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Lattice dynamics and dielectric properties of incipient ferroelectric Ti02 rutile
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The phonon frequencies at the I' point, the Born efFective charges, and the dielectric permittivity
tensors of TiO& rutile are calculated using the variational density-functional perturbation theory.
The calculated phonon frequencies agree with experiment within a few percent. We analyze the
corresponding theoretical eigenvectors as well as the interaction of the vibration modes with the
electric Beld. The Born efFective charges of Ti02 rutile are much larger than the nominal charges
of Ti + and 0 ions, as well as those of Si02 stishovite despite the structural similarity. A giant
LO-TO splitting is observed for E„and Aq modes. The 0 ions in rutile as well as in stishovite
are found to have a counterintuitive reversed electronic polarization near the nuclei. The calculated
large, anisotropic static dielectric permittivity tensors as well as electronic dielectric permittivity
tensors also compare favorably with experiments.

I. INTRODUCTION

Ti02 has several polymorphs, of which naturally oc-
curring anatase, brookite, and rutile have long been
known. Rutile, Ti02 crystallized in a tetragonal struc-
ture that more than 20 other compounds share, is of
fundamental and practical interest. Rutile is a wide
band-gap semiconductor and is used as a catalyst for
chemical reactions. It has some unusual properties.
The &equency of the soft long-wavelength transverse-
optic (TO) A2„mode decreases with decreasing tem-
perature, but never becomes completely soR even at 0
K. Therefore, rutile is classified as an incipient ferro-
electric. The A2„mode consists of the displacements of
the positively charged Ti ions against negatively charged
0 ions, along the tetragonal axis. Associated with the
soft mode, the static dielectric permittivity tensors have
very large values and strong &equency dependencies. Al-
though stishovite, a high-pressure polymorph of Si02,
has an identical structure, it does not show the unusual
behaviors of rutile. These distinct behaviors can be at-
tributed to the fact that Ti in rutile is a transition-metal
element with 3d electrons, while Si02 has only 8 and p
electrons.

The lattice dynamics of solids are intimately related to
the thermodynamic properties, the elastic behaviors, and
the optical properties. To understand the lattice dynam-
ics of ionic crystals, one should consider the long-range
Coulomb interactions between ions, which give rise to the
macroscopic electric Gelds, absent in covalently bonded
crystals. There have been theoretical efForts to under-
stand the lattice-dynamical and dielectric properties of
rutile using a rigid-ion model and a shell model. ' How-
ever, such empirical models show a lack of accuracy and
do not provide insight into the relations between the elec-

tronic structure and the lattice dynamics.
In this work, we perform a full analysis of the phonon

frequencies at the F point of the Brillouin zone (BZ),
the static and electronic dielectric permittivity tensors,
and the Born efFective charges of constituent atoms in ru-
tile, &om first principles, using a variational approach to
density-functional perturbation theory. We also compare
the properties of rutile with those of Si02 stishovite.
The phonon &equencies at the I' point are accurately
calculated, including the soft A2„mode. The Born ef-
fective charges of Ti02 rutile are found to be much
larger than the transferred charges in a pure ionic pic-
ture, which are +4 for Ti and —2 for 0 ions. The cal-
culated high-frequency (electronic) dielectric permittiv-
ity tensors show reasonable agreement with experiment,
as well as the calculated low-&equency (static) dielectric
permittivity tensors. We also find the 0 ions in rutile
as well as in stishovite have a counterintuitive reversed
electric polarization near the nuclei.

This paper is organized as follows. In Sec. II, we brieBy
mention our calculational methods. We show our calcu-
lated structural parameters, the Born efFective charges,
the phonon &equencies, the atomic displacement pat-
terns, the oscillator strengths, the change of the elec-
tronic density in an electric field, and the dielectric per-
mittivity tensors of Ti02 in Sec. III. Then, the summary
and conclusion are presented in Sec. IV.

