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The Frenkel-Kontorova (FK) model of edge dislocation is analyzed. Solutions of the continuum limit
of the FK model [the sine-Gordon (SG) equation] are obtained in a form convenient for investigation of
dynamics of a large number of interacting dislocations. We consider, based on these solutions, some
nonstationary processes: dislocation generation, diffusion of dislocations, and crack-dislocation interac-
tion. Simple relations connecting the velocity of plastic deformation, density and velocity of disloca-
tions, and the force of interaction between dislocations are obtained. The nucleation of dislocations at a

moving crack tip is described.

I. INTRODUCTION

Processes of nucleation, movement, and interaction of
dislocations play an important role in plasticity and de-
struction of crystal materials." The well-known model of
edge dislocation introduced by Frenkel and Kontorova?
(FK) more then 50 years ago has been still widely investi-
gated and applied for the crystal lattice’ ' and as
universal theoretical model (see Refs. 11-13).

The FK model is a chain of atoms interacting via
nearest-neighbor harmonic forces and placed in a period-
ic external potential. The simplest stable position of the
chain corresponds to the perfect crystal. The
configuration of n atoms, placed in n+1 (or n—1)
periods of lattice, models positive (or negative) disloca-
tion.

In the continuum limit the FK model is described by
the one-dimensional Sine-Gordon (SG) equation. This
equation has been intensely investigated with regards to a
wide spectrum of applications.!* In application to the
crystal lattice the basic solutions of the SG equation,
kinks, breathers, and ‘“‘plasma waves,” are dislocations
(or kinks on dislocation line), nonlinear oscillating modes,
and phonons, respectively. Some discussion should be
made of the use of the term “kink,” since in the context
of this paper this word is used to describe two different
phenomena, one of which arises in the theory of the SG
equation. The term “kink” was introduced as a special
solution of SG equation. On the other hand, in the
theory of dislocations, this term designates a kink of the
dislocation line that is, where the dislocation is nonlinear,
but is a curve with different lengths placed in the different
Peierls value.! Now, the SG equation can model either
the straight-line dislocation propagating perpendicular to
its axis, or, on the other hand, can model the propaga-
tion, in the direction along the dislocation, of a kink in
the dislocation. Here we will only consider some exam-
ples with edge rectilinear dislocations moving in one slide
plane perpendicular to the dislocation lines, although the
developed theory could be also used for kinks.

The framework of the FK model and the SG equation
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has been used to model Peierls stress and energy,"* ¢ in-

teraction of kinks and impurities,'? radiation of moved
kinks, nucleation of kinks, influence of external stress,
friction, and random force on the moving kinks,”% 113 as
well as formation of cracks.’

In the present paper we will consider some specific
solutions of the SG equation by which will be obtained
relations between macroscopic and microscopic parame-
ters of plasticity. These solutions could be used for the
description of nonstationary dynamic processes of group
of interaction dislocations, in particular for a model of
the generation of dislocations by source, diffusion of
dislocations, and interaction between crack and disloca-
tions.

We will limit our consideration of the SG equation to
processes with slow changes of parameters in space and
time. This restriction allows us to apply Whitham’s vari-
ational method.'® This method is based on a definition of
a system of modulation equations describing slow varia-
tions of the parameters of a wave train.

The paper is organized as follows. Section II contains
the main proposition of the model. Using stationary
solutions of the SG equation we determine a correspon-
dence between parameters of the model and parameters
describing dislocations and plasticity. The solutions of
Whitham’s equations based on the SG equation are ob-
tained in Sec. III. Some examples of application of these
solutions are considered in Sec. IV. Section V contains
some concluding remarks.

II. MODEL DESCRIPTION

Attempts have been made to match the parameters of
the FK model with the parameters of realistic crystal lat-
tices.2™® Using these ideas, and restricting ourselves to
the continuum limit, we can describe the movement of an
atom chain in a periodic potential by the SG equation
(here and below, the low indexes denote differentiation by
the indicated variable):

Qu— Pxx Tsing=0, (1
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where @(x,1?) is the displacement of atoms relative to the
“dislocationless” position measured in units of b /27; x is
a spatial coordinate in units of ba,, where
a,=2"2d /b(1—v)"% tis time in units of ba, /c;, where

2'2d(1—v)'"?
4T (=22

b

e 2p0dcb(1—-v)’
M(1—2v)

¢; is the velocity of sound in the crystal. Here, b, ¢, and d
are the lattice translations in x, y (along the axis of dislo-
cation) and z (perpendicular to the glide-plane) directions,
respectively; M is the mass of an atom, v is the Poisson
ratio, y is the shear modulus.

