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Conformational and electronic properties of Sexible conducting polymer chains
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The conformational and electronic properties of Qexible conducting polymer chains are investigated.
As a starting point a general Hamiltonian for conjugated flexible chains is presented. The m electrons
are described in terms of a Hubbard model confined to the chain modeled by (random) walks. One main

result is that electronic degrees greatly affect the conformation which is shown explicitly for a melt of
conjugated polymers. The presence of electrons leads to a signi6cant stiffening (rigidi6cation) of the
chains, i.e., the effective persistence length is increased. The other important point is the effect of the
conformation of the chain on the electron-electron interaction. This leads to a weak disorder-induced
localization of the electrons. An effective pair potential is derived using Feynman-graph techniques.

I. INTRODUCTION

The theory of conducting (conjugated) polymers is a
generally unsolved problem. For the case of linearly
stretched chains the electronic properties are relatively
simple, as the classical methods known in solid-state
physics can be employed. Such situations are found in
crystalline polymers, where the chains are relatively short
and the degree of crystallinity is high. ' More interesting
problems are present, when the chains are still
significantly flexible and much longer. In such cases the
chains have enough entropy to take many difFerent con-
formations as it is well known in ordinary flexible poly-
mers. Conducting polymers with these properties are
solvable in polar solvent and can be found also in the
melt state. ' The well-known methods of quantum
mechanics fail in such systems and alternative theories
have to be developed. In the present paper this is at-
tempted. A well-defined physical situation is given in ex-
periments with conducting polymer chains in solution
that indicate a rod-coil transition at room temperature.
The conductive properties of conjugated chains have also
been shown to depend on conformational properties (see,
e.g., Ref. 5). A scaling argument due to Pincus, Rossi,
and Cates relates this phenomenon to an interplay be-
tween the delocalized m-electron system and conforma-
tional entropy. The basic assumption in the approach of
these authors is that ~ electrons are more likely to delo-
calize along straight monomer sequences than for walk-
type chain conformations, such as random walks, walks
with finite bending energy, or alternatively, self-avoiding
walks (see, e.g., Ref. 2 for a general reference for walk
conformations). A simple free-energy ansatz is made us-

ing a tight-binding approximation for the one electron
band, while supposing a linear dependence on the seg-
ment length I for the entropy. An optimum Kuhn seg-
ment length, l', is thus obtained behaving roughly as
l'(r) =l, (r+ —,'); r is the number of electrons on a given

segment and l, =(2sr t l3aT)'~ where t is the transfer in-

tegral, a is a constant of proportionality, and T is the
temperature.

Other theoretical work on the conformation of con-
ducting polymer chains concerns the stabilization of rod-
like conformations by an interaction between the delocal-
ized electron structure and a polarizable solvent. '

In this paper we present a detailed model for the in-
teraction between conformational and electronic degrees
of freedom based on a Hamiltonian that consists of a
purely conformational part and an interaction term that
arises due to electrons hopping on the chain. Technical-
ly, this interaction is a Hubbard model bound on the
chain with arbitrary conformation. In Sec. II we briefly
mention the original Hubbard model known in solid-state
physics ' to define the notation and review very briefly
some of the work presented for conjugated chains in one
dimension. The key theory to these issues is the so-called
Su-Schrieffer-Heeger (SSH) model. "' In Sec. III we in-
troduce the present model applicable to the case of flexi-
ble polymers which carry mobile electrons along the con-
tour, in difFerent representations and generalizations. In
Sec. IV consequences of the model presented in Sec. III
are derived, mainly in two different directions: (a) the
influence of electrons on the conformation of the chain,
and (b) the influence of conformation on the interaction
between electrons.

II. FROM THE HUBBARD TO THE SSH MODEL

Conjugated carbon-polymer chains are under con-
sideration in the following. A simplified quantum-
mechanical model for such macromolecules is the sp hy-
bridization model. The four valence electrons of each C
atom are divided into two classes: the three 0. electrons
that constitute the chain bonds (and the bonds to hydro-
gen atoms or functional groups) and that are localized on
the length scale of these bonds, and one ~ electron which
can delocalize over several bond lengths. Of course, the
hybridization picture is not exact; a more realistic model
is given by the molecular orbital theory (see, e.g., Ref.
13). On the other hand, one can conceive an even more

simplified model for the delocalization of m electrons, i.e.,
the electrons are imagined to hop between the C atoms
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along the chain formed by cr bonds. Additional effects,
such as Coulomb correlations between ~ electrons, have
to be taken into account, of course, but complicate the
physical picture similar to the case of the classical Hub-
bard model in solids.

In the discussion that follows, we do not go back to the
complete quantum-mechanical description of the conju-
gated chains because we are interested in the properties
on a large length scale (compared to the de Broglie wave-
length), i.e., the conformation of these molecules. Large
scale properties, and especially the behavior at the criti-
cal point (e.g., of the coil-to-rod phase transition), are
generally called "universal. " Therefore we may use the
simplest model neglecting local details, like in the case of
the excluded volume problem.