II. CALCULATIONAL METHODS

The total energies of the nuit cell and the second-
order derivatives of the total energies are calculated
with the ground-state density-functional theory ' and a
variational approach to density-functional perturbation
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theory, ' respectively. The variational expressions for
the total energies and the second-order derivatives are
eKciently evaluated using the conjugate-gradient mini-
mization method. ' Linear response functions such as
the phonon &equencies, the dielectric permittivity ten-

sors, the Born effective charges are calculated as second-
derivatives of the total energy with respect to atomic
displacements or external electrical field. Specifically, the
phonon frequencies at wave vector q are the eigenvalues

of the dynamical matrix D, (q), the second derivative
of the total energy with respect to the atomic displace-
ments of atom ~ along the i direction and atom o along
the j direction, repeated in each cell with a phase factor
e'+', where R is the position of the cell. D, , (q) is
separated into the Ewald part and the electronic part, of
which the expression for the Ewald part can be found in
Ref. 13, and the electronic part is calculated &om

-'-, (q) = ). i (n i„,l&i,+,,i,+, —& i, l& i„,)+ (~ 'i„,lv.;t,i,+,,i, lu i, )

+ (~ i, lv..', ,i„i,+,l~ 'i„,)+(~ i, lv.;t,'~, i, l~ i, )

1 d'(ne„, )
2 GA

(n~'(r))'n~'(r)dr + 2+00 ) (n '(G))'n~'(G)

G
q+G2

where the integration and the inner products are over the unit cell volume 00, m and k run over the occupied states
and the BZ, respectively, and wo k is the product of the spin degeneracy by the probability of occupancy of state
m, k. e„, is the exchange-correlation energy per particle in the local-density approximation (LDA). The definitions of
other quantities are as follows: u k is the periodic part of the corresponding Bloch wave function and u 'k is thenak, g
periodic part of the derivative of the ground-state wave function u k with respect to atomic displacements of atom ~

along the i direction modulated by the cell phase factor e'&'; Hk k, and v,„tk k are defined by Fourier transformation

of unperturbed Hamiltonian H( ) and external potential v,„&, v,„'~ k k, and v,„*,'k k, are the 6rst and second derivative
t t

of v,„t, i, i, with respect to atomic displacements of atom 7' along the i direction (and atom 0' along the j direction);
n ' (r) is the periodic part of the derivative of ground-state electronic density with respect to atomic displacements of
atom t along the i direction modulated by the cell phase factor e' i'R. u '& is obtained by minimizing 8, , (q) with
constraints:

(u '„ ~u~ I„)= 0 .

The electronic dielectric permittivity tensor e;~ is obtained &om

4'
e;~ = b;~ — 2E,'. ,

0

where

&;, =).»~-» ((» «I&»» —»»~l» '») —*(»»I»»)+*(» '»~l»»))
m, ,k

d'(ne„. )
2 dA

(E,()j* z, ()d+2 fl )-( ( )j '( )
va=n&o& (r) ~go

u k and u"'k are the derivatives of the ground-state wave function u k with respect to an electric field E; or wave

vector A:;, respectively. u 'k can be obtained by minimizing E,,- with the constraints that

(~ 'pl~ g) =o(o)

and u 'k are determined by non-self-consistent minimization of the following expression:

&»c =(u i, lIIi„i. —~ i, l~ i,)+(~ i, l&i„i, —v..~,i„i,l" i,)+(~ ~l&i„i, —v..~,i, ,i, l" i,)
(0) (0) a,- a, I; a, (0) (o) a; I,

with the constraints that

(~ 'i, l& ~) = o(o)
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where T&'j, and v,„'~ & & are the first derivative of kinetic energy operator and external potential with respect to the
wave vector k;.

The Born effective charge tensors Z, of an atom 7 are calculated &om the mixed second derivatives of the total
energies with respect to the electric field along the i direction and the atoxnic displacement along the j direction, with

Z,'-,. = Z b;, +LZ;, (8)

where Z is the ionic charge of atom 7. and AZ, ~ is the contribution of electronic screening, which is computed by
evaluating the following expression:

»', ,.=2 ).~~-~l(~ ko~l+k, k ~ kI~ k) (~ kDI~ h)+(~, ~l~. '., ~,~l~ ~))
-m, k

1 d2(ne„, )'2 . d-'

where 6,„'~ & & is equal to v,„'t & & minus the contribution
&om G =0.

