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We propose a combination of the generalized augmented-space theorem and the recursion method of
Haydock et al. to study short-ranged ordering effects in binary alloys. We apply this technique to a
tight-binding linear muffin-tin orbitals study of 50-50 AgPd and 50-50 paramagnetic FeNi and predict
ordering in the former and segregation in the latter. This is in qualitative agreement with earlier

embedded-cluster methods.

I. INTRODUCTION

Ordering or segregation phenomena in binary alloys
and their electronic properties are closely related to each
other. The electronic energy is order dependent and, in
turn, causes the formation and stability of ordered, disor-
dered, and segregated structures. We shall address the
important problem of developing a first-principles theory
for predicting the tendency of ordering or segregation
from electronic structure calculations. The tendency of
ordering or segregation is governed by correlations in
concentration between the neighboring sites expressed in
terms of the Warren-Cowley short-range order parame-
ter. Such correlation between constituent species is
directly related to the behavior of diffuse scattering and
can be obtained from the quantitative intensity measure-
ments on a single crystal. One needs a self-consistent
first-principles theory of correlated disorder in order to
analyze such ordering tendencies.

The most successful theoretical tool to date for under-
standing the electronic structure of disordered alloys is
the coherent potential approximation (CPA).! Because of
the single-site character of its averaging procedure, the
CPA cannot account for local ordering effects. An ade-
quate theory requires a more complex averaging scheme
which will take into account the effect of clusters and at
the same time retain the proper analytic form of the
Green function. Several attempts at extension of the
CPA in order to take cluster effects into account have
been reported to date.

Among such past attempts are the molecular CPA
(MCPA) (Ref. 2) and theories like the surrounded atom
model.> In the MCPA, the effective potential is defined
by the condition that a single cell, as opposed to a single
site, is embedded in the effective medium, in such a way
that it produces no further scattering on the average.
However, applications of the MCPA to binary metallic
alloys are limited by the absence of an appropriate molec-
ular unit. In the surrounded atom model, severe
simplification was made by simulating the environment of
a real cluster by a Bethe lattice of same coordination
number. In recent times, a major development in this
direction is the embedded cluster method* in which one
solves for the Green function of a cluster of real atoms
embedded in an effective medium which is determined
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within the single-site CPA. The electronic structure is
determined for all possible inequivalent configurations of
the cluster and finally the average electronic density of
states for a given value of the short-ranged order parame-
ter is determined by direct averaging with an appropriate
statistical weight consistent with the short-range order
parameter. The theory is not self-consistent. Although
in this theory one retains scattering effects from the clus-
ter, the medium in which it is embedded contains no
correlated scattering.

It is clear from the preceeding discussion that in order
to treat systems with correlated disorder, one needs to go
beyond the single-site CPA. The augmented-space for-
malism (ASF) for configuration averaging put forward by
one of us® provides a systematic method for the cluster
generalizations of the CPA resulting in a Herglotz®
Green function. In the augmented-space formalism, one
constructs a nonrandom Hamiltonian defined on a new
Hilbert space (the augmented space) which is a direct
product of the Hilbert space spanned by the original
Hamiltonian basis set and the configuration space which
is spanned by the various allowed configuration states of
the disordered Hamiltonian. The theorem then relates
the average of any function of the Hamiltonian to a ma-
trix element on a particular subspace of the augmented
space. This configuration averaging in the augmented
space is exact and does not involve any single-site approx-
imation as in the CPA and treats both diagonal and off-
diagonal disorders on equal footing. Controlled approxi-
mations on the Green functions are introduced after the
averaging and can be designed to preserve the necessary
Herglotz properties. Recently, the ASF has been em-
ployed to derive cluster generalizations of the CPA
(CCPA) in the framework of first-principles methods like
the Korringa-Kohn-Rostocker’ (KKR) and tight-binding
linear-muffin-tin orbital® (TB-LMTO), but to date all ap-
plications have been confined to specific model systems.