Hopping models for electron delocalization such as
those suggested above are very common in solid-state
physics. The first one of this kind was proposed by
Gutzwiller and Hubbard' to describe d (and f) electrons
in transition metals. It is constructed by using Wannier
states, which are localized on the atomic scale. In second
quantization, creation and annihilation operators c (x)
and c (x) for electrons with two spin states, i.e., spin
cr = t, l located at x are introduced corresponding to the
Wannier states. The Harniltonian for the Hubbard model
reads

H=g g t(x, x')[ct(x)c (x')+H. c. ]
X,X t7

+ U g n &(x)n &(x),

in which H.c. means Hermitean conjugate throughout
the paper. The first term is purely kinetic describing the
motion between atoms at x and x', respectively, which
are imagined to be points on a lattice. t(x, x ) is the hop-
ping integral between the respective lattice points. In
general, the tight-binding approximation is assumed to
hold, i.e., the sum in the erst term in Eq. (l) is restricted
to nearest neighbors. Moreover, translational invariance
gives t(x, x')= t with t)0.—The second term is the
Coulomb interaction where U & 0 for electrons.
n (x)=c (x)c (x) is the particle number operator. The
Coulomb interaction is assumed to be screened on the in-
teratomic scales. Therefore we are left with only the on-
site term.

The Hubbard model can be also applied to ~ electrons
on conjugate polymer chains. The electrons move in a
highly restricted (though not necessarily one-
dimensional) geometry, thus validating the assumption of
localized states. Similar behavior is found for the restric-
tion of hopping to nearest neighbors. Coulomb correla-
tions are generally neglected for the stretched one-
dimensional chain in the SSH model to be discussed
shortly. We have included it while discussing an efFective
pair potential between electrons produced by the confor-
rnation. However, for the study of conformational prop-
erties local details are not important. Considering
Coulomb correlations in the spirit of the original Hub-
bard model mentioned, they may be neglected as they are
screened on interatomic scales.

Su, Schrieffer, and Heeger"' (SSH) applied the Hub-
bard model to conjugated polymers in order to explain
spectra of electronic excitations. Their theoretical ansatz
implies the existence of solitons which in the case of con-
jugate chains appear as moving domain walls separating
the two degenerate ground states of the dimerized chain.
In contrast to the work presented here, SSH are not in-
terested in the conformation, but rather start out with the
linear one-dimensional chain as a fixed configuration. In
this particular case the Peierls instability produces dimer-
ization and a doubling of the lattice constant. The a
bonds are modeled by springs with constant E that are
fixed between C atoms at the positions u„and u„+,. The
n electrons are treated in the tight-binding approxima-
tion via a hopping integral that favors hopping between
double bonds as opposed to single bonds:

t„„+l=tO—a(un+, —u„) .

tp is the hopping integral for the undimerized chain and
a is the electron-phonon coupling constant. Including
the kinetic energy of the C nuclei, one thus obtains the
SSH Hamiltonian:

+SSH g tn, n+1( n+l, sen, s+ n, s n+l, s )
n, s

+—QE(u„+,—u„) +—QMu „.
n n

In analogy to the Hubbard model, c„, and c„, are
creation and annihilation operators for electrons of spin s
at the nth C atom.

Coulomb correlations have not been included in the
above Hamiltonian, but are assumed to be effectively
present in the constants a and to. The latter constant
will also appear in model discussed below.

A continuum version of the SSH model has been
developed by Takayama, Lin-Liu, and Maki, ' which is
known as the TLM model. More recent work, e.g., by
Harigaya, Wada, and Fesser, is concerned with the effect
of randomly distributed impurities on electronic proper-
ties of conducting polymers within the framework of the
SSH or the TLM model' and localized electronic states
that result form a mutual influence between impurities
and nonlinear excitations. ' Moreover the SSH Hamil-
tonian has been generalized by Wolf and Fesser to in-
clude a disorder term describing hopping between paral-
lel chains via a Gaussian distributed hopping parame-
ter. ' Most recently, the stability of polarons has been
studied depending on chain ends and other efFects that
break conjugation, by using a generalized SSH model
with interchain hopping. '

III. A HUBBARD MODEL FOR CHAINS
IN ARBITRARY CONFORMATION

A. How to couple electrons to conformation

In order to derive the supposed coupling between con-
formational and electronic degrees of freedom, the SSH
model cannot be used for its starts from a fixed conforma-
tion, the stretched out one-dimensional chain. A model
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that seeks to overcome this deficiency must not exclude a
physically reasonable conformation because one of its
purposes is exactly to predict how the conformation is al-
tered by the presence of delocalizing electrons. In partic-
ular, the dimension of the concerned object is not to be
reduced. We remark at this point that the fractal dimen-
sion of an ideal flexible chain (random walk} is 2. For a
flexible chain with excluded volume (self-avoiding walk)
it is approximately —,. In both cases it is not 1. There-
fore, when studying a possible stretching of a Qexible
chain by the presence of delocalizing electrons, it is use-
less to start from a one-dimensional model.

