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The concept of separation of diffusional and drift flows, i.e., the postulate that the total mass flow is a
sum of diffusion flux and translation only, is applied for the general case of diffusional transport in an r-

component compound (process defined as interdiffusion in a one-dimensional mixture). The equations of
local mass conservation (continuity equations), the appropriate expressions describing the cruxes (drift
flux and diffusional flux), and momentum conservation equation (equation of motion) allow a complete
quantitative description of diffusional transport process (in one-dimensional mixture showing constant
concentration) to be formulated. The equations describing the interdiffusion process (mixing) in the gen-
eral case where the components diffusivities vary with composition are derived. If certain regularity as-
sumptions and a quantitative condition (concerning the diffusion coefficients —providing a parabolic
type of the final equation) are fulfilled, then there exists the unique solution of the interdiffusion problem.
Good agreement between the numerical solution obtained with the use of Faedo-Galerkin method and
experimental data is shown. An effective algebraic criterion allows us to determine the parabolic type of
a particular problem. A condition for the "up-hill diffusion" in the three component mixture is given
and a universal example of such effect is demonstrated. The results extend the standard Darken ap-
proach. The phenomenology allows the quantitative data on the dynamics of the processes to be ob-
tained within an interdiffusion zone.

I. INTRODUCTION

The majority of phenomenological models of the
interdiffusion have neglected the effects due to variation
of medium properties with the composition, neglected the
effects of differences in the partial molar volumes of the
diffusing species, and all of them ignored the possible re-
actions within the diffusion zone. For example, the fun-
damental Darken-Wagner equations assume that the par-
tial molar volumes of the diffusing components are con-
stant' and equal. The conservation of momentum is
not included in all the models of interdiffusion. '" Thus,
under these simplified assumptions, all the models of
interdifFusion neglect the dynamics of the transport pro-
cess. '

This paper is an attempt to unify the interdiffusion
phenomenology, to bridge the gap between the phy-
sicochemical statements of the processes (which are in-
herently coupled with the reactive, mutual, and
interdiFusion processes, mass transport in general) and
their reduction to diffusion problems. The essence of this
attempt comprises (i) the postulate that the total mass
flow is a sum of diffusion and translation cruxes only, and
(ii) a rigorous use of the fundamental Darken concept,
the concept of the drift velocity (which is a common ve-

locity of all the mixture components, e.g., the common
translation velocity of the mixture components).

The medium expansion as a result of accumulation
within the transport zone are inherent processes of the

diffusional mass transport. The complete description of
the transport may not neglect the local momentum con-
servation. Consequently, the Navier-Stokes equations are
included in the presented analysis of the interdiffusion.

A more detailed analysis of the concepts of drift veloci-

ty, the choice of the proper reference frame for diffusion,
as well as the other consequences of the proposed formal-
ism have already been published. ' A general phenome-
nological treatment of the interdiffusion problem is given
below.

II. THEORY

It is essential to state the common aspects of the al-
ready mentioned fundamental models of diffusional mass
transport. '

(i) The seemingly attractive choice of internal reference
frame is useless in the direct description of transport pro-
cesses in the external reference frame (it is termed often
as an observer or laboratory frame of reference}. Howev-
er, because the laws of conservation does not depend on
the choice of the reference frame, this frame of reference
can be used as a source of information about the dynam-
ics of the system (enables mathematical disjoining of dy-
namics and difFusion).

(ii}The reactions within the diffusion zone e g , me—di-. .
um (compound) production, and/or local
accumulation —affect the local drift velocity of the medi-
um in any fixed external reference frame.
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(iii) A common, for all models, unified approach to the
relation between the mobility, diffusivity and activity I the
Darken's concept of the variable intrinsic diffusion
coeScient e,.;~ to avoid collisions with other mathemati-
cal symbols, the intrinsic diffusion coeScients will be
denoted as 8; ( =D, )].