The variables F=¢,, and W=¢, are the force of in-
teraction between the nearest atoms and the velocity of
the atoms, respectively: F is measured in units of bca, o,
where o,=pob/2wd is the amplitude of the Frenkel
sinusoidal function, or the theoretical shear stress for in-
ception of plastic deformation in the perfect crystal, W is
measured in units of ¢, /23*ma,.

The trivial solution ¢=0, F=0, W =0 corresponds to
a perfect crystal without dislocations. We will consider
solutions of the SG equation of the form ¢=¢(8), that is,
that depend on x,t on through the variable 6=k¢,
£=x — Ut, where k is the wave number, ® =kU is the fre-
quency, and U is the velocity of wave in units c;a, /a,.

After the integration of Eq. (1) we obtain

0=2"12(U =12 [ (4 —Vy) Vg, 2)

where V;=1—cosg and A4 is the constant of integration.
We will be interested only in periodic solutions, and so
only consider the value of ¢ between two zeros of the
function (A —V,). Supposing in (2) 4=2/m and
|U| <1, we find the spiral waves solutions:

@=arcsin[ tcn( —¢€)] ,
F=2¢dn(¢¢) , @)
W=UF, ¢=[m(1-U»]"'"?,

where dn and cn are the elliptic functions with the
modulus m; U and m are constants (|U|<1,0<m <1).
We normalize in such a way that the period of 0 is 2,
and find that

— T
k=2g > @)

where K (m) is the complete elliptic integral of the first
kind.

In terms of dislocations, the magnitude N =k /27 is a
linear density of dislocations, U is velocity of disloca-
tions. If m =1 the formulas (3) describe a one-soliton
solution modeling one dislocation. The solution with
m <1 is interpreted as an infinite succession of interact-
ing dislocations. Let us average over a period of oscilla-
tion, the magnitudes of F and W:
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W=UF ;

F and W can be interpreted as a force acting between
dislocations, and a velocity of plastic deformation, re-
spectively.

III. SOLUTIONS OF THE SG EQUATIONS

The solution procedure to be described below and the
solutions themselves were described earlier'® in another
form and for another purpose. For convenience and
better understanding we repeat here the derivation of
solutions.

Modulated equations

We limit our consideration to the wave train of type (3)
of slow variation with the parameters k, ®, U, and m. In
this case, the solution of SG equation is described by the
functions: k(x,t), o(x,t), U(x,t), and m(x,t). The equa-
tions describing the modulation of wave trains could be
obtained by Whitham’s variational method.

Write the Lagrangian for the SG equation:
L=(¢?/2)—(¢2/2)—V(p). For @=¢(8) we find
L=(0?—k*)@3/2—V(gp). Average L on the oscillation
period using (2):

o1
L=--[Ld6
=ﬁ[2(w2—k2)]mf(A —V)"dp—d4 . (6

Now suppose that variables w, k, and A4 are slowly
changing functions of x and ¢, compared to the fast vari-
able O(x,t). These slow variables are described by the fol-
lowing equations:!®

L,=0,
Ew,t—-L-k,x=0 , 7
k,+tw,=0.

The SG equation is second order, so the number of in-
dependent variables is only two. Using (4), (6), and (7) we
obtain modulated equations in the shape

U U 1
U—Lt—+m—+U,—L—+m,——=0,
Tri—1 "om oy T om ®)
U u 1 Up
+ + + =0,
Ui vi—1 " 2mm, U vty 2mm, 0

Here m;=1—m, u=E /K, E(m) is the complete elliptic
integral of the second kind. This system reduces to the
diagonal form:!

roetVilr,rr =0, i=12, 9)
Up+sgn(r,—ry )V m,
p+Usgn(r,—r W'm,

Volry,r)=Vi(ry,ry) .

Vilry,ry)=

99
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The Rimannian invariants 7; are related to m and U by
U= 1—16V'rr, 4 rr,

= —, m=——— . (10)
1+16V'r 1, WVr+v'r)?