The application of the ASF to correlated disorder was
first attempted by Gray and Kaplan.” These authors em-
ployed measure theoretical arguments to express the joint
probability distribution of the dependent random vari-
ables in terms of the product of the probability distribu-
tions of individual variables and an auxiliary function to
take into account the correlations in probability
(this is the Radon-Nikodym derivative). The resulting
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configuration-averaged Green function was obtained by
the use of the augmented-space theorem and was ex-
pressed as an infinite series expansion in terms of Green
functions with uncorrelated random variables. Although
the full series expansion was proved by Gray and Kaplan
to yield a Herglotz Green function, once the series is trun-
cated (as one must do, in any practical calculation) there
is no guarantee that herglozicity will be preserved. The
same methodology was used by Razee and Prasad!®
within a KKR-CCPA framework and applied to a simple
model of s states on a linear chain. Indeed they found
that because of the truncation procedure, negative densi-
ty of states resulted in certain ranges of the short-ranged
order parameter.

A generalized augmented-space formalism (GASF) has
recently been proposed by Mookerjee and Prasad!! to
deal with correlated disorder. In the present work we ap-
ply this formalism coupled with the recursion technique
of Haydock et al.!?> The formalism bears a close resem-
blance that of Gray and Kaplan. However, the effect of
short-ranged ordering is incorporated within the con-
struction of the operators M ' themselves. The Radon-
Nikodym transformation is not used and there is no ex-
pansion necessary in an infinite series. Consequently no
truncation is required. The recursive technique proposed
by us contrasts with the partitioning technique used by
Datta et al.® The number of coupled self-consistent equa-
tions involved in the partitioning technique rapidly in-
creases as the size of the cluster used in the partitioning is
increased. This makes practical implementation not
feasible. The direct recursion on augmented space does
not possess this restriction.

In spite of its immense potentiality, the ASF recursion
could not be implemented in a real alloy system success-
fully earlier because of the large rank of the augmented
Hamiltonian. For a binary alloy with N sites and with
only s orbitals it is (N X2V)X (N X2"). Recently'® this
formalism has been implemented for describing the elec-
tronic structure of random alloys with uncorrelated dis-
order. The local point-group symmetries of the underly-
ing lattice and larger symmetries in the full augmented
space arising out of homogeneity of the disorder have
been exploited to make the method tractable. This has
been discussed in detail in our earlier work."?

Unlike the embedded-cluster method where the
configuration averaging for each realization of the em-
bedded cluster is done by explicit averaging over all the
distinct configurations (144 for a fcc lattice with first shell
of neighbors), this generalized augmented-space recursion
technique yields, in a single recursion, the configuration
average directly. We apply this methodology to study
two distinct alloy systems AgPd and FeNi.

The rest of the paper is organized as follows. In Sec.
II, we briefly describe the generalized augmented-space
formalism for correlated variables in a form that lends it-
self directly to its application in recursion technique
presented in Sec. III. Section IV is concerned with com-
putational details. Section V is devoted to results and
discussion where we apply our methodology to AgPd and
paramagnetic FeNi alloys to test the tendency of ordering
or segregation in these alloys.
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II. THE GENERALIZED
AUGMENTED-SPACE FORMALISM

The generalized augmented-space formalism for corre-
lated disorder has been derived and discussed extensively
by Mookerjee and Prasad.!! In this section we present
those salient features of their methodology which will be
of direct use in our application. We shall first present the
method for the independent random variables and then
we will discuss its generalization to the correlated ran-
dom variables.

As mentioned in the Introduction, the augmented-
space formalism for the configuration averaging is done
by extending the usual Hilbert space H to include a
configuration space ®. Disorder effects are described
in ®.

Let {n;] be a collection of discrete independent ran-
dom variables and f(n,n,,n;,...) be some function of
these random variables. Each random variable n; takes
on values m,m,,...,m, and one can decompose the
joint probability distribution function of the variables
{n;}. P({n;})as

P(nl

nr... ):p](nl). ..pr(nr)...

Each p; (n;) is positive definite and has finite moments to
all orders. For each density p; (n;), a Hilbert space ¢,,
spanned by the states of n;, is constructed and the full
system configuration space is defined as ®=[]®¢;. To
each random variable n; a self-adjoint operator M; € ¢; is
associated, such that

pi(n;)=—1/mIm{vh|(n, I —M,)" V) , 1)

where |v4) =V(1/a)3%-,Im}) is a specific member of
¢;. We define the ground state |v,) in product space ® as
|vo>=|v(1))®|v(2,)® R

The augmented-space theorem states that the
configuration average
(=Pl ra Mm%, MW,
where
MP=Ig oM, - -®I® - )

and f is the same function of M '"’s as f was of n,’s. This
expresses the expectation value of f in terms of fixed non-
random quantities. The calculation of (f),, thus
reduces to the problem of obtaining this expectation
value.