When any compound (media) acts upon a field (e.g.,
chemical potential gradient), the different elements
respond in different ways. In case of a multicomponent
medium, the force arising from any concentration gra-
dient causes the atoms of the particular component to
move with a velocity (U;), which in general may differ
from velocity of the atoms of some or all the other com-
ponents. As the medium is common for all the transport-
ed species, all the fluxes are coupled and their local
changes can affect the common compound drift velocity
(U). The above phenomenon is called interdiffusion.

The i-component conservation in the external reference
frame (the only reference frame available in the experi-
mental conditions) is expressed by the equation-of-mass
conservation (local continuity equation of an ith com-
ponent}:

dlv Ji

mass transport,
local change of flux

in the fixed external

reference frame (ERF)
where the reaction term (local sink —source of mass) is
neglected (formation of the new compounds is not al-
lowed in the course of the analyzed interdiffusion pro-
cess).

The flux vector is a sum of the diffusional and drift
(translation) flows:

j,. =j,.(diff)+ j;(drift)
=PI "d I +PI.~ =PI "I .

Thus, upon substituting Eqs. (l} and (2), the equation
describing the mass conservation of the i-component in
the ERF takes the usual form of the continuity equation,
where the physical sense of all the terms is given below
the equation:

PI = —divj&, —v gradp; —p; divv = —div(p;, U; ),

accumulation, '

IRFAERF

drift flow, drift

ERF=IRF + translation + generation
ERFAIRF ERF=IRF

mass flow;

ERFAIRF

(3)

where IRF is the internal reference frame.
It should be pointed out that the drift generation term

can be the result of all local processes. Without external
force fields, only the accumulation may affect locally the
drift velocity, may generate the drift. The drift produc-
tion term as well as a local drift velocity are always corn-
mon for all the transported components.

In the general case of diffusion transport in the r-
component mixture, r-continuity equations for all
diffusing components must be ful611ed in any elementary
volume within an open system. The continuity equation,
Eq. {3),in the unidimensional mixture becomes

irreversible processes are taking place, all thermodynam-
ic functions of state exist for each element of the system.
These thermodynamic quantities for the nonequilibrium
system are the same functions of local state variables as
the corresponding equilibrium quantities. "

From this assumption it follows that (in the course of
the analyzed processes of interdiffusion at constant tem-
perature}, the total concentration of the mixture is con-
stant (as in the equilibrium state}. In other words it is as-
sumed, that the transport processes do not affect the local
medium properties. Namely, it is assumed the transport
processes do not affect the constant concentration of the
mixture.

The important assumption of the local equilibrium in a
mixture (nonexplicit assumption) is included in present
analysis. This assumption is also a foundation of the ma-
jority of phenomenological models of transport
(interdiffusion). ' Successful applications of these mod-
els in describing the mass transport justify the incorpora-
tion of this fundamental concept of nonequilibrium ther-
modynamics into the transport equations. The postulate
of local equilibrium is as follows: "For a system in which

A. Formulation of the free-boundary
value problem of interdifFusion

in the r-component one-dimensional mixture

When we are not interested in the temperature effects
(they can be neglected), the interdiffusion may be treated
as a mixing {the process has low free energy of the reac-
tion). In this section the interdiffusion in a r-component
mixture will be formulated:
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Data

M~ E ]0, ao [

Ac]0, m[

Molecular mass of the ith component of the mixture (i =1, . . . , r)

Right border of the segment occupied by the mixture
at the beginning of the process ( t =0)

(3) p, :[—A, A]~R+ Initial density distribution of the ith component in
the mixture (i =1, . . . , r). The initial global
concentration of the mixture

initial

c=g p,
i=1 i

initial

concentration

of the mixture

mol/vol

concentration

of the ith
component

(4) 8;: X [O,cMk]~]0, ~[
k=1

is constant and positive

Diffusion coefficient of ith component (i =1, . . . , r),

where X denotes the Cartesian product

(5) TE]0, 0O[ The examination time (time at which measurements
were carried out}

The viscosity coeScient of the mixture

Initial momentum of the mixture mass center

(9)

D:[0,T]~E

b:[0,T] XE~R

Time evolution of a force acting on the mixture boundary

Time evolution of a body force (e.g. , of gravity force).