Simple waves

Here, we will find solutions in the shape of a simple
wave, that is, when one invariant r; is constant. Let
r,=¢/16 be constant and r,>r; (case with r, >r, de-
scribes a wave train in the opposite direction), then r, is
determined by the Eq. (9) with i =1. In this case the
solution depends on one variable only. It is convenient to
express all variables in terms of m. Using (4), (5), (9'), and
(10), we can find

=P"¢E
v pte’
where
_u=v'm,?
p m )
_ G—¢
=T ere
where
GZP.U'—‘/;—I
ptvm, ,
(1
k=F=-Tete) = _F-Fu.
2KV'mpe

Setting r, =r;(m) in (9) we obtain an equation for m:
m,+V(m)m,=0 . (12)

The solution of (12) has the form m=R[x —V(m)t],
where R is an arbitrary function equal to the initial value
of m at t=0: m(x,0)=R(x). It is obvious the m is con-
stant on the lines x —V(m)t=D(m), where D is the in-
verse function to R.

Self-simulating simple wave

If D (m)=0, the solution has the form
§= Vim) . (13)

For the interpretation of this solution, it is convenient
to use the (x,t) plane (Fig. 1). The solution presents an
area expanding in time limited by the lines
x/t=V(m=0)=V " (m=0)=—1 and x/t=V(m=1)
=V*(m=1)=(1—e)/(1+¢). Here and below the
indexes “+” and ““—” designate the belonging of datum
to the leading and rear edges, respectively. Along the
lines x /t=V(m) all magnitudes are constant. On the
right side of line x /t=V " the disturbances are absent
(W=0,F=0,N=0). The density of dislocations de-
creases from N(x=x",t)=cw to N(x=x71,t°9=0
along the line t =¢¢ and increases from N(x¢t=t!)=0
to N(xt— o )—>N(m° [m? is the value of m which
satisfies ¥(m )=0] along the line x =x > 0 (see Fig. 1).
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FIG. 1. Isolines of the function m(x,t).

Below we will often use solutions with small values of
m; m{ <m;<m, where m{,m{ <<1). In this case,
the parameter 2y =1—e¢ will also be small. This limita-
tion allow us to simplify formulas (11):

U=y—ml"?,
V=y—m!?In(m;'?),
k=F=n/In(m?),

o=W=nly—mi?)/In(m;'?) .

(14)

Here we used the approximation In(m;'/?)>>1. This
term is equivalent to the term 2N <<1. It means that the
dislocation density should be much less than atom densi-
ty. This condition is frequently satisfied in real crystals.

General solution

The self-simulating solution satisfies the relation
d(m,U)/d(x,t)=0. In the general case where
9(m, U) /9(x,t)70, the system of Eq. (8) can be linearized
using the hodograph method.'® Treating x(m,U) and
t(m,U) as the unknowns, we transform (8) into the sys-
tem:

2umUt,, —2umx,, +(1—= Uty —U(1—=U?)x,; =0, s
2mmt,, —2mmUx,,

+pU1— Uty —pu(1—=U?x,;=0.
Making the change of variable in (15),

2
(=2U" &

21 U-—-1~
u (16)
= 2fU? " gUu
vl—-1 U—1"~
(f and g are new variables) we find
a8
gmmu+ fpUU—1) A+ 2 0, .
af, mm, + gu(U+1)U*—1) —~f—g(U+1) —0
n U U '
In this system the variable can be separated. Suppose
[=®(U)F(m), g=¥(m)G(m) ; (18)

we obtain from (17)



|3

U(1-U)'=—&/(1+U)+aV¥ ,
(1+U(1—-UW' /4=BU®—- UV ,
mm F'/u=F/2+BG ,
muG'=aF+G/2,

(19)

(20)
where a and B are arbitrary constants. Excluding ¢ and
G from (19) and (20) we find the equations for ¥ and F:
1+ 01— /4+(1+U)X(1-UW' /2

+(1/4—A)W¥=0, (21)

m2m F"—m?2F' +(1/4—A\F=0, (22)
where A=ap.
The solution of Eq. (21) is
v=n9 n=(1-U)/(1+0U), (23)

where g satisfies the relation (g —1/2)*=A.

We limit our consideration of case A=0. From the
second equation of system (19) we find
_(1/2—q)1+U)y?