If the variables {n;} instead of being independent are
correlated then the joint probability distribution of all the
variables

< )=P1(”1)Pz("zlnl)Ps("sinz’”x) R
(3)

In general for the variable n, one has an associated M,
of the form,

P(ny,ny,n,, ..

~ k k kiyy..., k
M(x)zz... 2P11®P22®"'®M,-l
k k

1 i—1
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kyyoonki_q . . .
where, the operator M; ! i~1 js associated with the

conditional probability density p;(n;|ny=my ,...,n;_,

=m;_') and P,-k" are projection operators on a specific
state k;. The basic augmented-space theorem still holds
good rigorously, but M'? instead being of the form given
by (2), now has the form given by (4). For electronic
structure calculations in a disordered system, f is chosen
to be the matrix element of the Green function
(zI—H)™!, where H describes the random Hamiltonian
of the system and n; are the site occupation variables.

We shall now make the assumption that the short-
range order effect is restricted to first-nearest-neighbor
shell alone. This is a reasonable choice based on the fact
that short-range order decreases rapidly with distance.
Hence, the variables associated with sites beyond first-
neighbor shell will be assumed to be random with no
correlation with the central site.

The macroscopic state of order for a binary alloy is de-
scribed in terms of the Warren-Cowley short-range-order
parameter

PAB
r
y

where the A atom is at the center of the rth shell, y
denotes the macroscopic concentration of species B, and
P8 is the pair probability of finding a B atom anywhere
in the rth shell around an A4 atom.

The probability density associated with the sites be-
longing to the first-nearest-neighbor shell is given by

aiB=1—

) (5)

P(nR2|ngl=0)=(y +ax)8(ng )+ (1—a)xd(ng, —1),

(©)
plng,lng =1)=(x+ay)8(ng, —1)+(1—alydlng ) ,

where np is the variable associated with central atom and
a=af'®

The construction of different operators in augmented-
space associated with the site occupation variables has
been discussed in detail by Mookerjee and Prasad. We
mention here only the form of augmented-space opera-
tors associated with the conditional probability density
given by (4):

M"“'=xP{@P)+yP{®P}+XP|g P{+X'Pl8P|
+B,P{e(TY'+T}°)+B,Pla(TX+TX0)
+ B, (T +T°)® P+ B, (T + T)%)e P}
+B(TY+T1%)e (T +T) @)

with P and T}! denoting projection and transfer opera-
tors in the configuration space. Various constants in (7)
are defined through the following relations:

X=x—alx—y),
X'=y+alx—y),

B,=xV(1—a)y(x+ay)+yvV(l—a)x(y t+ax),
B,=yV(l—a)y(x+ay)+xV(l—a)x(y t+ax), (8)
B3=av X N
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B,=—aVxy ,
B;=Vxy (V(1—a)y(x+ay)—xV(1—a)x(y+ax)) .

The augmented-space operator associated with indepen-
dent probability density is given by

M= {(xPY+yP} +Vxy (TP'+ T[] . ©)

We make explicit use of these operators and the central
theorem for correlated random variables to set up an
effective Hamiltonian in augmented space. We then use
the recursion technique to be discussed in the next sec-
tion to calculate the configuration-averaged Green func-
tion.

ITII. TB-LMTO AND THE AUGMENTED-SPACE
RECURSION TECHNIQUE

The tight-binding linearized-muffin-tin orbitals!* (TB-
LMTO) method provides a reasonably good starting
point for the electronic structure calculation of disor-
dered alloys. It has been shown previously!® that TB-
LMTO coupled with the augmented-space recursion
technique provides a reasonable description of the elec-
tronic structure of disordered alloys.

The linearized-muffin-tin orbitals method introduced
by Andersen'* gives a simple yet accurate first-principles
description of the electronic structure of solids. As is
well known, the LMTO basis set is minimal and complete
for the muffin-tin or atomic-sphere approximation (ASA)
potential used for its construction, over an energy range
of about one Rydberg around the energy node about
which linearization is carried out. We shall use the
tight-binding version of this formalism. This is obtained
by truncating a power-series expansion of a matrix
h=H—E , where H is an effective, two-center TB Ham-
iltonian and E, is an arbitrary energy chosen at the node
around which linearization is carried out. If this power
series is truncated after the first-order term, the orthogo-
nal Hamiltonian is approximated by a two-center TB
Hamiltonian and the recursion method yields a density of
states whose features have energy positions correct to the
first-order in their distance from E,. If on the other
hand, the truncation is performed after the second-order
term, the Hamiltonian is less sparse (having non-
negligible matrix elements between fourth-nearest neigh-
bors), but still tractable within the recursion method.
The resulting density of states (DOS) have features whose
positions are correct to second order in their distance
from E,. It has been shown that the first-order Hamil-
tonian provides an accurate description!* certainly for
relatively narrow d bands below the Fermi level. Howev-
er, if we wish to describe the higher-energy range of s and
p bands, for example, in a transition metal or even broad
d bands, we have to go at least to the second term in the
expansion series for both the Hamiltonian and the over-
lap matrix.