The unknown:

A, i, A,2. [O,T]~E, A, i (A,~

p, : U [r j X [)i,,(i),A,,(t)]~E+
0&f&T

(i.e., domp;=[(t, x): O~t ~ T, A, ,(t)~x ~Az(t) j}

Where A,
&

and A, z are the mixture boundaries

Density of the ith component

U: U [r] X[A,,(r), A,,(r)]~E
0&t&T

Drift velocity

U jr j X [A, ,(r), A,,(r)]~E
0&f&T

Pressure of the mixture.

Physical laws:
(1) The local mass conservation law for the ith com-

ponent:

where v; is the ith component velocity, i.e.,

(4)

total fiux

of the ith
compon—

dN'usional Aux of the

ith component, where

di6'usivities may depend

on mixture composition

drift fiux

of the ith
compon-

ent
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(2}The postulate of constant concentration of the mix-

ture:

1
p)+ + p =c

M) M„

Note that the mixture density, p:= g,', p, , assumes

values in the interval

p +u =v — +pb,Bu Bu 8 u Bp

Bt Bx Q» Bx

where the velocity of the mixture is given by

(8)

[c min M;, c max M;];
1~i &r 1&i &r

(3) The local law of momentum conservation (equation
of motion):

more precisely it is a distribution of the velocities of the
local mass centers.

Initial conditions:

(2)

A, ,(0)= —A, A,z(0)=A

p;(O, x)=p, (x) (i =1, . . . , r)

Initial position of the mixture boundaries

Initial distribution of the mixture components

(3)
~&~~if p(t, x)x dx =P

A. &(tj t=0
Initial momentum of the mixture

Boundary conditions

(2)

A,,(t) =u(t, A,,(t) ) (j=1,2)

[p;(U; —u)](t, A, (t))=0 (1 i r, 1+j 2)

The velocities of the mixture boundaries

Total flux of the ith component in
the internal reference frame (i.e.,
mass flow through the mixture
boundaries does not occur, the
mixture is in a closed system}

(3) p(t, A, &(t) )—p(t, A2(t) )=D (t) The resultant (the net) thrust force
acting on the boundary of the
mixture

B. Examples of possible modifications

Instead of the data (6) and (8) [or the data (7) and (8)],
the initial condition (3) and the boundary condition (3),
one can give an evolution A, ,:[0,T]~R of the left bound-
ary of the mixture. As an example, for the r-component
alloy bar (mixture segment [A,,(t),A2(t}]),which is placed
vertically on a rigid immovable surface, one can put
A, ) —= —A.

If the evolution A, &.[O, T]~R is known, then one can
bypass the determining of the pressure p, and eliminate
the Navier-Stokes equation, data (6)—(9), initial condition
(3), and boundary condition (3).

Instead of the data (7}—(9), one can give an evolution
F:[0,T]~R of the total force acting on the mixture as a
whole. In such a case one can bypass the determining of
the pressure and eliminate the boundary condition (3).
Then, instead of the Navier-Stokes equation, it is postu-
lated that

f p(t, x)x dx =F(t) .
dt2

In particular, if I' =0, then the first law of dynamics re-
sults.

C. Plan of the procedure

First, we shall prove that A2(t)=A, ,(t)+2A for all
0~ t & T. Second, disregarding the data (6)-(9), the spa-
tially shifted density of the ith component will be found,

[ A, A] Hz~p; (t, A &(t)+z +A) E—R+,
for all components, 1 ~ i ~ r, and any fixed time t & [0,T].
Third, with the use of the data (6)—(9), the Navier-Stokes
equation, the initial condition (3) and the boundary con-
dition (3), we shall determine the evolution A, ,(t) of the
left boundary of the mixture. Finally, we shall determine
the local densities p„.. . ,p„ the drift velocity v, and the
pressure p.

