. Moreover, they carry difFerent signs,
what indicates a partial cancellation of their efFects.

The trends with the percentage hexagonality h (Ref.
18) of the polytype, h = 0, 33, 50, and 100% for 3C, 6K,
4H, or 2H, respectively, according to the relative number
of Si-C bilayers with hexagonal character, i.e. , twisted
bonds, are very interesting. The average value of the

BC's in each bilayer, (ZB&+3ZB+c)/4, keeps the 3C value

ZBC = 0.7984. However, the difference (ZBC —ZBC)
increases with h. Linear decreases with h are used for
the force constants 4S -CL @S-BC~ I, whereas C'C-BC
creases linearly. This behavior of the short-range inter-
actions is probably related to a partial compensation of
the efFect due to the increase (ZBC) or decrease (ZB+c)
of BC's. There was no need for a change in the non-
central force constants as well as central force constants
of the BC-BC interactions during the fitting procedure.
We have only considered minor decreases of the second-
nearest-neighbor interactions 4s,. s,.~I

4& c&.
The discrepancies in the short-range elastic forces ac-

cording to
~~

and J as well as in the long-range electric
forces related to the different BC's Z&c and ZB+c give
not only rise to an explanation of doublet splittings and
anisotropy of the phonon modes. Rather, they may give
some hints with respect to the thermodynamic stability
of the polytypes. The varying forces lead to difFerent in-
terplanar interactions between the Si-C bilayers and con-
sequently to small energy difFerences between the poly-
types. The difFerent strengths of the efFective interplanar
interactions between cubic and hexagonal bilayers in the
various structures 3C, 6H, 4H, and 2H may be a driving
force for the stabilization of one polytype versus another
one.

However, such a discussion exhibits at least two prob-
lems. First, there is no clear unique trend. The frequen-
cies do not simply shift to higher (lower) values with
rising hexagonality, what would stabilize the 2H (3C)
structure at absolute zero of the temperature, whereas
for higher temperatures the free energy of the lattice vi-
brations would tend to stabilize more the cubic polytype.
Second, there remain difRculties in explaining the occur-
rence of particular long-period polytypes which may have
N up to 100. Within the BCM the only origin for such a
long-range driving force is the difFerence in the Coulomb
interactions due to the varying splitting of BC's in Z&c
and ZB+c as well as the varying arrangement of ions and
BC's.

ZBG
II

ZBG

~si-c
I I

~si-c J
~si-BGI

I

~Si-BC%
C-BC

I I

~C-BCJ
@

II

~si-siI
I

~Si-SiJ
~'c-GII

II
C'C-C J

q II

Ps'
pc
~M
Ba~

Bp

3C

0.79840

147.47

245.82

2660.80

-40.17

29.12

-29.12

40.17
—25.80
54.55
5.044
4.029

6H
0.80623
0.79579
147.47
145.14
244.15
245.82
2660.80
2734.00
-40.17
29.12
27.79

—28.53
—29.12
40.17

—25.80
54.55
5.115
4.100

4H
0.81000
0.79453
147.47
143.97
243.32
245.82

2660.80
2770.00
—40.17
29.12
27.15

—28.22
—29.12
40.17

—25.80
54.55
5.067
4.150

2H
0.81500
0.79287
147.47
140.45
240.82
245.82

2660.80
2880.00
-40.17
29.12
25.10

—27.32
—29.12
40.17
-25.80
54.55
5.039
4.045

III. RESULTS

A. Eigenfreguencies

The phonon dispersion curves, obtained with Table III
for 3C-SiC along high-symmetry lines in the Brillouin
zone of the fcc structure, are represented in Fig. 3. The
experimental data given in Tables I and II (cf. Ref. 18)
are indicated by circles and triangles. There is overall
an excellent agreement between theoretical curves and
available experimental data. This holds especially for
LO, LA, and TA branches along I'L. The dispersion
of the TO branch is well described. However, its ab-
solute position is slightly overestimated by theory. A
good agreement is also observed for the X point. This is
particularly satisfying because the TA(X) phonon mode
can induce significant amounts of charge transfer between



13 406 M. HOFMANN, A. ZYWIETZ, K. KARCH, AND F. BECHSTEDT 50

tl

750

o 500

o"
250

FIG. 3. Phonon dispersion curves for
3C-SiC. The experimental data from Tables
I and II and Ref. 18 are represented as tri-
angles and circles. Solid and dashed lines
represent the calculated results of our BCM
(cf. Table III). In the [100] and [111]direc-
tions the different lines indicate longitudinal
(solid) and transversal (dashed) phonon po-
larization.