The TB-LMTO and its implications have been dis-
cussed in great detail earlier.'* We shall quote here the
final result and refer the reader to the above-referenced
review articles for further details.
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For binary AB alloys, the LMTO Hamiltonian in its
most localized representation is given by

H= E CtLalLatL 33 AI/ZSL’ L
iL jL'

L a,La,L . (10)

The summation over j extends over first- and second-
nearest neighbors of i. The potential parameters C;; and
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A{* take values C; 4, A2 or Cpp, A}, respectively, de-
pending upon whether site / is occupied by the 4 or B
atom. For substitutional alloys with negligible size
mismatch between the constituents structure matrix S7; .
is not random.

The above Hamiltonian can be written in terms of the
site-occupation variable n; as

j

H= ZCLBaxLa,L +>6C; n; a,La,L +22(A£§+8A1/2

ISP L (AYE 488V )alay. . (11)

8C; and 8A}/? are the fluctuations of the potential parameters about the uniform background of the B component. #,
takes value O or 1 depending upon whether site i is occupied by the 4 or B atom. Now the nonrandom Hamiltonian H
in the extended augmented space is constructed by replacing the random site occupation variable n; by its correspond-
ing operator representation M in configuration space. Since we consider the short-range order to be restricted to the
first-neighbor shell, only the operators corresponding to sites belonging to the first-neighbor shell contains the signature
of the conditional probability while the operators belonging to other sites will have no short-ranged correlations. The

operator M is taken from Egs. (2) and (4).

Substituting these M "s for n;’s in the random Hamiltonian, the constructed nonrandom Hamiltonian H in the aug-

mented space is obtained as

H= chakak++2 3 8C, (xPY+yPl+Vxy (T
L k#NN1

+3 3 8C, {xP®P)+yPi®P+XP|®P)+X'P|®P,+B,P{& (T} + T

+T)0)}

%)+ B,Pie(TY'+T°)

L kENNI
+B(TI+ TP+ B, (T + T} Pl +B(TY +T1")&(TP + T,°)}
+3 S [AVZ+SAYxPXHYPL+Vxy (T + T+
L,L' k#*NN1k'#NN1
K LAYRH+8AYHxPP+yPL+V xy (TY'+ T} ]
+ > [A;§2+5A‘L/25xp,9+yp,3+\/xy(Tk + T} ]
L,L'k=1k'€NN1
XSf (AL +8A*(xP® P +yP{e P,

+XPl@P+X'PleP.+B,Pe(TY'+ T\ +B,Pia (T +T,°)

+B(TO+ T PY+ B, (T +T)@ P} +B(TY

Once the effective Hamiltonian has been constructed,
the generalized augmented-space theorem gives the
configuration averaged Green function to be

<G)av=(vo|(Ef—I7)_1|vo)

The recursion method of Haydock et al.'? provides an al-
gorithm for calculating diagonal matrix element of the
resolvent or Green function associated with the Hamil-
tonian H. Beginning with a starting state
|€,)=I|R;,1)®|¥,) where W, is the string of zero’s
representing the ground state |v,) of the full system
configuration space ®, one generates a discrete chain of
mutually orthogonal vectors |£;) through the three-term
recursion,

ngn>=anlgn>+Bn+lI§n+l>+Bn'§n—l> ’

a,={&,|eHIE,) ,
Bn:<§n—ll®ﬁ!§n> ’

+TIOe(TI+T19)] .
(12)

f

where the inner product in real space is defined as
(mloln)y=clc,=s,, .

The basis |m ) is represented by a column vector C,,
with zeros everywhere except at the mth position. The
inner product between the basis vectors in configuration
space is

B[C,{Sc}10B[C", {Sc}]=8ccdys,,s,) »
where C is the number of 1’s in configuration space,
called the cardinality of the basis and sequence of posi-
tions where one has 1’s {S.}, called the cardinality se-
quence, labels the basis.