D. Reformulating the problem

Upon using Eq. (4) and boundary conditions (1}and (2),
one can calculate
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A,&(t) 12(t) Qp,.—f p, (t.,x)dx =f (t,x)dx+A, ,(t)p, (t, A,,(t))—&((t)p;(t, ~)(t))
A, z(t) x, (t) (jg

=[p, (U;
—u)](t, A, ,(t))—[p;(U; —u)](t, kq(t))=0 .

It is the law of mass conservation of the ith component in
ihe mixture:

A, (t)
p;(t, x)dx =0 (i =1, . . . , r) . (9)

Upon adding Eqs. (9) for all the components, i =1, . . . , r,
one gets

A,2(r)

p tx x=0,
1

(10)

Az(t)=A, ,(t)+2A for all 0& t & T .

Accordingly, the first part of our plan is accomplished.
If x„x2.[O, T]~R are solutions of the difFerential

equation:

i.e., the total mass conservation law of the mixture.
Upon summing up the local mass conservation laws

[continuity equations, Eqs. (4}] for all the components,
one gets

a
()t Bx

+ (pu)=0,

i.e., the local conservation law of the mass of the mixture
(the local continuity equation for the mixture).

Upon multiplying by 1/M, the ith component total
mass conservation law, Eq. (9), and adding all the ob-

A,&(t)
tained equations, one gets d /dt f )„'„)c dx =0. Hence

x(t}=u(t,x(t))

(i.e., x),xz represent time evolution of position of two
mixture particles). Then, providing that x, (0)&xz(0),
one has

(t) A,2(t)—f p(t, x)x dx = f, (pu)(t, x)dx
I I

(12)

momentum of the mass

center of the mixture

sum of the moments of
the local mass centers

Consequently, from Eq. (12) and the initial condition (3),
it follows that

A,&(t)

pu tx x =P.
A. l( t) t=0

(13)

Upon applying the Liouville theorem, the equation of
continuity for the mixture, the equation of motion, and
the third boundary condition, one can calculate the total
force acting on the center of mass (the mixture mass
center) at a moment t:

x, (t) &x2(t) for all 0&t & T .

The above inequality, the boundary condition (1) and the
Liouville theorem result in

~~(') ~~(') gu gu—f (pu)(t, x)dx = f p +u (t, x)dx

v — +pb (t,x)dx =v (t, x)Bu Bp

Bx Bx

A,&(t)
+D(t)+ f (pb)(t, x)dx,

where

BQ
(t,x} = (t, Az(t)) — (t, &)(t)) .BQ

Bx ~i(t) Bx Bx

Equation (14), with the use of Eq. (13), can be integrated over the time interval [O,t]:
~2(T)

A2(t) t BQ t t Af (pu)(t, x)dx =P+vf (~,x) d~+ f D(r)d~+ f f (pb)(r, A)(~)+z+A)dz dr .
A, l{t) 0 Bx ),(~) 0 0 —A

(15)

Multiplying by 1/M, the equations of continuity of the ith component, Eq. (4), and summing the all obtained formu-

las, one gets

e, (p„. . . ,p„) ap, =0.
M; Bx

Consequently for any t E [0,T] there exists a unique K (t }H R such that for all x E [A, )( t), A2(t) ],
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'»

ei (p 1» ~ » pr } pi
v(t, x)=K(t)+ g (t,x) .

i=1 cM; Bx
(16)

Hence, from Eqs. (S) and (8),

pu =pK(t) g—1—
cM,

ap,
e;(p, , , p„) Bx

(17)

Upon integration of Eq (1.7) over x range ~z', using the conclusion of preceding step, Eq. (15), and the mass conserva-
1

tion law from the first step, Eq. (10), one calculates:

k2(t) r Bp.
mK(t)= f„, , g 1 — e, (p„. . . , p„) (t,x)dx+P

A,2(r)

+f D(r)dr+v f ' "
(r,x) dr+ f f (pb}{r,A((v}+z+A)dz dv,

0 0Bx &(() Q —A

where

X2(t)
m:= f p(t, x)dx =f g p;(z)dz

i=1

is the total mass of the mixture.
Incorporation of Eq. {16)into the general fiux formula,

Eq. (5), yields:

p;(v; —u) = —e;(p(, ,p, )

las with the use of the postulate (2), Eq. (6), one gets

p, (t, A,,(t})
(t, i(J(t))= g ' S .