X K

Wave vector

chemical bonds. 44 Unfortunately there are no experimen-
tal data for the mixed modes along the [110] direction.
However, the most important features of the dispersion
curves agree with those from ab initio calculations.

In Fig. 4 we compare the phonon dispersion curves of
the four polytypes 3C, 6H, 4H, and 2H under consider-
ation versus high-symmetry directions in the hexagonal
Brillouin zone. Obviously, the most important polytype
influence is related to the reduced translational symmetry
in the hexagonal [0001] direction. The number N of Si-C
bilayers in the polytype determines the number of atoms
per unit cell and, consequently, the number of phonon
branches. The enlargement of the unit cell clearly causes
the folding of the four branches along I'L in the cubic
3C structure onto the shorter I'A lines in the hexagonal
Brillouin zone. However, the folding effect gives also rise
to more branches in the other directions.

The agreement with the Raman data for the I' point
is excellent. Likewise, the frequency values for phonons
from the zone boundary, which are obtained from lumi-
nescence measurements, are well reproduced. This holds
especially considering the reduced accuracy of identify-
ing the phonon modes from the replica of luminescence
lines.

B. Anisotropy

The splitting at I' between several optical branches be-
longing to different propagation directions I'A or I'K of
the phonons is a characteristic feature for the hexagonal
polytypes, in general for uniaxial crystals. The hexago-
nal polytypes NH-SiC (N = 2, 4, 6) belong to the space
group Cs4 (P6smc). The phonon representation at the
I' point is reducible into representations Ai, Ei, E2, and
B2 The Ai .and Ei branches are both Raman active
and infrared active. The E2 branches are only Raman
active, whereas the Bi branches are inactive. The long-
wavelength normal modes of a hexagonal polytype NH
»e N(Ai + Bi + Ei + E2).

The optical modes are differently infiuenced by (i) the
macroscopic electric field associated with the atomic dis-
placements and (ii) the crystal anisotropy represented

by the orientation-dependent short-range interactions. 4s

There are strong modes which correspond to the zone-
center LO and TO phonons of the zinc-blende structure.
Moreover, weak modes exist which can be traced back to
phonons with finite wave vector from the I'L line in the
cubic SiC. The Raman-active strong modes are remark-
ably infiuenced by the anisotropic macroscopic electric
field. Therefore they depend on the angle 0 between the
phonon propagation direction and the c axis. The strong
modes have primarily longitudinal (I) or transverse (t)
character because of the long-range electric field, but they
have generally niixed symmetry of type (Ai +Ei). More
in detail it holds for the strong modes LO, T01, and T02
(Ref. 45)

~LQ (Al/ + Ell) = cos'e~'(Aii) +»n'e~'(Ell) I

TO&

(4ITQ2 (Aig + Eig ) = Slil 04l (Aig ) + cos O~ (Eig), (4)

where for normal propagation the two transverse
branches degenerate.

In Fig. 4 we have realized the cases 0 = 0' by the I'A
line and 0 = 90' by the I'K line. The corresponding
splittings between ur(Ai~) and w(Ei~) as well as ru(Aiq)
and u(Ei&) can be plotted versus the hexagonality of the
polytype. In accordance with our fitting procedure we
observe a nearly linear behavior of the limiting frequen-
cies with the hexagonality parameter h (0 ( h & 1),

(u(Ei)) = (979.0 —3.1 x h) cm

u(Ai~) = (979.0 —13.4 x h) cm

ur(Ei&) = (795.7+ 3.8 x h) cm

u)(Ait) = (795.7 —25.4 x h) cm '.
In optimizing the linear behavior with the hexagonality
in Eqs. (5), the splittings of dispersion curves for I'A
and I'K as well as the absolute positions of the TO-like
phonons are carefully taken into account. That explains
the lower agreement with experimental data2o in the case
of LO-like vibrations. We mention that the changes with
the hexagonality can be essentially described by the small

splittings and the variations of the BC's, Znc and ZBC,
with the polytype. In order to obtain the same effect by
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the short-range elastic forces much stronger changes of
the force constants have to be taken into account, which
are not restricted to 1%% as in the case of BC's.