This prescription transforms the Hamiltonian into tri-
diagonal form and thus leads directly to a continued frac-
tion representation for the diagonal element of the aver-
aged Green function. If the algorithm is stopped after N
steps, N exact levels of the continued fraction are ob-
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tained. A Herglotz terminator T, (E) is substituted for
the remaining part of the continued fraction. This termi-
nator reflects the asymptotic properties of the continued
fraction accurately. Such a termination procedure re-
tains the Herglotz properties of the Green function. It
maintains the correct bandwidths, band weights, and the
correct singularity at the band edges. In order to reduce
the necessary amount of computer storage and make the
computation faster, explicit use of point-group symmetry
operation and bit manipulation technique of the spin-1
Ising model computational methodology has been used, a
point that will be discussed in the next section.

IV. COMPUTATIONAL DETAILS

As discussed in an earlier section, the ASA form of the
orthonormalized LMTO Hamiltonian with the expansion
truncated after the first term [which is of first order in
(E—E,), where the E_’s have been chosen at the center
of the bands] is used to parametrize the constituent Ham-
iltonians. The density of states has been found by the re-
cursion method with the augmented-space effective Ham-
iltonian representing the random distribution of sites de-
scribed by either ASA-LMTO Hamiltonian of 4 constit-
uent or B constituent. The augmented-space map is gen-
erated from a real-space cluster of 400 atoms. We have
generated a sequence of eight pairs of continued fraction
coefficients for s, p, and d states. The Herglotz termina-
tor is now generated given the prescription of Haydock
and Nex!® and Lucini and Nex.!” Details of this are
given in the Appendix.

The screened structure matrix SJ;. is found by direct
inversion of the cluster containing 19 nearby atoms. We
have used the spd set of screening parameters
(Q;7=0.3485, Q;=0.0503, Q7=0.01071, Q% ,=0) to
get the most localized version of the TB-LMTO Hamil-
tonian.

A major objection against the implementation of calcu-
lations based on the augmented-space formalism was that
there was no general and efficient method for storing only
the immediately accessible vectors in the augmented hy-
perspace. These are, for example, 2!> in number for a
system consisting of A4 or B atoms in a cluster of a central
site and its 12 nearest neighbors (the simplest cluster for
modeling a fcc binary alloy). We present the computa-
tional developments that have been made to make the im-
plementation feasible. Since this has already been de-
scribed elsewhere in detail'* we only briefly mention the
salient points here.

The first step is the reduction of the Hamiltonian by
exploiting the symmetries of the underlying lattice. The
Hamiltonian described by (10) contains the information
of both the structure of the underlying lattice and the
symmetry of the orbitals. It has been shown by Gal-
lagher'® that if the starting state of the recursion belongs
to an irreducible representation of the Hamiltonian, then
the states generated in the process of recursion belong to
the same row of the same irreducible representation of
the Hamiltonian. Further the recursions with the start-
ing state corresponding to the different rows of the same
irreducible representation are similar. The states belong-
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ing to the different irreducible representations or different
rows of the same irreducible representation do not mix.
So we need to retain only those states for the purpose of
recursion and get the same resolution as with all of them.
The recursion is done only with those states which are
not related to one another by the point-group symmetry
of the underlying lattice. Once these state vectors are
identified, the recursion can be performed in the reduced
space, modified with weight factors. Thus, in the compu-
tation we need far less storage and time because the
dimensionality of the matrix H is reduced drastically.

In practice a starting site is chosen. The number of
distinct equivalent sites, related to the starting site by the
local point-group symmetry, constitutes the weight of the
starting site. As discussed earlier, in the process of recur-
sion, these equivalent sites are not considered, and the
calculation is confined only to the nonequivalent sites.
For example, for an s-state Hamiltonian on a lattice with
cubic symmetry, all the nonequivalent sites are confined
to th of the entire lattice. Inclusion of p orbitals intro-
duces preferred x, y, or z directions and breaks the sym-
metry between the x, y, and z axes. Thus, the point-
group symmetry operations which interchange between
x, y, and z coordinates are prohibited. Hence the irreduc-
ible part of the lattice instead of being th of the entire
lattice now becomes one-eighth. If with each site R we
attach weight Wp, which is given by the number of basis
states equivalent to |R ), then the whole process can be
summarized as follows: In the new TB-LMTO reduced
basis we have