2UB )
After transforming by m =2/(1+z) Eq. (22) reduces to a
Legendre equation:

(1—2z%)F"'—2zF'+n(n +1)F=0, (25)

P (24)

where n(n +1)=A—1 or n=|g—1|—1. The solution of
Eq. (25) and system (20) are

F=L,(z), G=—[2mL,(z)/mp+L,(2)/2]1/B, (26)

where L,(z) is some solution of the Legendre equation.
Using Egs. (16), (18), (23), (24), and (26) we finally find a
one-parameter set of solutions:

X=(xg ) /2=a,(mm !

27
T=(t,—x,)/2=a,_,(mm?,
where
_2qL,(2) =~ 4m,L,(2)
%" (2g—1) " (2q—Lmp

Consider the behavior of solution (27) for integer g and
for two invariants of L,: L,=P, and L,=Q,, where P,
and Q, are the Legendre functions of the first and second
kinds, respectively. For this purpose find isolines of the
function m(y,7) on plane y,7. Excluding 1 from (27), we
obtain

T=c,(m)x?, (28)

where p=q/(q —1), ¢,=a,_,/a,. We can see from the
relation (18) that isolanes m (),7)=const are parabolas of
degree p. If n increases (n — o), the degree of the parab-
olas, p — 1, which corresponds to the self-simulated solu-
tion. So if we are restricted to the integer ¢, the most in-
teresting solutions in sense of distinction from self-
simulated solutions are the solutions with » =1 (in this
case ¢=—1and g =2).
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A periodic solution is found within the area restricted
by lines with m =0 and m =1. In the case ¢ =—1
(p=1/2) and L,=P,, the leading edge accelerates in
time. In any fixed point x°>0 the dislocation density
changes monotonically from N(z<t°)=0 to
N(t— o )— 0 in contrast to the self-simulating wave
solution where the density is limited as t— . In the
case ¢ =2 (p =2) and L, =Q,, the velocity of the leading
edge is formally equal to unity; however, the dislocation
density in any fixed point x¢ decreases in time
[N(t— 00 )—0].

IV. INTERACTION OF GROUP OF DISLOCATIONS

The solutions of the SG equation that we have ob-
tained could be used for solving certain Cauchy prob-
lems. The imposed initial and boundary conditions
should be constant if a simple wave solution is to be ap-
plied or monotone functions of ¢ or (and) x could be po-
sited, if a more general solution of the above class is used.
More complicated initial and boundary conditions
(periodic or nonmontone) are not suitably described by
our formulas. This restriction is associated with our hav-
ing considered only the form ¢=¢(6). We shall consider
some examples of generation, propagation, and interac-
tion of dislocations; our discussion will involve only the
use of simple wave solutions.

Generation of dislocations by source

It is a well-known fact that the plasticity of crystals is
realized to be not so much due to the movement of al-
ready available dislocations as due to newly formed dislo-
cations.! The sources of dislocations are some stress con-
centrators (such as tips of cracks, steps on the boundary,
accumulation of contamination, etc.) and as well as dislo-
cations themselves (for example, the widely known
Frank-Read mechanism and its modifications’). So it is
interesting to describe dynamic parameters of groups of
dislocations in the presence of a given source.

First of all, we consider the case of dislocation genera-
tion in a crystal which initially does not contain disloca-
tions N(x >0,t =0)=0. The action of an external stress
as the source of dislocations is represented by the bound-
ary condition N(x=0,t=20)=N". It is necessary to de-
scribe the dynamics of this process. Putting in formulas
(11) and (14) k(0,t)=27N° and V(0,t)=0 we find

e=G(m%=G°, (29)
where m© is defined from the relation

0— [L(mo)
4K (mO)[moAuX(m®—m$))1 2’

or
m(l)=e—1/N°, y=e‘”2N0/2N° (30)

if In(m '/2)>>1. Formulas (11) and (13) with € and m°
from (29), in the general case and formulas (13) and (14),
with 7 and m°® from (30), in the case when
In(m /2)>>1, describe the dynamics of dislocation



13 312

propagation and interaction in the presence of a source.

Let us write the velocity of the leading edge which
coincides with velocity of lead dislocation in this particu-
lar case:

vr=pr=41=6) 31)
(1+G%
or Ut=V*+=¢ 2N’ 3N ifIn(m /%) >> 1.