Accounting adequately for this remark, we start from a
self-avoiding walk (SAW) polymer chain on a d-
dimensional hypercubic lattice of lattice constant a. To
simplify the analysis the electrons are allowed to hop on
the lattice under the constraint that they remain within
the range a of the chain such that they effectively can
jump from the chain &o one of the nearest neighbors on
the lattice. Below, the continuum limit will be discussed
where this effect does not matter, especially for chains
with excluded volume. Further simplifying the problem,
we consider electrons without spins and neglect the
Coulomb interaction as well (it will be included later in
the discussion of an efFective interelectron potential). As
a consequence a modified Hubbard model for the m. elec-
trons is obtained:

PH„= r f d—sg g [ct(x)c(x+ae„)
x p=1

+c (x)c(x—ae„)+H.c.]5„,~, ~
.

(4)

below as well as the stiffening conjectured by Pincus,
Rossi, and Cates. In the continuum limit, the apparent-
ly superfluous sites fall on the chain [see Eq. (9)]. Con-
straining the electrons to move only along the chain on
the lattice, would produce no effect on the conformation
as the sites passed by the electrons could be numbered
systematically. This cannot be done in the case of the in-
teraction given in Eq. (4).

Before moving to generalizations let us derive the con-
tinuum representations of the lattice model, which turn
out to be very comfortable in their technical handling.

B. Various continuum models

The continuum limit of lattice theories is very useful if
one is interested in the behavior of a system at length
scales that are very large compared to the lattice con-
stant. One way to perform this limit is to carry out a
Fourier transformation for the ladder operators c(x) and
then, an expansion in powers of the wave vector. ' With
c(x)=g&cj,e'"*one obtains for the Hamiltonian Eq. (4):

PH, ~

= 2t g g—czcz g [cos(k„a )+cos(q„a ) ]
k q @=1

X f d
—i(q k1r(s—) (6)

0

As only large scales are of interest, we can expand the
cosines to second order in k, which yields

I3H„= «g g c~c„— z
—k —q

k q
a

In this equation t is the hopping integral scaled with in-
verse temperature P, and it has the dimension of inverse
length. As above for the Hubbard model, t)0. The
ladder operators and the 5 function are defined on the lat-
tice and are dimensionless. Hence the only reasonable
length that exists for our problem is the contour length L.
We therefore rescaled

tp

L

tp is the above mentioned hopping parameter in the SSH
model. It is found experimentally to be equal to 2. 5eV.
Taking for L typical values of 10 or 10 (times the seg-
ment length), we find at room temperatures with
P=( ~ieV) ' that t is equal to 10 2 or 10, respectively.
Thus an expansion parameter smaller than 1 can be
defined; this wi11 become important for later discussions
below.

In Eq. (4), the electrons are not strictly confined to hop
along the chain. They can also move to and from sites
that are next neighbors of the corresponding lattice walk.
Therefore one might be tempted to introduce an addi-
tional 5 function for the arguments xkae„. However,
this procedure would not give the correct continuum lim-
it. It is the "fuzziness" of the electronic motion which
produces the electron-electron interaction that is derived

In the parentheses in Eq. (7), the second and third term
are obviously of kinetic origin. The first one, which is of
order a, produces a number operator on the chain, and
thus a constant contribution to the energy. In the case of
constant electron number it may be dropped. If there are
Quctuations in electron number, it has to be renormalized
by a chemical potential.

Now we make the coupling between electrons and con-
formation become apparent. The crucial variable to de-
scribe conformation in this specific case is the segment
density p(x) = rods 5(x—r(s}}. The last factor in Eq. (7)
which consists of the integral over the chain contour is in
fact the Fourier transform of p(x), i.e., p~ „. The cou-
pling term becomes therefore:

&H.i =«'X X (k'+q'}c,'c~~, -~
k q

The sum in Eq. (8) is usually carried out up to cutoff A
being of order 1/a where a is the lattice constant or fun-
damental length. In the case of Gaussian chains we set
a =l, I being the Kuhn segment. We have thus obtained
an interaction term with a second-order dependence on
momentum as expected in analogy to the free-electron
gas. The kinetic term is, however, directly coupled to the
conformation as the electrons are only allowed to move
along the chain.

The continuum model can also be derived in position
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space, when lattice derivatives and lattice Laplacians are
used. The interaction term then has the following form:

pH„= —ta f d "x[ct(x)V,c(x)+(V,ct(x))c(x)]

X f ds 5(x—r(s)) . (9)
0

Substituting the last factor by the segment density, Eq. (9)
yields

pH„= ta—fd "x[ct(x}V2c(x}

+(V,c (x))c(x}]p(x) . (10)