X i=( i i

Because Bc/Bx =0 and g,",[p, (t, A, (t))/M;8;] &0, it is
obvious that S=O. Thus, from Eq. (21) it follows that

(t, A, (t))=0,

+p; K(t)+ g
1=1

ei{pi ~ ~ ~ p. ) Bpi
Q

cM, Bx

(18)

for i&{1, . . . , rI, j&{1,2], tE[O, T]. In other words
we have proved that, in the unidimensional mixture of
constant composition, which does not exchange mass
with the surrounding (which can be treated as a closed
system), the gradients of all components at both boun-
daries of the mixture vanish (i.e., are equal zero).

Upon multiplying by 1/cM; the Eq. (18) and, adding all
the obtained formulas, one gets

K(t)=u(t, A,,(t)), (19)

which elucidates the physical interpretation of the in-
tegration constant K (t).

Upon combining Eqs. (18}and (19) (for fixed jE {1,2]
and t G [0,T] ), one gets

u, :[—A, A] Bz~k((t)+z+AE [A((t),A2(t)], (22)

will be useful. Note that for every differentiable function
f:[»(((t), )(2(t)]-+ R, it is

E. Mathematical disjoining of dynamics and diSmsion

For a moment t G [0,T] the following natural parame-
trization of the interval [A, ,(t), )(.2(t)],

8, (t, A,,(t)}=p,{t,A,,{t))S,

where

8;:=[6;(p„.. . ,p„)](t,&;(t))&0,

(20) (fog, )= oa, .

We denote

2AcM;

(23)

Upon writing Eq. {20)in the form

Bp, p,.(t, Z,.(t))
(t, &,(t))= ' S .

Bx
(21)

multiplying by 1/M; and adding all the obtained formu-

(mean mole fraction of the ith component), where
A,2(t) A

m,.:=f p, (t,x)dx =f p;dx; (24)

obviously m,- is the total mass of the ith component of the
mixture. Moreover, for tC[0, T] and zG[ —A, A] we
denote
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w;(t, z):= p;(t, a, (z))—~,1

cM;

By this denotation we have
(2~)

[8;(p&, . . . , p„)](t,a, (z))=8, [w (t,z)+~], (30)

(spatially shifted deviation of the mole fraction from its
average). Consequently,

p, (t,a, (z))=cM, [w-, (t,z)+~, ] .

From the Eqs. (6}and (24) one gets

where

w(t, z):=(w&(t,z), . . . , w„(t,z)),
(statement of the shifted deviations),

f7' ~ (/PZ }p ~ ~ . p JFE p )

Hence

rm =1. (27)

(2&)

(statement of the mean mole fractions). Apparently, by
Eq. (23},

BN; 1 BP
(t,z)= (t, a, (z)) .

Moreover, The initial and boundary conditions become, respectively,

Pk(tc): = &v(~k )
7

g %F0(~; )
i=1

f w, (t,z)dz =. 0 (for all 1&i ~r) .

For a vector lr ER", g, x, & 0, let us denote

,.(a):=8,(cM, 'P, (a), . . . , cM„P„(a))

(rescaled difFusion coefficients), where

m;
w, (0,z) = p;(z) — =:t5;(z)

cM;

(initial deviation of the ith component),

dw; Bw;'
(t, —A}= (t, A}=0 .