(R,LIH,R,LY=Cy, , (13)
(R',L'|H|R,L)

=V (Wg/Wr)AK2ESE [ r L AK3BR(L,L"),

(14)

where R and R’ both belong to the irreducible part of the
lattice. Bgr(L,L’) is the factor which can be either O or 1,
depending on whether the position occupied by the site R
is a symmetry position with respect to orbitals L and L’
or not. This fact can be made more transparent in the
following way: The structure matrix element connecting
two orbitals occupying the two different sites is given by
the two-center Slater-Koster integrals. Apart from a fac-
tor made of 7 and o integrals the Slater-Koster integral
contains a factor made up of direction cosines of the vec-
tor joining the two basis states between which the matrix
element is taken. It reflects the symmetry property of the
overlapping orbitals. Now for the different equivalent
sites connected to a given site, this direction cosine has
different signs. In the effective irreducible basis, which is
a linear combination of the old basis, a particular linear
combination may give rise to a zero Hamiltonian matrix
element. We shall call these positions, where such zero
matrix elements occur, the symmetry positions with
respect to orbitals L and L’. The representation of the
Hamiltonian in terms of the irreducible basis sets reduces
the rank of the Hamiltonian matrix. The workload of the
recursion reduces drastically.

In spite of the reduction in real space, the dimension of
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the full augmented space is still very large: N X2% for a
system reduced to nonequivalent N sites and disorder
characterized by a binary probability distribution. How-
ever, in analogy to real-space symmetry, if we exploit the
symmetry of the configuration space which arises due to
homogeneity of disorder, then the rank of the augmented
space is reduced further and the augmented-space recur-
sion becomes tractable. This basic step of identifying a
set of nonequivalent vectors and their weights can be
achieved in the following way: Since the augmented
space is a direct product of the real space and the
configuration space, which are disjoint, symmetry opera-
tions on either of them apply independently of each oth-
er. For example, if a site is occupied by an A atom, then
all the Z configurations in which its (Z — 1) neighbors are
occupied by A4 atoms and one by B are equivalent. In
practice, a site in the augmented space is chosen as
[R,{C,[Sc]}). All the equivalent sites are obtained by
point-group operation 72 on the site in question:

IR",[C", {Sc} 1) =RIR,[C,{Sc}])
=RR,R[C,{Sc}]) .

The number of distinct sites obtained in this way is the
weight of the site in question. As in the real-space recur-
sion only the nonequivalent (NE) sites obtained in this
way are retained for the purpose of recursion. Once we
have defined the Hamiltonian, and its operation in aug-
mented space, the recursion method on the augmented
space gives the configuration-averaged Green function
directly.

Another important step is the reduction of computer
storage and making the computation faster by
identification of various operations in configuration space
of a binary alloy with Ising computational technology
and use of logical operations to describe the action of
augmented-space Hamiltonian. As we have already indi-
cated, each basis in configuration space is nothing but a
string of 0’s and 1’s, where the sequence of positions
where we have 1’s is the cardinality sequence. We may
thus represent the basis vectors by a collection of binary
words. In an M-bit machine, each M-bit word can
represent up to M —1 terms as a sequence of 0’s and 1’s
and for the configuration of a lattice size N, N/(M —1)
words are necessary. All operations of the augmented-
space Hamiltonian on the states in the augmented space
reduce to bit manipulation and logical operations on the
M-bit words representing the basis vectors.'®

V. RESULTS AND DISCUSSION

In this section we present the electronic structure cal-
culation of the AgPd alloy and paramagnetic FeNi alloy
with local order present in them. The effect of short-
range order on both the AgPd alloy and paramagnetic
FeNi alloy has been studied earlier with two different
methodologies KKR-CPA-ECM (Ref. 20) and the sur-
rounded atom model,?! respectively. We have intention-
ally chosen these two systems in order to compare our re-
sult qualitatively with that obtained by two other metho-
dologies. Furthermore AgPd is the simplest alloy to start
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with a negligible charge transfer effect and small
mismatch between the constituent’s Wigner-Seitz radii.
The same is true for the FeNi system. So approximate
treatment of charge self-consistency can be made by util-
izing the flexibility in the choice of sizes of the atomic
spheres, a point extensively discussed by Kudronovsky
and Drachal.??