The interaction term due to hopping Eqs. (9) or (10) have
to be added to the Hamiltanian for the unperturbed con-
formation. Assuming this to be the SA% model, one
may thus obtain the Hamiltonian for the entire system:

pH= —f ds +—f ds f dt 5(r(s) —r(t))d L ()r v

2l o Bs 2 o o

tl f—d "x(c (x)V„c(x))f ds 5(x—r(s)) . (11)
0

In this equation we use a=1 if no additional bending-
energy term is present. Such an assumption can be criti-
cized as unphysical, as realistic polymers are locally stiff.
Indeed in intrinsically stiff polymers (e.g., liquid crystal-
line polymers) a modiSed persistence length defines the
cutoff, ' which is determined by the bending energy. In
most places in this paper we will use the Wiener-type
measure for the unperturbed conformation of the poly-
mers to keep the mathematical complications on a
minimum. It can be shown, however, that the theory
presented in this paper can be generalized to other types
of polymers. The formulation of the theory for random
and self-avoiding walks is understood to be exemplary to
show the possibilities at the simplest level. The general
features of the model presented here will not change un-
der the assumptions of local stifFness, more realistic poly-
mer madels, etc. As a consequence of this simplification
the Kuhn length is the minimum length (lower ento(F} of
the system. Equation (11) is very important in order to
derive a field theory for conducting polymers.

In density variables PH reads as

PH= —f ds +—fd xp (x)
21 o ()s 2

C. Generahxations: Bridge hopping and interchain hopping

Before we include the unperturbed conformation in the
Hamiltonian, we want to discuss some generalizations
concerning more complicated hopping processes. Sa far
we considered linear hopping along the chain's contour
(hence called "contour hopping" ). This is certainly the
most important cantribution for the case of a single chain
in solution. However, even in this case conformations ex-
ist where monomers that are very apart along the contour
come very close to each other (see Fig. 1). In the purely
conformational part in the Hamiltonian, these conforma-
tions give rise to excluded volume contributions. As to
electron hopping, we may canceive that electrons pass be-
tween monomers approaching each other forming bridges
(bridge hopping). Moreover we may consider many-
chains systems. In this case hopping may occur between
different chains touching one anather. In the lattice pic-
ture we get an impression how these two types of hopping
processes look (see Fig. 2). In order to discuss systems of
many chains, one has to madify the relevant variables for
the conformation. The segment position is now given by
r (s) where a is the chain index. For a system of N
chains, the collective segment density reads

N

p(x)= g f ds 5(x—r (s)) .
a=1

(14}

The Hamiltonian for the interaction now consists of two
terms:

pHo= t g f dsg—g [ct(x)c(x+ae„)
e x p, =1

+ct(x}c(x—ae„)

+H. c. ]5, , (,) . (16)

In addition we have to account for the hopping processes
in Fig. 2 which are described by PH, ;

PH, i =PH()+PH, .

PHo is the contribution from contour hopping [see Eq.
(4)] of all chains, i.e.,

—tl fd x(ct(x)V„c(x))p(x) . (12)

A further contribution to pH may be the Coulomb in-
teraction between electrons treated like in the Hubbard
model Eq. (1). In the continuum representation the
respective term is given by

U
PHC,&o b= d xn(x)n(x) . (13)

The operators n(x)=c (x}c(x)are the number operators
for the electrons located at x and U is the on-site term af
the transition amplitude and thus the coupling constant
of the electron-electron correlation energy.

FIG. 1. Excluded volume conformation. The little arrows in-
dicate hopping along the chain.
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PH) = t'—g g g c (x)c(x+ae„) dt5, (,), (,) „+c(x)c(x—ae„) dt5, (,), (,)+„+H.c. ds5„, (, )
.

a p x p=I

The 5 functions within parentheses check whether there
are neighboring segments for electrons to hop between.
The 5 function outside the parentheses ensures that all
electrons are constrained to the chains. t' is the respec-
tive interchain hopping integral. A dimensional analysis
analogous to the one leading to Eq. (5) yields

PH, = t'a +—g fd"x[c (x)V„c(x)+(V'„c (x))c(x)]
a,p

X f ds 5(x—r (s))
0

X f dt 5(r (s) —r&(t)) . (19)
0

In order to express the generalization hopping term in
terms of the segment density, one has to perform a
Fourier transformation of Eq. (19) yielding

pH)=t'a g cqcI, (k +q )pq (20)
~~q) p

In contrast to PHo, the segment density appears in
second order. This situation is completely analogous to
the density representation of the excluded volume in-
teraction term which is also of second order in p. This is
not surprising as the conformations contributing to gen-
eralized hopping also do so for the excluded volume
effect.

From Eqs. (19) or (20), one can also derive a continuum

B ——G
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m (;
I

I

0 0 0

0 0 0

f- —B D

() 0 0

() () 0 0

0 () 0 0

0 0 0 0

0 0 0

FIG. 2. Inter- and intrachain hopping.

t'=
L

t) is another hopping parameter introduced (in analogy
to to) for generalized hopping processes. We suppose
that t'(t implying that electrons favor linear hopping
along the chain.