Other information on the method and notation can be
found in Refs. 9, 10 and 14—16.

The plane-wave basis sets are used to take advan-
tage of the periodicity of the crystal structure. The
method adopts the pseudopotential approximation
to describe the interaction between valence electrons and
ionic core. The ab initio pseudopotentials for Ti and
0 atoms are extended norm-conserving and the 0 pseu-
dopotential is chexnical-hardness conserving. Although
the Ti pseudopotential has not been built so as to fulfill
the condition of the chemical-hardness conservation, 3s
and 3p orbitals are included as semi-core states and pro-
vide excellent transferability. Convergence with respect
to the plane-wave basis set is achieved with a plane-wave
expansion up to the kinetic energy of 45 Ha. A good
convergence with respect to the sampling of the Brillouin
zone is more difficult to reach. We have used a (4,4,6)
Monkhorst-Pack mesh grid for this sampling, estimated
to ensure 0.1'%%uo relative accuracy on the structural param-
eters, but could allow a few percent errors on response
functions.

These methods, with similar parameters, were ap-
plied to various systexns such as Si02 a-quartz, Si02,
stishovite BaTi03) and for the calculation of the ef-
fective charges in Ti02 rutile.

the internal parameter u are obtained &om the xninimum-

energy configuration. In Table I, we compare our results
to experiments and other density-functional-theoretical
values. Our calculated structural parameters show good
agreement with the experiment and will be used for the
following investigations of the response functions.

B. The Born effective charges

The physical meaning of the Born effective charges
Z; is the force in the i direction on the atom 7 due
to an homogeneous electric field along the j direction, or
equivalently, the induced polarization of the solid along
the i direction by a unit displacement in the j direction
of the atomic sublattice. The effective charges are scalar
quantities in a rigid-ion model, but they, in general, have
tensorial forms.

Due to the symmetry of the rutile structure, the Born
effective charge tensors of the Ti atoms or 0 atoms in
rutile~s have only three independent components: Z'

Z'„, respectively, and other components are zero. In
rutile, Z, . T;——6.338, 0.995, and 7.541 and Z, . o———3.169,
—1.809, and —3.771 for ij=xz, zy, and zz, respectively.
Stishovite are found to have Z,. s;

——3.803, 0.343, and

III. RESULTS

A. The structure of rutile

First, we calculate the ground-state structural param-
eters of rutile. Rutile has a tetragonal unit cell with the
symmetry of D&4 in which Ti atoms are at (0,0,0) and

(2,2, 2) and 0 atoms are at (u, u, O), (1 —u, 1 —u, O),

(2 —u, 2 +u, 2), and ( 2 +u, 2
—u, 2), as shown in Fig. 1.

Therefore, the lattice constants a and c and the internal
parameter u completely deterxnine the structural degrees
of &eedom. We calculate the total energies of the»~it
cell at difFerent lattice constants with optixnal internal
parameters. The ground-state lattice constants a and c,

FIG. 1. Unit cell of rutile. Dark and white circles denote Ti
and 0 atoms, respectively. Ti atom at the center of the unit
ceQ with six 0 atoms shown make up a TiOqy3 octahedron.
Stishovite has the identical structure with Si atoms at the
positions of Ti atoms.
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TABLE I. Structural parameters of rutile. Lattice constants a and c are in A and the unit-cell
volume uo is in A .