We first present our calculations for a cluster of impur-
ity atoms embedded in a translationally invariant medi-
um. These density of states can be directly compared
with that obtained by the embedded-cluster method. The
translationally invariant medium outside the embedded
cluster in the case of KKR-CPA-ECM is a single-site-
averaged CPA while the translationally invariant medi-
um used in the present study is obtained by the
augmented-space recursion technique. Figure 1 shows
density of states in a 50-50 AgPd alloy associated with a
Ag atom surrounded by [Fig. 1(a)] Pd and [Fig. 1(b)] Ag
atoms and a Pd atom surrounded by [Fig. 1(c)] Ag and
[Fig. 1(d)] Pd atoms in the first-neighbor shell. We find
that similar to the KKR-CPA-ECM study that local en-
vironment fluctuation has a significant influence on the
site-decomposed density of states. The density of states
of Ag and Pd clusters [Figs. 1(b) and 1(d)] resemble those
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FIG. 1. The densities of states of a AgsoPdso alloy: (a) on a
Ag site, surrounded by Pd atoms in a nearest-neighbor shell, (b)
on a Ag site surrounded by Ag atoms in its nearest-neighbor
shell, (c) on a Pd atom surrounded by Ag atoms in its nearest-
neighbor shell, (d) on a Pd atom surrounded by Pd atoms in its
nearest-neighbor shell. The energies are measured from the
Fermi level.
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of pure Pd and Ag with characteristic two-peaked struc-
ture. Whereas single peaks characterizing the virtual-
level impurity peak are obtained in the density of states
of a Ag atom surrounded by 12 Pd atoms and a Pd atom
surrounded by 12 Ag atoms as in Figs. 1(a) and 1(c).

In Fig. 2, we present the configuration-averaged densi-
ty of states for different values of the short-range order
parameter a varying between 1.0 and —1.0. This is the
full range of variation possible for a at 50-50 concentra-
tion. The results show a regular variation of density of
states as a function of a short-range order parameter
which is the deciding factor for the local environment.
Furthermore for a=1 and — 1, we obtain the asymptotic
limit where only one configuration of the embedded clus-
ter is possible. For a=1 the configuration is given by a
cluster containing all like atoms while for a=—1, the
configuration is given by a cluster in which the central
atom is surrounded by all unlike atoms. In other words,
one gives complete segregation and the other gives com-
plete ordering. Putting these values of a in Eq. (12), it is
easy to check that the Hamiltonian reduces to the embed-
ding cluster Hamiltonian. The generalized augmented-
space formalism is therefore exact in these limits. It is in-
teresting to note that we do not get any violation of Her-
glozicity in the whole range of a. This is in contrast to
negative density of states found for the model case by
Razee and Prasad, particularly in the extreme value
ranges of a.

Figures 3 and 4 are exactly the analogous studies for
the paramagnetic 50-50 FeNi alloy. Figure 3 gives the
embedding-cluster density of states for Ni and Fe atoms
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FIG. 2. The density of states of a AgsPds, alloy with
Warren-Cowley parameter a: (a) 1.0, (b) 0.5, (c) 0.1, (d) —O.1,
(e) —0.5, (f) —1.0. The energies are measured from the Fermi
level.
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FIG. 3. The density of states of a paramagnetic Fes,Nis, al-
loy: (a) on a Ni site surrounded by Ni atoms in its nearest-
neighbor shell, (b) on a Ni site surrounded by Fe atoms in its
nearest-neighbor shell, (c) on a Fe site surrounded by Ni atoms
in its nearest-neighbor shell, (d) on a Fe site surrounded by Fe
atoms in its nearest-neighbor shell. The energies are measured
from the Fermi level.
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surrounded by similar or different species, while Fig. 4
gives the variation of the density of states as a varies
from 1.0 to —1.0. Our conclusions are the same as for
the 50-50 AgPd alloy.

For AgPd alloys, since there is only a negligible
amount of charge transfer, it is reasonable to assume in a
first approximation that the total energy of the system is
dominated by the band-structure energy and to neglect
the intrasphere interaction energy term. In Fig. 5(a) we
present the variation of band-structure energy with a
short-range order parameter. The curve clearly shows a
tendency towards ordering. The same ordering tendency
has been predicted by the KKR-CPA-ECM (Ref. 20)
study. However, the ordering tendency is not experimen-
tally observed in 50-50 AgPd. It has been argued that the
formation of the ordered structure in AgPd is prevented
by slow diffusion rates. The confirmation of this assump-
tion is beyond the scope of this work.