The consequences of the electric-field-induced
anisotropy can be also observed in integral quantities like
the density of states. This can be seen from Fig. 5, where
in addition to the total density for the zinc-blende struc-
ture the deviations from this one are plotted for 6H, 4H,
and 2K. Calculating the density of states the Dirac's
b function is Gaussian-broadened with a variance of 4

cm . The Brillouin-zone integration is replaced by a k-
space sampling involving for example 3696 mesh points
in the 2H case.

The polytypism does only inHuence the density of
states in the &equency region of the optical phonons.
These changes increase with the percentage hexagonal-
ity. The sharp TO phonon peak in the 3C curve, essen-
tially arising &om the I. point is split into two overlapping
peaks, related strongly to Eqq or (Aq + Eq)q phonons, in
accordance with Eqs. (4). Smaller changes in the density
distribution are found in the region of the LO phonon
band of the 3C structure. With rising hexagonality this
peak is broadened and its center of gravity is slightly
shifted towards higher frequencies. The density of states
near LO(I') of the zinc-blende is now distributed over a
band limited by the two frequencies rd(Aqr) and ur(Eq&)
[cf. Eqs. (4)j. On the other hand, changes in the spec-
tral region of the former TA and LA branches remain
small. They are mainly related to the tiny gaps appear-
ing between different branches at I'. At the new zone
boundaries in the folded phonon band structure, i.e., at
the A point, the branches are degenerated for synunetry
reasons. Even in the case of vanishing gaps there can be
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FIG. 4. Phonon dispersion curves for the 2H-, 3| -, 4H-,
and 6H-SiC polytypes along high-symmetry lines in the
hexagonal Brillouin zone. The experimental data from Tables
I and II are represented by circles, triangles, and crosses. At
the M point of the 6H structure additional experimental &e-
quencies from Ref. 38 are also indicated. Solid, short-dashed,
long-dashed, and dot-dashed lines indicate difFerent polariza-
tion states. Their classi6cation follows the transformation
behavior of the phonon eigenvectors with the point-group op-
erations.
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0 250 500

Frequency (cm )
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FIG. 5. Density of states of the four polytypes under con-
sideration. Whereas the total one is plotted for 3C-SiC (up-
permost panel), only the deviations from this one are shown
for the hexagonal structures 6H, 4H, and 2H (lower panels).
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changes in the curvature, i.e., in the first derivatives of
the phonon bands with respect to the wave vector, which
modify the density of states.

C. Eigenvectors

In diamond and zinc-blende structure the eigenvectors
of the different phonon modes with the branch index j
and the wave vector q from the first Brillouin zone along
the high-symmetry lines I'X and I'I can be represented
b 29 46

u'(q) = + '(q)e (q)

u (q) = 1 —c (q)
' exp[i@~(q)]ez(q).

In expression (6) r = 1, 2 denotes the two atoms in the
unit cell with displacements u" (q) and polarization vec-
tors ez(q) for longitudinal (j=LO, LA) and transverse
(j=TO,TA) vibrations. The amplitude of the C atoms
displacements is given by cz(q). The real phase 4'~(q)
of the C atoms vibrations with respect to that of the C
atoms is chosen so that C'z(0) = 0 holds for the I' point.
The plus (minus) sign indicates acoustic (optic) modes.

The results for the phase and the amplitude of cu-

bic 3C-SiC obtained within our BCM are represented
in Fig. 6. They are compared with results of ab initio
calculations within the density-functional perturbation
theory. An excellent agreement between both theories
is observed. This is a strong indication for the reliabil-

ity of the used BCM. An important argument for such
a conclusion is the correct description of the behavior

of eigenvectors for longitudinal branches along the I'I
line. Their phase is particularly sensitive to the strength
of the covalent bonding in the tetrahedrally coordinated
semiconductors. For instance, at the I point the lon-
gitudinal phase vanishes in the case of silicon, 29 whereas
in diamond it is equal to m4 leading to an opposite sign
in the atomic displacements of the atoms in the unit cell.