This work
Experiment (Ref. 28)
Theory (Ref. 29)
Theory (Ref. 30)
Theory (Ref. 31)

4.536
4.5936
4.567
4.653
4.584

2.915
2.9587

2.965
2.961

'Uo

59.98
62.434
61.161
64.84
62.22

c/a
0.643
0.6441
0.642
0.637
0.646

0.304
0.3048
0.305
0.305
0.304

4.055 and Z,*. o———1.902, —0.557, and —2.027 in the cor-

responding order.
When we take a coordinate system whose axes are

along the [110],[110],and [001] directions, the Born effec-
tive charge tensors are diagonalized, with principal values

. The principal values of the Born effective charges of
rutile ((,'&.,

——7.335, 5.343, and 7.541, and (,'o ———4.978,
—1.360, and —3.771 for i=1, 2, and 3, respectively) are
much larger than those of stishovite ((;s,.——4.146, 3.460,
and 4.055, and (;&———2.459, —1.345, and —2.027 for i=1,
2, and 3, respectively). In stishovite, the effective charges
are close to the charges in a pure ionic-bond picture, i.e. ,
Si + and 0, whereas, in rutile, the effective charges
reach up to +7.541 for Ti ions and —4.978 for 0 ions.

Such anomalous Born effective charges were previously
observed in a variety of solids and explained in terms
of a bond-orbital model or by a simple tight-binding
model. ' ' In a bond-orbital model, the anomalous
effective charges can be understood by the dynamical
transfer of the charge due to the modi6cation of the bond
hybridization during the atomic displacement. That is,
when a positive atom is displaced closer to a negative
atom, the change in the bond hybridization causes the

transfer of electrons &om the negative to the positive
atoms. When a positive atom moves farther &om a neg-
ative atom, electrons transfer &om the positive to the
negative atoms. Therefore, the polarization due to the
atomic displacement is dynamically augmented. These
effects appear in both rutile and stishovite, as indicated
by the differences of the Born effective charges &om the
charges in a pure ionic-bond picture. The principal value

(~ is larger than (2, because a unit atomic displacement
along the bond direction causes more electron transfer
than the perpendicular direction. In the simple tight-
binding model, the electron transfer is larger in a mixed
ionic-covalent bond than a pure covalent or ionic limit.

C. The phonon frequencies at the F point

Next, we calculate the phonon frequencies of rutile at
the I' point. The calculated and experimental phonon
&equencies are shown in Table II. Prom the compari-
son between this work and the known experimental data,
one obtains a rms of absolute deviations of 18.7 cm
and a rms of relative deviations of 6.0%%uo. The lowest-

TABLE II. The phonon frequencies of rutile and stishovite at the I' point in cm '. The Brst
column of experimental data for rutile are inelastic neutron-scattering measurements from Ref. 2

and the second are Raman and infrared measurements from Ref. 32 and 33, respectively. The
theoretical values for stishovite are from Ref. 6 and the experimental data are from Ref. 34 for the
Raman modes and Ref. 35 for the infrared modes.

Mode
Raman
Bgg
Eg
Agg

B2g
Infrared
E„(TO)
E (LO)
E„(TO)
E„(LO)
E (TO)
E„(LO)
A2„(TO)
Ag„(LO)
Silent
A2g
Blu
BI„

This vrork

125.2
471.5
622.5
828.0

164.8
351.5
391.3
441.7
492.8
808.4
176.1
769.3

415.5
116.7
407.5

Rutile
Experiment

142
445
610
825

189
375

Not found
429
494
842
173

Not found

Not found
113
406

143
447
612
827

183
373
388
458
500
807
167
812

Silent
Silent
Silent

214.0
585.4
754.9
954.1

234
586
751
964

469.0
568.9
595.1
705.0
821.6

1043.4
648.8

1048.5

470
565
580
700
820

1020
650
950

599.1
383.6
761.4

Silent
Silent
Silent

Stishovite
Theory Experiment
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&equency modes contribute the most to the rms error.
When the phonon &equencies of rutile and stishovite
are compared, the two spectra have similar structure,
although a few differences are noticeable: First, the &e-
quencies in stishovite are in general larger than in ru-
tile, due to the lighter Si atom, and secondly, the lower-
&equency A2„, E„, and B~„modes are much softer in
rutile than in stishovite. For example, the TO A2„mode
has wavelength 176.1 cm ~ in rutile and 648.8 cm ~ in
stishovite. The latter mode is the ferroelectric mode,
along the c direction, as we shall see later.