Qz Bz

In addition,
29

p(t, a, (z))= +cM w(t, z),
2A

(31)

(33)
and %f0 R~R.is an antiderivative of the Heaviside func-
tion, i.e., v(t, a, (z))=K (t)+8(w (t,z)+nz } (t,z),

Z
(34)

s, when s~0,
0, when s &0. where M:=(M„.. . , M„), 8:=(8,, . . . , 8„), denotes

the standard scalar product in IR" and

u(t, a, (z))=K(t)+ g 1—
j=1

2AcM N)8 (w(t, z)+rue) (t,z),rn+2AcM w t,z Bz
(35)

m 8w~
mK(t)=P —c g f +M w(t, z) —M 8 (w(t, z)+~) (t,z)dz—A 2Ac gz

+ D v v+v v, x
0 0 Bx

d v+ f f (pb)(r, A, ,(r)+z +A)dz d r .
A 1(T) 0 —A

(36)

The last two terms on the right-hand side (rhs) of Eq. (36) can be rearranged to minimize their visual dependence on k,
Namely, in the following way we eliminate the unknown A, ,(t) term (in the last term on the rhs):

p(r, A, ,(~)+z+A)=p(~, a,(z))= +cM.w(r, z) .

The fourth term on the rhs of Eq. (36) can be rearranged using the local mass conservation law of the mixture,

(aplBt)+(8/Bx)(pu) =0. We calculate

Bu 1 Bp Bp
8 p Bt 8

Upon substituting the argument (t, A, (t) ) and, using the relation

(t}}+~
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we calculate

(t, &j(t))=— p(t, }(,,(t))= — Inp(t, A, .(t)) .

Consequently, using the Eq. (33) and, upon introducing denotation,

wL(t):=w(t, —A), ws(t):=w(t, A),

P: Pi+ '+Pr ~

we calculate
A2(T)

(Bu ~ d p(A) m +2AcM wt (t)f (r,x) dr= —f lnp(r, Az(r))dr+ f lnp(r, A, ,(r))dr=in
o Bx &((~) o dr o dr ' '

p( —A) m+2AcM wz t

Substitution of the Eqs. (37) and (38) into Eq. (36},results in

(38)

mK (t)=P —c $ f +M to (t,z) M, —8;(w (t,z)+m )
m

—A 2Ac

N(
(t,z)dz

t m+2AcM w~(t)+f D(r)dr+vtn + f f +cM w(r, z} b(r, A, (r)+z, +A)dzdr .
0 p( —A) m +2AcM ws t o —w 2A

(39)

Obviously, on the base of Eq. (19), the boundary condition (1) and the initial condition (1), the evolution A, )(t) of the left
boundary of the mixture is a solution of the following Cauchy problem:

A, )(t)=K(t),
A, )(0)=—A .

Using Eqs. (23},(30), (34), and (40), we get

Bw; a
(t,z) =

Bt z
e, (w(t, z)+ )

'
(t,z) —(w, (t,z)+, )6(w(t, z)+

z z

(40)

(41)

(42)

With a vector a GR", g;, ~; )0, we may associate the
linear operator

given by the formula

Bw d Bw
(t,z)= A( („)+ ) (t,z)

dt

w (O,z) =(I)(z),

(44)

(45)

A„(g}:=g 0;(~)g;e; —[6(a)g]P(tt), (43)
(t, —A)= (t,A)=0.

Bz Bz
(46}

where

I:= (ER":$ g;=0

(space of deviations), (e, , . . . , e, ) is the standard basis in
I",and

P(~):=(P,(sc), . . . , P„(~)),
where Pk (z) is given by Eq. (29).

Finally, according to Eqs. (42), (31), and (32), the state-
ment

w =(w), . . . , w, ):[0,T) X [ —A, A]~l
(of the shifted deviations} is a solution of the following
initial-boundary-value problem:

The data (1)-(5) are sufficient for the solving of the prob-
lem (44)—(46). Thus the second part of our plan is ac-
complished.

Consequently, knowing the shifted deviations w„,w„
we can find (e.g., by the Banach method of contraction
mapping} the position A, , :[0,T]~R of the left boundary,
as a solution of the Cauchy problem (40)—(41). It has to
be memorized that the rhs of the integrodifferential Kq.
(40) is given by the formula (39). Thus the third part of
our plan is concluded.