In the continuum limit of Eq. (17) the 5 functions
within parentheses become 5 functions of the form
5(r~(s) —rt)(t)). Similar to Eq. (9), we obtain

We have also used a =I for the reason mentioned above
[see the discussion following Eq. (11)]. Equation (21) con-
tains two terms quadratic in p(x): the excluded volume
and the generalized hopping term. The excluded volume
interaction is repulsive whereas the generalized hopping
term is attractive. The latter one gives an increased delo-
calization of electrons favoring an effective attraction of
segments. This may appear in contradiction to the sup-
posed stretching of the chain which will be derived
below. However, one has to keep in mind that the princi-
pal mechanism is single-chain hopping leading to a
stiffening of the chain. (Only in melts, a correction is ex-
pected due to contributions from more general hopping
processes which can become important under certain cir-
cumstances. )

IV. CONSEQUENCES

With this minimal model for conjugate polymers that
couples electrons and conformations, different possibili-
ties emerge to discuss consequences. In the complete
model for conformation and hopping electrons one may
first eliminate the electronic degrees of freedom thus ob-
taining an effective interaction for the chain conforma-
tion (a). Second, one may integrate out the conforma-
tional degrees of freedom which gives an effective Hamil-
tonian for the electrons (b).

This becomes obvious as the partition function for the
entire system formally reads as:

Z= px C X C X

p(H ft Ip(x)I ]+0&[I c(x)I, I c(x) I ])
(22)

A. An e8'ective Hamiltonian for the conformation

In order to examine the inAuence of the electronic de-
grees of freedom on the conformation, the electron fields
are integrated out to yield an effective conformational
Hamiltonian:

fg) ( )
conf, eN' &

model in position space for many-chains systems in terms
of the segment density. Together with the SAW Hamil-
tonian one obtains for the entire system (neglecting
Coulomb correlations due to the reasons discussed
above):

2

PH= —g f ds +—f d "xp'(x)
21 o Bs 2

—tl' f d "x(c (x)V'„c(x))p(x)

t'I'+—f ddx(c (x)V'„c(x))p'(x) .
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Z=PXCXCX
Xexp — x ypxSO' x—ypy

+et(x)M(x, y)c(y)], (24)

where M(x, y) is given by

M(x, y)= —ta [2p(x)V„+2V~(x) V„

+(V~(x))]5(x—y) . (25)

This matrix is obtained by appropriately commuting the
ladder operators in Eq. (10) so they appear on the very
left and right side of the interaction term.

Sp(x —y) = I/V(p(x)p(y) ) is the structure factor in
position space which is assumed to be translationally in-
variant. The fermion fields can now be integrated out.
The arising determinant is then exponentiated again to
yield:

Z = fSp(x)exp —g g [p(x)Sp '(x—y)p(y) ]

%e mill elaborate in the discussion that follows on this in-

tegration and its consequences. Describing the confor-
mation in terms of the segment density is very efficient
for polymer melts. For dilute systems a field theory is
more appropriate, and this approach wi11 be presented
elsewhere.

For polymer melts the Gaussian approximation is
sufficient which neglects terms of order greater than 2 in
the density variables. To avoid complications we further
restrict the analysis to contour hopping, i.e., the case
where t ))t'. The partition function Eq. (23) then reads
as

In the present case it is easier to perform the traces in po-
sition space whereas the density variables are considered
in momentum space. A convenient expression for
M(x, y) is obtained from Eq. (8) by transforming the
ladder operators back to position space. This yields

M(x, y) = ta g p z(k2+ q }e
k, q

(30)

The first term is constant in pk and can be included in an
unimportant overall normalization factor of the partition
function Eq. (27). It is neglected in the subsequent dis-
cussion. The second term deserves more attention and
gives contributions to the structure factor. First, it has to
be cast into form comparable to PHp so that the product
in density reads as pkp k. This is done by transforming
the momenta according to k~k+k'. We obtain

~'a4
PH, = g p ~q[(k+k') +k' ]

k, k'

Then the square of the expression in parentheses is evalu-
ated. Note that only terms even in k or k' contribute to
the sums. By introducing a momentum cutoff A that is
proportional to the inverse of a, the fundamental length,
the sum over k' is performed yielding

We now consider PH„expanded according to Eq. (29).
A straightforward calculation gives

PH, =—2 g M(x, x)+—g g M(x, y)M(y, x)
1

X x y

~'a4
4ta2—ppgk + g pg ~g q.(k +k' )

k k, k'

(31)

+Tr lnM(x, y) (26)

Z =N f g dp&exp ——QSp ' (k)p~ &+g lnM(k)
k 0 k

(27)

The negative exponent in this equation is the effective
Hamiltonian for the conformation. For the discussion
that follows it is more convenient to rewrite the partition
function in momentum space. Then it reads

PH)= —gp ~)t a V
1

k

2gd+2 2gd+4
X k 3+k B+d+2 d+4

where

A = „and B= fdk(l+cos 8) .Qd 1

(2n. )" (2m. )

(33)

(34)

Tr 1&'lf =2TrM —
—,'TrM +const terms . (29)

In this representation the effective Hamiltonian is given
by

1
PH t tt=PHp+PH] = g Sp (k)p~ g Tr 1nM

V k

(28)

To treat Tr lni!lf, it turns out to be sufficient to expand the
logarithm of M to second order in the density and to
determine so corrections to the (inverse) structure factor.
First we note that

Qz is the surface of the d-dimensional unit sphere and dk
is the corresponding infinitesimal solid-angle element.
For d=3 we find A =(2n) ' and B=2/3' . The result
Eq. (33) agrees with intuition because for a chain that is
stiffened due to electron hopping, the structure factor is
expected to contain a contribution proportional to k .
Hence the conjecture made in Ref. 6 is justified.