Let us now mention a technical detail, related to the
acoustic sum rule and the invariance under translations.
Due to the finiteness of our real-space grid (56 x 56 x 36)
for evaluating the exchange-correlation energy, it appears
that the translational symmetry of the crystal is suK-
ciently broken to render the low-&equency modes A2„
(176.1 cm ~), Bqs (125.2 cm ~), and E„(164.8 and
351.5 cm ) of rutile unstable when the phonon &equen-
cies are calculated &om the direct diagonalization of the
dynamical matrices. This spurious effect can be easily
eliminated by projecting out the infinitesimal translation
modes oK the dynamical matrix, in order to make the
acoustic sum rule exactly satisfied. In such a way, we
obtain the phonon &equencies listed in Table II. For
stishovite, the finiteness of the grid does not have such a
drastic eKect.

D. Analysis of the eigenvectors

to the long-range Coulomb interaction. Therefore, the
eigenvectors of the TO modes do not necessarily corre-
spond to the ones of the LO modes. We will see that
the eigenvectors of the three doubly degenerate E„TO
modes are not directly related to those of the three E„
LO modes, whereas the eigenvector of the A2„TO mode
is identical to that of the A2„LO mode due to the sym-
metry requirements.

In order to quantify the mixing of modes brought by
the Coulomb interaction, we build the overlap matrix
(g ~M~g ) shown in Table III, where ~gT L

) are the
eigenvectors of the TO or I 0 mode and M = M $
where M is the mass of the atom of species 7. The over-
lap matrix diagonal elements would be 1 if the eigenvec-
tors of the TO and LO mode were identical. In both
rutile and stishovite, the eigenvector of each TO xaode
overlaps the eigenvectors of all the LO modes. The
overlap matrix element between the lowest &equency E„
TO mode and the lowest and medium &equency E„LO
modes are large, 0.600 and 0.750 for rutile and 0.564 and
0.819 for stishovite, respectively. The highest-&equency
E„TO mode overlaps significantly with the lowest- and
highest-&equency E„LO modes with the overlap ma-
trix elements —0.710 and 0.617 for rutile and —0.562 and
0.777 for stishovite, respectively. Therefore, it is difBcult
to describe the eigenvector of an LO mode in terms of a
single eigenvector of a TO mode and small perturbations
&om other TO modes. This analysis will be refined by
the examination of the oscillator strengths in the next
subsection.

There are 15 optical phonon modes at I' with symme-
try representations Aqs, A2s, Bqs, B2s, and Es (Raman-
active modes), A2„and E„(in&ared-active modes), and
A2s and Bq„(optically inactive modes, eventually ob-
served by inelastic neutron-scattering experiments). The
E modes are doubly degenerate. The A~„mode and
the three doubly degenerate E„modes exhibit LO-TO
splittings. The eigenmodes can also be classified into
modes with atomic motion only along the z direction

(Es, Bz„, and A2„) and modes with atomic motion only
perpendicular to the z direction (all others). The dis-

placement eigenvectors of all the modes except the E„
ones are directly determined from symmetry considera-
tion and the knowledge of the atomic masses. In Fig. 2,
we show the pattern of the atomic displacernents for the
phonon modes at the I' point.

The dynamical matrices of the ionic crystals at the
I' point are diHerent depending on the direction along
which the wave vector is approaching the I' point, due

E. The oscillator strengths

Let us define the mode oscillator strength vector fwith
components f; = g . Z; gTo for i =1, 2, and 3. This
vector could be used to pr'edict the LO-TO splitting if
the eigenvectors of TO modes were identical to those of
LO modes, by the following formula:

4~ (Z;f*~')'
4PJ Q 4PTQ

' as q M 0~ Z.;, 9' ~'& g~
(1O)

where e;~ is the calculated electronic dielectric permit-
tivity tensor and 0 is the volume of the unit cell. Note
that the oscillator strength vector is zero for the phonon
modes, which do not exhibit the LO-TO splittings.