Knowing w and A, &, one can calculate p&, . . . ,p, from
the relations (26} and (22), the drift velocity u from Eqs.
(34) and (39), and the pressure p from the following expli-
cit formula:

p(t, x)=const(t)+v (t,x)

+f „, p b — —u (t,y}dy, (47)
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where the mixture density p is given by Eq. (33), and
where Eqs. (35) and (39) allow to calculate the velocity u

of the local mass centers. Thus, the entire plan is con-
cluded.

III. DISCUSSIQN

5+h g (8k —5) &0,
k=1

where

(48)

Theorem. If certain regularity assumptions [concern-
ing the data (3) and (4)] and the quantitative condition
(49) (concerning the diffusion coefficients 8„.. . , 8„)are
fu161led, then there exists the unique solution
w =(w„. . . , w„) of the problem (44)—(46). Moreover,
the densities p„.. . ,p„[relevant to the shifted deviations

wi, . . . , w„by the formula (25)] take non-negative values

only.
Numerical solution of the above problem can be ob-

tained by the Faedo-Galerkin method. The calculations
were made for P phase of Cu-Al system. For the calcula-
tions the following data were applied: (1) boundaries of
the sample, A=0.2 cm; (2} initial concentration profiles,
cc„(O,x)=87 wt%, x E[—A, O] and cc„(O,x)=89 wt%,
x G [0,A]; (3) difFusion coefficients, 8c„=3.8 X 10
cm s ' and 8Ai=1.4X10 cm s '; (4) time of the pro-
cess duration, T= 18 h; and (5}standard atomic masses of
Cu and Al. In the Fig. 1, the aluminum proNe concen-
tration for time T=18 h is shown. The reliable agree-
ment between the calculated and experimental results can
be seen.

An effective algebraic criterion for parabolicity (con-
cerning the components difFusivities, i.e., 8„.. . , 8„)
can be demonstrated. For simplicity let us regard the sit-
uation of constant di8'usivities 8&, . . . , e„. Consider the
following condition:

a +(r —1)ak —1
h:=min y &0:4r+ g —'

for some jEt l, . . . , r}

where

e, —6

One can prove that for all r & 2:
1/2

r —1 1h&—
2r 2

and

4, %EH'( —A, A;E"),
3pC]0, ~[V

4;=1, Q =0,
Bz

ZZGZP
i=1

8%';
(z) dz ,

Bz

where H'( —A, A; E") denotes the Sobolev space of all ab-
solutely continuous R"-valued curves having square inte-
grable derivatives, and the operator

1 1
max a; for r=3.

V 3 2 1~i~3
J

If the condition (48) is satisfied, then the Eq. (44} is para-
bolic in the following sense:

h:=0, when I8,= =8„or r =2},
and otherwise

13&v v v v

E

E

o&

Cb

ta

ions

ent

was defined by (43) for any ir&E', g," i a; &0. The con-
dition (49) provides a "regular diffusion" [compare impli-
cation (50) in this section]. In the case of the binary mix-
ture (r=2), since h =0, the condition (48) holds and con-
sequently, the condition (49) is satisfied.

In the case of multicomponent mixture ( r & 3 ) one can
demonstrate an example of diffusivities 8„.. . , 6„,
which does not satisfy the condition (48). In such a case
the condition (49) may be not satisfied. Then one can
speculate on the possibility of a gradient "blow-up" of
the solution.

In the case of T=00 one can show the following
asymptotical behavior of the solution: if (49) holds, then

-2000 -1000 0 1000 2000
A

lim f g [w;(t, z)] dz =0 .
t~ oo

(50}

FIG. 1. The distribution of aluminum in P Cu-Al binary
diCusiona1 couple shown for Sxed, 18-h, time period.

Furthermore, (d /dt) I ~ g,",w;(t, z)z dz ~ 0 for all

t ER+. In the other words, if t~ 00, then the variance
of the random vector
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(,(to):= Pr Pr
(t, a, (~))

1

and consequently, there exists s & 0 such that

'93
(t,z, ) & 0, ri3(t, z, ) & r}3(t„z )

t
(represents the concentrations at the moment t} con-
verges to zero.