Figure 2 schematically illustrates this process. The line
x/t=V7 is the natural boundary between the area con-
taining dislocations and the undisturbed area. Spatial
distribution of density N, velocity of dislocations U, force
of dislocation interaction F, velocity of constant phase V,
and velocity of plasticity W are presented for a fixed mo-
ment of time ¢t =¢¢ (see Fig. 2).

It is easy to rewrite the formulas (29)-(31) for the case
when the given parameter is the velocity of plasticity de-
formation W(0,t >0)=W?9° In this case m° is defined

from relation
04172
Wwo= mimi) (32)
K(m®)[m%u2(m®—m9)1'/2

or for In(m 1_”2 )>>1,
md=(W/n)}, Ut=V =y=(W/m)n(W°/7)"".
(33)

Real crystals usually contain dislocations. Under the
action of external stress these available dislocations move
and simultaneously the sources of a new dislocation join
in. To describe these processes we will consider the gen-
eration of dislocations in a crystal with a primary density
N(x>0,t=0)=N*"<N° and velocity U(x >0,t =0)
=U". We can use the self-simulating simple wave solu-
tion for this task if only one of quantities Ut or N is in-
dependent. Let it be N*. Then formulas (11), (13), (29),

Z|

__FIG. 2. Functions F(x,t¢), N(x,t°), U(x,t¢), V(x,t°), and
Wi(x,t°) for the case of a given dislocation source in the point
x =0.
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and (32) in the general case or (13), (14), (30), and (33) in
the case In(m; !/2)>>1 describe process. However, in
contrast with the previous case, the leading edge is
defined by the value m=m * (instead of m =1), where
m " is related to N * by

T e e R
(34)
orforln(mf1/2)>>l,
m1+=e“1/‘v+ . (35)
The velocity of the leading edge is
Vi=(GT-GH/(GT+G", Gt=Gm™), a6

V'r_,:(l/ZNO)e “"1/2N0_(1/2N+)e—1/2N*

where we used In(m ; '/2)>>1 in the last formula.

Magnitude x ¥ =¥ "t defines the size of the plasticity
zone. Using these relations, it is easy to connect the size
of the plasticity zone with the power of the source or a
given velocity of deformation on the boundary.

Diffusion of dislocations

Real crystals practically always contain internal stress
and as a result of it the irregular distribution density
occurs. Since this state is unstable the internal stresses
aspire to relax. This process could be realized by
diffusion of dislocations. Consider the following situation.
Let the plane x =0 divide areas with different density and
velocity of dislocations at time ¢t =0:

N(x<0,t=0)=N", Ux<0,t=0)=U",
N(x>0,t=0)=NT<N~, Ux>0,t=0)=U".

What will happen when ¢ >0? Note that only three of
the four quantities N~, N*, U~ and U™ can be con-
sidered independent to make use of the simple wave solu-
tion. Let us suppose that U* depends on the others.
Then the behavior of the system is described by formulas
(11) and (13) with

U=U")
A YU

where m ~ is defined by the relation
N ={4K(m [m - (1—(U M),
or formulas (13) and (14) with
y=U +e V2N | m =e VN | (38)

if In(m {1/2)>>1. Formulas for the velocity of the lead-
ing and rear edges are

V- =(G —e)/(G +¢), G =G(m™),

Vr=(Gt—e)/(GT+e),

(39)

where m * is defined by the relation
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+— phte
4K(m™*)mtpte)/?’

with € from (37). If In(m;!/2)>>1 formulas (39) reduce
to

pt=pm™) (40)

V =U"—@QN") le 12N,

_ + 41)
Pr=U"+e VN _(aN*)le-1/2NT

Formula (39) [or (41)] is convenient for the evaluation
of the typical time of internal stress relaxation.

Spatial distribution of considered parameters in some
moment ¢t =¢€ is presented in Fig. 3. We can see from the
figure and formulas (41) that |V~ |>>|V™*| and
|Ix7|>>|x*| if N">>N* and U™ =0, e.g., a distur-
bance propagates faster in the direction with larger dislo-
cation density. In particular, it means that as a result of
dislocation diffusion through boundaries of some region
of high dislocations density, the pileup slowly spreads.
During the same time, the dislocation density decreases
slowly but almost uniformly along the pileup. This
behavior of the FK chain is not evident before this
analysis.