In rutile, the oscillator strength vectors for the three
E„modes belong to the x-y plane, while for the A2„
mode, the vector is along the z axis. Due to the double

TABLE III. The overlap matrix element between the eigenvectors of the TO and LO modes in
rutile and stishovite. The E„modes are ordered in the increasing frequency &om the top to the
bottom and from the left to the right.

E„(TO)
E„(TO)
E„(TO)

E (LO)
0.600

—0.369
—0.710

Rutile
E (LO)

0.750
0.566
0.341

E (LO)
0.276

—0.737
0.617

E„(LO)
0.564

—0.605
—0.562

Stishovite
E (LO)

0.819
0.500
0.283

E (LO)
0.109

—0.620
0.777
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FIG. 2. The atomic displacement pattern for each mode. (a) 116.7-cm Bq„m de, (ob) 176.l-cm A2„mode, (c) 407.5-cm
Bq„dern, o(d) one of the doubly degenerate 471.5-cm Es modes, (e) 125.2-cm Bqs mode, (f) 415.5-cm A2s mode, (g)
622.5-cm Azs mode, (h) 828.0-cm Bzs mode, (i) one of the doubly degenerate 164.8-cm E„modes, (j) one of the doubly
degenerate 391.3-cm E modes, and (k) one of the doubly degenerate 492.8-cm E„modes.
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FIG. 2. (Continued).

degeneracy of E„modes, their oscillator strength vector
can be rotated in the full z-y plane by unitary transfor-
mations, hence we only have to analyze its norm. For
the E„modes with frequency 164.8 cm, 391.3 cm
and 492.8 cm ~, the oscillator strength norm is 0.0434,
0.0166, and 0.0247 in atomic units, respectively. For
the A2„mode, the norm is 0.0570 in atomic units. Us-
ing Eq. (10) for predicting the LO frequencies without
mode mixing, we obtain 632.6, 456.0, and 603.0 cm
respectively. Note that the frequency derived from the
smallest-frequency mode is now the largest. Thus, the
analysis of the oscillator strengths clarifies the relations
between the eigenvectors of the TO and LO modes, in
which the lowest-frequency TO E„mode of rutile cou-
ples strongly with the electric field and generates a giant
LO-TO splitting. The same phenomenon is also present
for the A2„mode also strongly couples with the electric
field.

For stishovite, the same analysis gives the following
values: for the E„modes with frequency 469.0 cm
595.1 cm i, and 821.6 cm i, the oscillator strength norm
is 0.0262, 0.0112, and 0.0172 in the atomic unit, respec-
tively, and the LO frequencies without mode-mixing are
793.1, 654.5, and 922.7 cm, respectively. Although less
strong than in the case of rutile, the coupling with the
electric field is large enough to switch the frequencies of
the two lowest modes, already close to each other. For
the A2„mode, the norm is 0.0347 in atomic units.

F. The charge-density response to an electric Seld

Our calculations give us as a byproduct the changes of
the electronic density due to the different perturbations.
In particular, the effect of an electric field applied upon
both rutile and stishovite is shown in Fig. 3. One clearly
sees the differences due to the replacement of Ti atoms by
Si atoms. There is, moreover, an interesting phenomenon
common to both materials. Since the electrons are nega-

tively charged, they are expected to move in a direction
opposite to the electric field. However, in the vicinity of
the oxygen ions, we can see that the polarization is re-

versed contrary to the intuition. This phenomenon has
also been observed in other oxyde compounds such as o.-

quartz and BaTi03. It will be analyzed in more detail
for rutile, stishovite, and other materials in an upcoming
publication.

G. The dielectric permittivity tensors

Finally, we also present the electronic and static dielec-
tric permittivity tensors. The electronic dielectric per-
mittivity tensors are 7.535 along a axis and 8.665 along c
axis. The corresponding experimental values2 are 6.843
and 8.427, respectively. The discrepancies can be at-
tributed to the well-known LDA underestimation of band
gaps as well as the fact that our calculation represents 0
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K, while the experiment was done at room temperature.
Similar sizes of errors were found in LDA calculations on
dielectric permit tivity of Si, o.-quartz, and stishovite.
The calculated electronic dielectric tensors of stishovite
are 3.31 and 3.50 along the a and c axis, respectively.
Therefore, the ionic polarizabilities in rutile are much
larger than those in stishovite.