Ternary "up hi-ll di+usiotL" Let us assume a ternary
mixture (r=3) showing the composition-independent
diffusion coefficients, 8„82,83 (i.e., constant
diffusivities). The function

rl;:=w;+m;:[0, T]X [—A, A]~la+

ol

for every t H ]t~, t, +E[

W3
(t,z0 ) & 0, W3(t, z 0) &W3( t0y Z0)

dt

for every t &]t0,t, +a[ .

I

g;(O, z)= p;(z),
1

cM,
(i =1,2, 3) (52)

represents the spatially shifted molar ratio of the ith com-
ponent. According to (44)-(46), the statement (2)„q2,g3)
is a solution of the initial-boundary-value problem:

8 — 8

In other words, the deviations of the molar ratio of the
third component from its average value increases during
the period ]t„t,+s[ of time, in particular, the maximal
density of the third component in the mixture, increases.

Example. In order to generate the up-hill diffusion
effect for the third component-the exact information on
the 8„82,and 83 is not a prerequisite —it is sufficient to
know that

Bg ~

(t, +A)=0. (53)

82&8, . (57)

In addition, from relations (27) and (28) it follows that
g] + g2 + g3 —1. Let us assume that the spatial distribu-
tion of the shifted molar ratio of the third component,
213(t„.) (at a moment t, K[0,T)) attains the maximal
value at certain position z, E[—A, A]. In such a cir-
cumstance it is evident that

ri3(t0, z, ) &rn3,

=d0= q (t3„)z
z —z

O'T/3

(t„z,),
Bz

d20&,rl3(t„z}
dz2

= a'9
, (t„z, ) .

S =Z0 QZ
(54)

Thus, the differential equations (51) result in the follow-
ing equality at the argument (t„z, ):

an3 = 8 A]3 8 ri]=[e,~,+8,(1—~,)],—(e,—e,}~,t Bz2 az2

From the above relation and the inequality (54) it results
that the following conditions are equivalent:

~ '93 ~ '9r[e,~,+e,(i —q,)],' &(8,—e, )q, ,
'

(ss)
az2 Bz

at the argument (t, ,z, );

Let us put t, =0( E [0,T]), z, =0( C [—A, A]) and as-
sume the following initial conditions in the relations (52):

2 (t0,z, ) = 2 ri)(z)
Bz dz z=ze

cos z
A z=0

&0

and inequality (57} holds, the inequality (55) is satisfied.
Thereby, the condition (56) is satisfied and consequently,
the maximum of the density of the third component in-
creases in the period ]0,e[ of time for some positive s.

Presented theory can be adapted to a more general case

1, 1 —y
cM) ' 3 Ap, (z):= —y cos—z,

p2(z):= +y cos—z,1 —y
cM2

1 . 1+2y
p3—= (constant function},

cM3

for an arbitrary fixed parameter y E ]0,—,'[. Remark that
all the initial mole fractions g, := (1/cM, )p, (i =1,2,3) at-
tain the same maximum in the mixture, Fig. 2. Since

8'g 3 (t„z,)&0.
Bt

(56)

Inequality (56) indicates up-hill diffusion of the third
component at the moment t, and at the position z, .
Indeed, then

I
I
I

I 0

-A

0

f)3
I
I
I
I

0

=Z

rt3(t z, ) —&0
dt t=t~

FIG. 2. Up-hill diffusion in the ternary mixture; initial distri-
bution of the molar ratios of components when 62 & ei.
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of the variable viscosity coefficient:

v=v(p». . . ~pr) ~

i.e., to a case of the mixture in which viscosity is a func-
tion of all components densities. Moreover, the Navier-
Stokes equation, Eq. (7), can be substituted for any other
formula of local momentum conservation (e.g., Ref. 6).

In such a case the formulated method of mathematical
disjoining of dynamics and diffusion will be not violated.
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