Model of crack

The appearance and development of cracks is an im-
portant cause of crystal materials destruction. In relation
with this, dislocation-crack interactions have been widely
studied."®

X X X
Y
p !
/ {
/ \ |
N | c
Lo T { =t
'y UA%
| —]|
x x* x
|
A\

FIG. 3. Functions N(x,z°), U(x,t), V(x,t°), and W(x,t°) for
the case of dislocation diffusion.
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One of the possible cause of crack origin is the accu-
mulation of dislocations near natural obstacles (boun-
daries of grains, accumulations of contamination, etc.).!
Increasing the dislocation density leads to an increase in
the energy of their interaction. If some threshold value is
exceeded, the equilibrium state becomes unstable and the
energy of dislocation interactions transforms to the ener-
gy of the movement of crystal parts along a glide plane
(this corresponds to propagation of crack mode-II). Dy-
namic parameters of this process could be described by
formulas (11), (13), (37), and (39) [or formulas (13), (14),
(38), and (40) for small values of m,] with U~ =0. In this
case magnitude ¥~ is the velocity of the crack tip.

Now consider a dislocation nucleation from the mov-
ing crack tip. It is known that crack tip is a stress con-
centrator. If as a result of the increase in external stress
the shear stress at the crack tip exceeds the threshold
magnitude, the crack will begin to increase. Its tip will
be the source of dislocations. Supposing that in the mo-
ment ¢ =0, the crack is at the left side of the plane x =0,
we give following magnitudes: velocity of the tip
yr=y(x,t>0)=x°/t >0, where x“ is coordinate of
tip; the force which generates dislocation on the tip
F(x®,t>0)=F¢, and initial the dislocation density on
the right side of the crack tip N(x >0, =0)=N". Then
we find from (11)

e=G(m")(1—=V")/(1+V), (42)
where m " connects with V°" and F by the relation
m[u+(m )2y
K(m){m[(u—m§ 1= (VP27

or —

u=u(m) . (43)
The velocity of the leading edge is
Vi=(G*—e)/(G*+e), (44)

where m * is defined from (40) with € from (42).
The velocity of dislocations on the rear edge (at the
top) is
“chcr+(m zlzr )1/2
= >V, (45)
’ucr_._ Vcr(mclzr )1/2

Note that U~ =(m$)/2/u >0 if V=0, e.g. the top
emits dislocations even though the crack does not grow
up.
If F'<<7 [or In(m{!2)>>1] formulas (43)-(45)
could be essentially reduced:

_ T
- Fer(1—( Vcr)2)1/2 ’
U =U —VI=VT(1—(VT)P)e ¢,

V=Vt —yer=2vr(1—V)te ¢ .

m§=e %, ¢

We can see from the last formulas that the relative ve-
locities of emitted dislocations dU~ and leading edge
8V ™ decrease with increasing crack tip velocity. The im-
portant parameters as a size of the plasticity zone in front
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of the crack tip and density and velocity of formed dislo-
cations could be evaluated by the obtained formulas.

V. CONCLUSION

The FK model is a simple and convenient apparatus
for studying dislocation. We developed this model for
the description of dynamic behavior of a large number of
interacting dislocations. For this purpose we obtained
solutions of Whitham’s modulated equations based on SG
equations, which is a continuum limit of the FK model.
As a result of this, it was possible to find the relations
connecting plasticity parameters and dislocation parame-
ters (density, velocity, and force acting between disloca-
tions). In particular, this model naturally connects three
important velocities: the sound velocity of the crystal lat-
tice, the velocity of dislocation movement, and the veloci-
ty of plasticity along the glide plane. Formulas obtained
allowed us to describe spatial and temporal distribution
of dislocations for different initial and boundary condi-
tions. As examples of this application we modeled some
nonstationary processes, namely,

(i) the generation of dislocations due to a given source
or given deformation;
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(ii) the diffusion of dislocations due to self-interaction,
if the initial spatial distribution is inhomogeneous;

(iii) the generation of dislocations by moving the crack
tip.

1:’These results could be used for the estimation of the
power of sources, typical size of the plasticity zone, typi-
cal time of local internal stress relaxation, the relation-
ship between velocity of crack tip and number, density
and velocity of that generated in front of the tip disloca-
tions.

Our choice of examples was based on the simple wave
solution of the SG equation, which was able to describe
processes with constant initial and boundary conditions.
More general solutions which we derived above could be
used to model more complicated regimes with the mono-
tone changing initial and boundary parameters.
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