In order to correct the LDA band gap in calculating the
dielectric permittivity tensors, we take advantage of the
"scissor correction" technique with a scissor parameter
1.13 eV, the difference from the experimental band gap
3.0 eV (Ref. 26) and our calculated LDA band gap 1.87
eV. The electronic dielectric tensors with the scissor cor-
rection are found to be 6.366 and 7.290 along the a and
c axis, respectively. The scissor technique brings slightly
better agreement, for the in-plane dielectric permittivity,
but worsens the value along the tetragonal axis. In any
case, the anisotropy is not well described.

Without the local-field corrections (and without the
scissor correction), the calculated electronic dielectric
permittivity tensors would be 7.813 and 8.889 along the
a and c axis, respectively. Thus, the local-Geld eKects
contribute about 4 j~ in rutile. The local-field effects of a
similar size are observed in stishovite.

The static dielectric permittivity tensors using the dy-
namical matrix and e8'ective charges presented above are
calculated to be 117.5 along the a axis and 165.4 along
the c axis. These are on the same order of magnitude as
the experimentally observed extraordinary large static di-
electric permittivity tensors. However, there are discrep-
ancies among the experimental values of the large static
dielectric permittivity tensors, i.e., Samara and Peercy
report 114.9 along the a axis and 251.0 along the c axis
at 4 K, whereas, Parker reports 86 and 170 along the
a and c axis, respectively. Stishovite has the calculated
static, dielectric permittivity tensors 11.01 along a axis
and 9.14 along t."axis. The static dielectric permittivity
tensors and the frequency of the A2„mode (176.1 cm )
and one of the TO E„mdoes (164.8 cm i) are related
and the softness of these modes in rutile contributes to
the exceptional magnitude of the static dielectric permit-
tivity tensor.

(d)
IV. CONCLUSION

FIG. 3. Changes of the electronic density in Ti02 and Si02
due to an applied electric 6eld, in the linear approximation.
Dark and open circles denote Ti (Si) and 0 atoins, respec-
tively. The cuts are done through a (110) plane. (a) Ti02
with a field in the [110]direction, and (b) Ti02 with a field in
the [001] direction, (c) Si02 with a field in the [110]direction,
and (d) SiOq with a field in the [001] direction. The solid
isodensity curves correspond to an increase of the electronic
density and the dashed isodensity curves to a decrease. The
isodensity curves describe changes from —9 electrons/A. to
9 electrons/A, by steps of two electrons/A, for an electric
field strength of 10 V/m.

We have investigated the lattice dynamics and the di-
electric properties of Ti02 rutile and made comparisons
with Si02 stishovite. The phonon &equencies at the I'
point, the Born effective charges, the static and electronic
dielectric permittivity tensors of rutile are calculated us-

ing the variational density-functional perturbation the-
ory. The A~„mode in rutile has much lower frequency
than that in stishovite. The Born effective charges of
rutile are anomalously large and explained in terms of
the dynamic electron transfers during atomic displace-
ments. The dynamic electron transfers also occurs in
stishovite, although the eH'ects are smaller. We have ana-
lyzed in detail the displacement patterns of the diferent
phonon modes at I', and have characterized their cou-
plings to the electric Geld by means of the mode oscil-
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lator strength vectors. We obtain an exceptionally high
static dielectric permittivity tensors of rutile within the
density-functional theory. The electronic dielectric per-
mittivity tensors of rutile are calculated with an error
typical of the LDA, when compared with experiment.
Surprisingly, the scissor's correction does not lead to bet-
ter agreement with experiment. Therefore, one could
place some doubts about the experimental values. These
facts emphasize the importance of the mixed covalent-
ionic s-d bonding in rutile, related to the large polariz-
abilities due to the soft A2„and E„modes, not found in
s-p bonded stishovite.
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