We see again that the carbon atoms infiuence the phys-
ical properties of SiC much stronger than the silicon
atoms. The eigenvectors of 3C-SiC are similar to those
of diamond. The phonon mode with 4t(1) = 7r is the
bond-stretching mode. It causes a stretching of the bond
in [ill] direction, whereas the other three bond remain
unchanged. On the other hand, the mode related to
4~(1) = 0 possesses bond-bending character. It keeps
the bond in [ill] direction but gives rise to a change of
the bond angles for the bonds in the other three direc-
tions.

From the knowledge of the phonon eigenvectors infor-
mation about the internal-strain properties of the crystal
can be extracted. The internal-strain tensor b, p~(tc) is
defined as the proportionality constant between the sub-
lattice displacement d (r) and the applied macroscopic
strain op~ (a, P, p = z, y, z) as

d (~) = —) b, p~(Ic)op~.

Symmetry requires that the tensors A(Ic) have only one

independent component for diamond and zinc-blende ma-

terials,

&-~.(1) = -&-~.(2) = -(
4

l~-~. l

where ( is the internal-strain parameter and e p~ is the
fully antisymmetric Levi-Civita tensor. The internal-
strain parameter can be obtained &om the longitudinal
phase function 4~(q) for q = ~

(ri, rl, ri) and ri m 0 ac-

cording to
.5 .5

3 1 8@i(rI)
2 7c 8rt o

(9)

SiC

c) .5

SiC

From the results obtained for the phase function 4 ~(q) we

derive a value ( = 0.36. This value is in good agreement
with the ab initio pseudopotential calculations and ap-
proaches the average value of the experimental data for
diamond f = 0.125 (Ref. 49) and silicon ( = 0.540.so

It is however smaller than the internal strain parame-
ter derived from full-potential linear muffin-tin orbital
(LMTO) calculations.

D. Relations to elastic constants

FIG. 6. Phase function 4~ (q) (upper part) and amplitudes

c~(q) (lower part) of carbon displacements [cf. Eqs. (6)] for
3C-SiC along high-symmetry directions 1 L and I'X in the
Brillouin zone. Solid line, BCM; dotted line, ab initio calcu-
lations (Ref. 9).

Prom the dispersion curves of the acoustic phonons
given in Figs. 3 and 4 the sound velocities for a prop-
agation in the different space directions can be derived.
These sound velocities are directly related to the inde-

pendent elastic constants of the crystals. In the cubic
case we have Cq&, Cq2, and C44, whereas c~q, cq3, eq3,
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TABLE IV. Sound velocities for difFerent propagation
(first) and polarization (second) directions (in km/s).

Polytype

2H
4H
6H
3C

Propagation aud
xy mz xx

6.87 6.66 12.32
6.94 6.65 12.42
6.97 6.62 12.45
8.21 5.64 12.81

polarization direction
zz xz (qussilong. )

13.27 12.18
13.41 12.36
13.29 12.43
13.29 12.70

c44, and c66 are the independent elements of the tensor
of elasticity moduli for hexagonal crystals.

The relation of these constants to the sound velocities
are given not only for zinc-blende but also for hexagonal
crystals in the Appendix of Ref. 52 ignoring the piezoelec-
tric effect. In the hexagonal materials the characteristic
Christoffel equations factorize, when the phonon propa-
gation vector lies in the zy plane, that is normal to the z
axis. The dispersion relation is independent of the prop-
agation direction in this plane. There is one pure shear
mode, propagating parallel to the z axis, polarized nor-
mal to the z axis (]] y axis), and related to css, another
pure shear mode, propagating parallel to the z axis, po-
larized parallel to the z axis, and related to c44, and a
pure longitudinal mode, propagating and polarized par-
allel to the z axis and related to cqq. For the phonon
propagation in the meridian plane containing the z axis
one has a pure longitudinal mode, propagating and po-
larized parallel to the z axis and related to c33 as well as
a quasilongitudinal one. We choose the mode with the
strongest longitudinal character and propagating within
the zz plane under an angle of 45' with the z axis. Its
sound velocity is related to the elastic moduli czar, c33,
c44, and cps, which allows the determination of cps. The
corresponding sound velocities derived from our BCM are
listed in Table IV. Apart from that for the zz acoustic
vibration in 4H they exhibit clear trends with respect to
the hexagonality. It is not astonishing that the changes
Rom 6H to 3C are larger than the variations within the
hexagonal polytypes. This is related to the fact that 3C
is not hexagonal in reality. Consequently the 3C modes
have another symxnetry. Therefore, in calculating the in-
dependent elastic stiffness constants Cqq, Cq2, and C44
we use the sound velocities along the [110] direction in
the cubic material, v~ = 12.82 km/s and vz ——8.17 and