Vfe can now assess the influence of hopping electrons
on the conformation by looking at the structure factor
for the entire system. For a conformation model with ex-
cluded volume interaction, it reads
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S '(k)=SO '(k)+t n+k (t b)+k (t v')

=S„,',„„„„,,„(k)+v+t u+k (t b)+k (t V') .

(35)

operator for the electronic degrees of freedom.
We first consider single-chain hopping in the limit

t &)t'. The cumulant expansion is only performed for
PHo up to second order in t, neglecting for the moment

v is the excluded volume parameter. S„„„„„„;,„(k) is the
structure factor for the chain conformation without any
interaction and has to be calculated for a particular mod-
el, e.g., for Gaussian chains where it is equal to the Debye
function. The coef6cients 0', b, and V are obtained from
Eq. (33). They are given by

2pd+4 2pd+2

A"
Aa V

2

(36)

By considering a concrete model for the conformation
without interactions, one can estimate the influence of
the electronic parameter t on the conformational parame-
ters of the model used. Taking, e.g., the k expansion by
Shimada, Doi, and Okano for stiff chains in the flexible
limit (with no nematic interactions present), one finds

S '(k)= 1+pL(v+t 5)+k ( —'Ll +t bpL)
pL 9 P

+k +t V'pL +
1I

(37)

I is the persistence length and is related to the Kuhn
length in the flexible limit as lz =I/2. p is the mean seg-
ment density.

Within a single-chain hopping model, there are contri-
butions to the excluded volume parameter as well as in
the second and fourth power of the wave vector k. The
two latter contributions imply an effective increase of the
persistence length which is proportional to t . The next
step is to discuss the effect of generalized hopping pro-
cesses on the conformation. This is a subject of future
work.

B. The in8uence of the conformation on the electrons

2

(e ') =1 P(—,H )+ (,H )l+O(t )

O, eff
—PH

—P&H )+P /2(&H ) —&H ) )
(40}

It will be shown below that the expansion in Eq. (40} can
be written in terms of graphs that can be constructed
from vertices. After identifying the corresponding
graphs, one can immediately write down the Fourier
transform of the interaction potential. For this purpose
we transform PHD in Eq. (8) to new momenta k and

PHo =ta g[p +2k(k+p)]c„+~c„pv .
k, p

(41)

This expression can be interpretated in terms of a vertex
(see Fig. 3). An electron with momentum k receives the
momentum transfer p from the conformation and leaves
with momentum k+p. The expansion Eq. (40) is now
written in terms of graphs that are assembled from the
vertices. Finally, when the summation over all conforma-
tions is performed, the products of variables pp are re-
placed by their mean values. We exploit the fact that the
system under consideration is translationally invariant
which implies that (p ) =po=L and (pgv. )
=5v ~(p~ z). This reduces the number of the mo-
menta to be summed over. Moreover we have to extract
the self-energy term in order to isolate the pure pair in-
teraction. This is done by using standard procedures that
commute all creation operators to the right and ensure
that the same external momenta are written from the in-
side out in a product of ladder operators. Finally, we
obtain for the effective electronic Hamiltonian up to
second order in t:

We now eliminate the conformational degrees of free-
dom to discuss their influence in terms of an effective in-
teraction between hopping electrons. We integrate there-
fore over the density fields p(x) which yields the follow-
ing partition function:

Z= C X C X

+p

X (exp[ PH, ~( I c (x)], [c(—x)] )]),0 f . (38)

The mean value is with respect to the distribution of con-
formations and is replaced by a cumulant expansion.
This produces an effective Hamiltonian for the electrons:

Z= C X C X

Xexp[ —pH„,ft( [c (x)],[c(x)])] . (39)

Our next purpose is to calculate the effective Hamilton FIG. 3. The vertex for t coupling.
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g g [p +2k(k —p)] circ„(p~ )
k pXO

pHO, It= ta g 2k etc„po-
k

t2a4
g g [p'+2k(k+p)][p +2k'(k' —p)]c„+pc„. c„c„(p~ ) .
k, k' p&O

(42)

The three different terms can be identified with different Feynman graphs (see Fig. 4). The first one is related to free
electrons. The second type of graph is a second order in t and containing two ladder operators gives the self-energy to
the effective electron mass and is to be treated together with the free-electron part. The third graphs represents the
effective pair interaction; its analytic counterpart gives the effective pair potential for electrons in presence of conforma-
tion in certain approximations to be discussed below. In order to evaluate the graphs, the mean values with respect to
certain models for the unperturbed conformation —e.g., random walk or SAW —have to be evaluated.