The variation of the band-structure energy with a
short-range order parameter for paramagnetic 50-50
FeNi is shown in Fig. 5(b) and it clearly shows a tenden-
cy towards phase segregation. This prediction agrees
with that obtained by the surrounded atom model?! in-
corporating severe simplification like substitution of a
Bethe lattice for the proper crystal structure of the ma-
terial surrounding the cluster. The surrounded atom
treatment leads to segregation for Fes,Nis,. On the con-
trary for Ni-rich FeNi alloys, the Cowly order parameter
became negative and tendency to ordering was predicted.

In summary these initial results for AgPd and
paramagnetic FeNi shows a tendency towards order in
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FIG. 5. The variation of band energy as a function of the
Warren-Cowley parameter for (a) AgsoPdsy and (b) paramagnet-
ic FesoNis,. The energies are measured from the Fermi level.
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the former and a tendency towards segregation in the
latter case which are in agreement with previous theoreti-
cal studies using other methodologies. The generalized
augmented-space formalism coupled with the recursion
technique provides a reliable and computationally imple-
mentable methodology for treating alloys with local fluc-
tuation effects present. Investigations with other alloy
systems are now under preparation. Attempts are also
presently made to carry the full charge self-consistency
within the local-density approximation, so that the total
energies rather than band energies can be obtained for
various values of short-range order parameter. Once
such a self-consistency is obtained we can then compare
the short-range order parameter predicted by our theory
with that obtained by x-ray and neutron-diffraction data.

APPENDIX: THE TERMINATOR

The generation of the terminator has been described in
detail by Haydock and Nex.!® We shall give the general
outline here.

A set of coefficients {a,,,}] is first generated recur-
sively from

Bn+1|¢n+1>=ﬁt¢n )_ani¢n>_3n|¢n~l> ’

where
a,=(y,|0HY,) ,
,3,1:(1/},,_1|®H|1/1n) .

We generate up to n =n, steps. We now generate or-
thogonal polynomials of the first and second kinds: P,(z)
and Q,(z) for the above recurrance relation. These are
solutions of

P, . (z2)=(z—a,)P,(z2)—B:P,_,(2),
Qn(z)z(z—an )Qn—l(z)—leQn—Z(z) ’

with P_;=0=Q_,, P,=1=0Q,.

The next step is to accurately locate, from the generat-
ed continued fraction coefficients n <n,, the lower band
edge a, the bandwidth r, and the band weight w. From
this we construct a model Herglotz function:

F(z)=8w[z—(a+r/2)—V(z—a)lz—a—r)]/r?.

The terminator coefficients, which are the coefficients of
the continued fraction expansion of F(z), are
a,=a+r/2 and B,=r/4. Lucini and Nex!” now inter-
polate between the computed coefficients and those of the
analytic terminator in the following manner:

a,, n<n;,
a,=1la,(n,—n)+a,(n—n,)/(n,—n;)], n,<n=n,,

a,, n>n, .

The method is analogous to splicing as opposed to butt-
joining pieces of wood. _

We now run the recursion again with H replaced by z,
the state vectors by polynomials, and the inner product
by a union of Gauss-Chebyshev quadrature:
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f(2)0g(2)=3 o,fla;)gla;),

i=1
where
0;= nﬂ-l:l sin?d; ,
a;=a;+(1—cosd;)r/2,
i
n+1 "~

This will generate a set of recursion coefficients
{¥n,8,} and a set of mutually orthogonal polynomials
{R,(2)} and {S,(z)}. The terminator is given by

S,,-2(z)—F(2)R,,(2)
83, —1[Sn,—3(2)—F(2)R,, 5(2)]

’l?i=7T

T(z)=
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Again from the fact that R, and S, are polynomials of
order n and F(z) is a Herglotz function, it follows im-
mediately that the terminator is itself Herglotz.2

The Green function is given by

Q22— B 1 T(2)Q,, 3
P, _(z)—B; T(2)P,,

G(z)=

Using very similar arguments as before, the Green func-
tion is Herglotz if T(z) is Herglotz.

It has been shown earlier?® that moments of the Green
function of order m can be expressed in terms of a, and
B, for n <m. Since the coefficients up to n=n, are ex-
act, it follows that all moments up to order n, are exact
in this approximation.
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