5.56 km/s. The values in Table IV are in good agreement
with the estimated ones made by Feldman et al. ~s (mea-
surements by Arlt and Schodders3 for a Lely-grown sin-

gle 6H-SiC crystal and Schreiber and Sogas4 for porous
samples) of 7.53 (7.25, 7.69) km/s or 12.81 (13.26, 12.21)
km/s for sound velocities in the planar and axial direc-
tions for the SiC polytypes. However, there seems to be
an underestimation of the velocities of the TA-like modes
by our theory.

The elastic moduli obtained for 3C-, 6H, 4H , and-2H-
SiC are listed in Table IV. In addition to the independent
constants cqq, css, c44, css, and cps the elastic modulus
c&2 is estimated from the relation cM ——2(cqq —cq2).
However, the accuracy of this constant is low since it is re-
markably in8uenced by the errors of both cqq and 2cM in
forming the difference (cqq —2cM). The moduli for 3C are
recalculated from cqq, cqz, and c44 as described below. In
principle we observe clear trends of the independent mod-
uli versus hexagonality within the hexagonal polytypes.
cqq, cM, and cps increase with decreasing hexagonality h,
and c33 remains practically constant, whereas c44 slightly
decreases with h. The values of the elastic constants for
6H and 4H are almost the same. This is in agreement
with the findings of Helbig, Karmann, and Stein that
the two structures are very close to each other.

A complete and critical overview concerning the ex-
perimental studies of elastic constant of SiC is given
in Ref. 51. In Table V we compare our results with
more complete sets of elastic constants for hexagonal
systems. ' 3' Arlt and Schodder measured the com-
plete set of elastic constants except for c&3 of Lely-grown
single crystal 6H-SiC by two different electroacoustical
methods. Theoretical data are available &om semiem-
pirical calculations of Tolpygo and LMTO studies of
Lambrecht et a/. Whereas the results of Lambrecht et
al. are based on a first-principle method, Tolpygo cal-
culated the elastic constants for the 3C phase on the basis
of a force model with parameters interpolated between
those of silicon and diamond. The 3C results have been
transformed to the hexagonal case in Ref. 51. The overall
agreement of our results for four different polytypes and
c;; (i=1, 43,6) with the experimental data for 6H as well
as the values obtained theoretically is satisfying. The
agreement with the LMTO calculation is poorer. This
theory gives rise to too large moduli. On the other hand,
the BCM overestimates the stiffness constants c~3 and
c&2 remarkably. This results &om the limited accuracy of

TABLE V. Elastic constants of hexagonal SiC polytypes (in Mbar) derived from sound velocities.
For comparison values measured for 6H (Ref. 53) as well as calculated semiempirically (Ref. 56) or
by LMTO (Ref. 51) for 3C and recalculated for hexagonal structures are also given.