We discuss the third graph in Fig. 4 in order to determine the effective pair potential. It is contained in the
coefficient of the operator product in the third term in Eq. (42), i e , .th. e two factors in parentheses. Assuming that
electron momenta are small, multiplication gives only a contribution by the term proportional to p . This is, of course,
a crude approximation but acceptable for a first assessment of the potential. We thus obtain for the Fourier transform
of the pair potential:

~2a4
4 ]2g 4

PV(p)= — p (pp ) = — N Lp g(p) . (43)

In the last step we replaced the mean value by the single-chain structure g(p) factor times N L. We again consider
Gaussian chains for simplicity. In this case g(p) is equal to the Debye function and a =l. To obtain the pair potential
in position space the following integral has to be performed:

d 2 4d p t l
N L2 4 2 p'(LI/2d) 1+ 2LI ipx-

(2m) 2 p (Ll/2d) 2d

t2l4N L 2 2d
V P e p(LII2d) —1+ 2 Ll ipx-

Ll 2~d P 2d

—1+p2Ll
2d

The integral cannot be evaluated exactly. Therefore the integrand is expanded as follows:
'2 I ~ 3 4

2(LII2d) 2 Ll 2 Ll 1 4 Ll 1 6 Ll () Ll
2d 2d 2! 2d 3! 2d 2d

1 4 Ll=
2tp

J

1 4 Ll
P2 2d

2 3
1 6 Ll +0 s Ll
3!' 2d

+ ' 2d

1 2L! 4 Ll
3 2d 2d

4

(45)

The expression in parentheses in the last line can be ap-
proximated by an exponential function, yielding the fol-
lowing integral:

pV(x) N L2V P 4e —(I/3)p (LI/2d) ipx-t'14 dd

(2m. )'

(46)

This is a Gaussian integral which is integrated easily.
Substituting for t, Eq. (5), the pair potential in d-space di-
mensions is given as a function of a scaled distance
(without dimensions) x =r &3d l2Ll where r =

~
x ~:

k-p

k+p

pV(x)= —
d t()p

(2n. )

d/2+2

X V/

X ——+1 —(d+2)x +x e
d d 2 4 —x
2 2

In d =3 we have

(47)

FIG. 4. Feynman graphs in second order of t.

k'-p



13 236 M. Oi iO AND T. A. VILGIS

7/2

PV(x)= — t P — X VI'/
(2 )3/2 0 L

X —5x +x e
15
4

The corresponding graph in d =3 for

pV(x}=—C —5x +x e2 4 —x'
4

(48)

(49)

arises, When spin contributions are neglected, we obtain
a contribution proportional to a Dirac delta function:
pVc,~,~b(x) = UV5(x). Thus, the potential becomes
singular at the origin so that the absolute minimum in
Fig. 5 is never reached.

We now re6ne the expansion in terms of graphs by in-
cluding pH, with the hopping parameter t' P. erforming
the transformation q~q+ k in Eq. (20) and using

p =p', we obtain the following expression for pH, :

PH~=t'a g cj~~qcqpp ~@[2k(k+q)+q ), (50)

where the constant C contains all prefactors in Eq. (48), is
shown in Fig. 5 for C= l. There is obviously an attrac-
tive short-range part, a slightly repulsive part on inter-
mediate distances, while for the large distances the poten-
tial becomes zero after passing through a weak second
minimum that is shown in the inset of Fig. 5.

It is useful to consider the Srst maximum and the
second minimum. A minimization procedure applied to
Eq. (49) gives, in d =3, r =0.602~Ll and
r;„=1.092PLl in dimensions of length. For 1= 1 and
L=10 we find for the extrema in units of the Kuhn
length: r,„=60.2 and r =109.2.

To assess the strength of the potential with respect to
thermal energy one can make a simple approximation of
the prefactors in Eq. (48). One substitutes for the volume
V the volume of the chain, where R 3 is the mean end-to-
end distance. Using R =(Ll)'/ and estimating the nu-
merical factors by 10, one obtains pb, V-10 t~~p2L 2l .
At room temperature and for L=10 in units of the
Kuhn length, approximately PV-10 is found. There-
fore, at room temperature the electrons can easily over-
come the attractive range of the potential. On the other
hand, pV is of order 1 for temperatures T-10' 102

(for the same choice of the remaining parameters) where
it is useless to discuss the Qexibility of polymers as realis-
tic systems are far below the glass transition.

Including the Coulomb interaction term from Eq. (1) in
an analysis of the pair potential, a slight modification

which can be represented by the vertex, Fig. 6. The
Fourier transforms p and p& z appear as pseudoladder
operators, but only to motivate the Feynman graphs.
Again, we perform a cumulant expansion up to second
order in t and t', now for the entire Hamiltonian

pHp+pH „giving for the effective Hamiltonian

P(H„,+H'„)=+P&H, &+P&H, &

[&(H +H, ) &
—&(H +H, )&'] .

(51)

(52)

and

&ep,u) p, »„, p, „&I„PP—„&— (53)

On the right-hand side of Eq. (51} there is a number of
additional cumulants that have to be determined. The
occurring terms are further simplified by exploiting the
translational invariance of the conformational degrees of
freedom, i.e., the density. In particular one has

Ppq k+q
/'' C

4
0.0 1.0

-0.1
1.5

2.0

2.0 2.5

3.0
I

4.0

FIG. 5. The pair potential in d=3; the inset gives a
magnified view of the second minimum. FIG. 6. The vertex for t' coupling.
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(pp, pp)'P3pp, ) p, , —s —
p3

—p (pppppp3pp4)

+ (p p ) (p p ) +permutations .