Polytype
2H
4H
6H
3C

Ref. 53
Ref. 56
Ref. 51

C11

4.87
4.95
4.98
5.07

5.02+0.20
4.79
5.60

C33

5.65
5.77
5.67
5.67

5.65+0.11
5.21
6.07

c44
1.42
1.42
1.41
1.38

1.69+0.03
1.48
1.94

c66
1.52
1.54
1.56
1.55

2.03+0.06
1.91
2.40

C13

1.39
1.59
1.76
1.38

0.56
0.33

C12

1.83
1.87
1.86
1.97

0.95+0.29
0.98
0.79



13 410 M. HOFMANN, A. ZY%'IETZ, K. KARCH, AND F. BECHSTEDT

Modulus

C44

BCM
4.13
2.14
2.15

L
4.20
1.26
2.87

K
3.90
1.36
2.53

T
3.52
1.40
2.33

LJ
3.71
1.69
1.76

Expt.
3.90
1.42
2.56

TABLE VI. Elastic moduli Cqq, Cqq, and C44 for cubic
3C-SiC (in Mbar) from present BCM, ab initio calculations
of Lambrecht et al. (L) (Ref. 51) and Karch et aL (K), (Ref.
9) and force co-nstant models of Tolpygo (T) (Ref. 56) and Lee
and Joannopoulos (L3) (Ref. 15). The experimental data are
recalculated from sound velocities of Feldmann et aL (Ref. 18)
by Lambrecht et aL (Ref. 51).

For the cubic case the elastic constants calculated
within the BCM are listed in Table VI. They are com-
pared with other theoretical data ' ' ' and moduli de-
rived from sound velocities, which are extracted from Ra-
man data for various polytypes according to Ref. 51.
We find a reasonable agreement with the experimental
data and first principles results. This holds especially for
Cii. However, the modulus Ciz is overestimated. This ls
the main reason for the overestimation of the bulk mod-
ulus.

IV. SUMMARY

their determination &om sound relocities and the formu-
las &om Ref. 52. As a consequence also the bulk moduli
8 are overestimated in comparison with the experimen-
tal value 8=2.25 Mbar, s which is rather insensitive to
the polytype. ss

In the case of the zinc-blende 3C-SiC more data, at
least computed ones, exist. However, the elastic coeffi-
cients Cii, C12, and C44 of the cubic system cannot be
simply compared with those c;~ (i,j = 1, ..., 6) of the
hexagonal structures since the Cartesian coordinate sys-
tems are difFerent. For instance, the z axis of the hexago-
nal lattice, which is parallel to the direction [0001), is the
same as the [ill] direction of cubic SiC. That means,
the two difFerent types of elastic stifFness constants for
3C-SiC represented in the normal cubic Bravais lattice
or the hexagonal system as in Table V can be related
to each other by transformation matrices between the
two Cartesian systems. Taking into account the inde-
pendence of the volume compressibility, the linear com-
pressibility, and the Young's modulus from the choice of
the coordinate system as well as equality of sound veloc-
ities in the same direction one derives

cii + ci2 = 2(Cii + 2C12 + C44)/3,
cl1 c12 3(C11 C12)C44/(Cl 1 C12 + C44)

Cis = (Cii + 2C12 —2C44)/3,

Css = (Cii + 2Ci2+ 4C44)/3,
c44 = (Cll C12 + C44)/3'

In the present paper we have applied the adiabatic
bond-charge model to difFerent SiC polytypes: the cubic
3C and the hexagonal 6H, 4H, and 2H. The short-range
elastic forces are described by two-body and three-body
interactions between silicon ious, carbon ions, and bond
charges. The long-range Coulomb forces are taken into
account via an Ewald technique. The anisotropy of the
system is described by difFering forces and bond charges,
according to the orientation of the underlying bonds with
respect to the c axis. The parameters of the model are
fit to &equencies derived &om Raman and luminescence
measurements. They show clear trends with the hexago-
nality of the polytypes.

The resulting phonon band structures along high

symmetry lines in the fcc and hexagonal Brillouin zone
represent the experimental well-known features of the
dispersion relations. This holds especially for the fold-

ing of the bands in [111]direction, when the number of
Si-C bilayers is increased, the angular dispersion and the
&equency splittings in the zone center. The anisotropy of
the system is correctly described. It is essentially traced
back to the macroscopy electric field related to the vibrat-
ing ions and bond charges. As a particularly sensitive test
we show in the 3C case that the model calculations yields
the same eigenvectors as ab initio calculations. From the
resulting sound velocities we also derive the independent
elastic constants of the different polytypes. They are in
a reasonable agreement with those &om measurements
and other calculations. Discrepancies result &om the fact
that the sound velocities are not used as fit parameters
in our model calculations.

Such transformation formulas are used for rewriting the
3C results presented in Table V. They are i.n agreement
with the different de6nitions of the bulk modulus B =
(C-+2C-)/3 d 8= [".(" +".) -2(")']/( +
C12 + 2C33 —4C13) ~
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