(54)

Apart from the terms arising from contour hopping, we
obtain a number of additional terms in the effective Ham-
iltonian which are denoted by a prime ('). For the elec-
tron self-energy we get the following additional contribu-
tions:

t'a4
PH', ~,~=2t'a gk c„c„(pg ) — g g [2k(k —q}+q ] c&c„(ps gp s ~p~)

k, p k, p, p' q+0

t'a4
g (2k ) c„c„(p ~~)(p sp~. ) t' a —g +[2k(k —q)+q ] cscz(p~ gs s)(pg ~) .

k, p, p' k, p q+0
(55)

These terms correspond to the Feynman graphs in Fig. 7. The term mixing PHo and PH, which is of order tt yields an
external potential:

s',„~so,
= tt'a g —+[2k(k+p)+p ] ca+pet(psp p spy, ) .

k, q' p%0
(56}

The corresponding graph is shown in Fig. 8. For Gaussian chains the three-point correlation function in the density
variables, like in Eq. (56), vanishes. It is therefore useful to consider a further approximation, by requiring p = —p. In
solid-state physics, this approximation is known as random-phase approximation (RPA). s It yields in our case

PH', tt,„,~, = —tt'a g g [2k(k+p)+p ] est+ cz(pg )po .
k p%0

The contribution to the effective pair potential contains terms of order tt' and (t') . It reads as:

PH', s t;,~, = —tt'a g g [2k(k+q)+q ][2k'(k' —q)+q']c„+~c~ &c& c~(pg & &p&. )
k, k', p' q&0

t'2 4
+ g g [2k(k+q)+q ][2k'(k' —q)+q ]cz+ cz, cz cs(p gg p ~ ) .

k, p, k', p' q%0
(58)

The arising terms may also be identified with graphs (Fig.
9}. For the first term we may perform a RPA as in Eq.
(56). Considering all additional terms arising in the
effective Hamiltonian [Eqs. (55), (57), (58)] the term PH „
Eq. (50), leads to a dependence on three-point and four-
point correlation functions in the cumulant expansion.
In terms of the conformational degrees of freedom, this
amounts to including the second and third virial
coemcient.

V. MSCUSSIGN

This paper discusses the statistical behavior of con-
ducting random and self-avoiding walks. It has been

shown that the presence of mobile and delocalizable elec-
trons as present in conjugated polymers have consider-
able consequences on the conformation. Vice versa a
similar statement holds, i.e., the conformation of the po-
lymers deeply influences the electronic behavior. The
model introduced in this paper combines the classical
Edwards-Wiener theory of self-avoiding walks with the
Hubbard model for electron hopping. Unlike in quasi-
one-dimensional electron systems the usual quantum-
mechanica1 formalisms cannot be used and wave func-
tions cannot be calculated by the Schrodinger theory.
The combination of the standard polymer theory and the
Hubbard model for electron hopping leads to several new
consequences for the theory of conducting and conjugat-
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k'-q

p+q

P

k+q

k-q k

k'-q

p+q

FIG. 7. Self-energy graphs due to t' coupling.

P P+P

FIG. 8. The external potential.

ed polymers.
The first result confirms the scaling conjecture of

Pincus, Rossi, and Cates that the delocalization of
charge carriers stifFens efFectively the polymers. The
physical reason is that the hop along the chain becomes
more probable than if the chain is locally very flexible.
This is in accordance with the quantum-mechanical pic-

FIG. 9. Contributions to the efFective pair potential.

ture that the transition element of an electron to hop to
the next segment is larger if the chain is locally one di-
mensional. The conclusion whether a complete rod-to-
coil transition is theoretically possible in conjugated sys-
tems requires more detailed single-chain field-theoretic
studies, that use an O(n)-symmetric field theory. Corre-
sponding results will be presented elsewhere. The ad-
vantage of the path-integral formulation presented in this
paper is that several consequences can be discussed. The
efFective pair potential between electrons shows
anomalies, in particular the (weak) disorder-induced lo-
cahzation of m electrons, which is clearly the efFect of the
conformation. Moreover the theory itself is not limited
to intrachain hopping (contour and bridge hopping) but
interchain hopping in strong solutions or melts of flexible
conjugated polymers can be treated within the same
framework as we have demonstrated.

In most equations we have used flexible "Wiener poly-
mers" for reasons of simplicity and clarity in this paper.
Indeed the choice of the simplest polymer model allowed
several cross checks as their conformational behavior is
well known. The formalism presented herc is not bound
to the usc of Wiener-type conformations and can be gen-
eralized indeed to more realistic polymers which include
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a local stifness and a local bending energy at the segmen-
tal level. This generalization has been used in the section
where a melt of conjugated polymers has been treated,
where implicitly the stifF chain Hamiltonian by Saito,

Takahashi, and Yunoki has been employed. 23 The gen-
eral conclusions derived in this paper do, however, not
significantly depend on the polymer model under con-
sideration.
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