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Pressure-induced kinetics of ferroelectric phase transitions
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The hydrostatic-pressure-induced kinetics of paraelectric-ferroelectric phase transitions is considered
on the basis of the tine-dependent Ginzburg-Landau theory. The exact solution describing the inter-

phase boundary at first-order ferroelectric phase transitions is used for analyzing the movement of the
interphase boundary under the inhuence of hydrostatic pressure. Temperature and pressure depen-
dences of the interphase boundary width and velocity are calculated by using the experimental data in

BaTiO3. Power laws of the temperature and pressure behavior of the interface velocity v = v(
~

T —T„~ )

and v = v {~p
—p, ~ ) are found. The pressure hysteresis is calculated.

In the last few years the problem of interphase bound-
ary propagation at first-order phase transitions has re-
ceived renewed experimental and theoretical interest. '

The growth and kinetics processes at symmetry-breaking
first-order phase transitions are associated with the mi-

gration of interphase boundaries separating the two coex-
isting phases. Recently the infiuence of electric and mag-
netic fields on the phase-trans'. tion kinetics has been ex-
tensively studied at first-order dilusionless phase transi-
tions in solids. ' ' As is well known, a great part of
diffusionless solid-solid phase transitions is turned out to
be a first-order type. Hydrostatic pressure can be a
powerful tool of governing the phase-transition order:
first-order phase transitions can be transformed into
second-order ones with increasing pressure. ' To the best
of our knowledge, the majority of hydrostatic pressure
researches of ferroelectric phase transitions has been car-
ried out for studying the static properties of ferroelec-
trics. The efficiency of the pressure investigations in fer-
roelectrics is caused by the sensibility of short-range and
Coulomb forces, determining the nature of ferroelectric
phase transitions, to pressure. One of the most pro-
nounced pressure effects on the ferroelectric properties is
large shifts of phase-transition temperatures. For this
reason, we assume that pressure may also essentially
inhuence the phase-transition kinetics which depends
strongly on the phase-transition temperature. The pic-
ture of the temperature-induced phase-transition kinetics
at ferroelectric phase transitions should be complemented
by investigating the pressure el'ect on the interphase
boundary propagation. This paper concerns the hydro-
static pressure effect on the phase-transition kinetics in
ferroelectrics. We discuss the interfacial kinetics within
an exactly soluble model which is the time-dependent
Ginzburg-Landau theory. It has been used for tempera-
ture, electric, and magnetic field effects on the phase-
transition kinetics in ferroelectrics in (Refs. 1, 3—5, 7, 10,
17, 18, 21, and 22). We propose here to use this model
for studying the pressure-induced kinetics of ferroelectric

phase transitions. We also calculate the hydrostatic-
pressure hysteresis.

The most common approach for the ferroelectric phase
transitions involves the use of the time-dependent
Ginzburg-Landau theory which associates a thermo-
dynamic force with an approach to equilibrium governed
by a damping term. The model assumes that the interfa-
cial dynamics is entirely governed by the evolution of the
order parameter which is polarization P:

aP SS
Bt 5P '

where I is the Landau-Khalatnikov transport coefficient
which sets the time scale of the relaxation process and is
assumed to depend noncritically on a temperature and
pressure, E is the free energy given by the Landau*s ther-
modynamic theory of phase transitions. The theory is
based on the expansion of the free energy in a power
series of the polarization which serves as the order pa-
rameter of the system. For the simple case of a free fer-
roelectric crystal which is nonpiezoelectric in the
paraelectric phase, like ferroelectric perovskites, the free
energy takes the form

F=I [f+D(VP) ]dV, (2)

where f is the free-energy density given by

f(p, T,P ) =f o(p, T )+ ,' AP 'BP + ,' C—P———
where p is a pressure, T is a temperature, fo is the free-

energy density for the paraelectric phase. A, B, and C
are coefficients which can be functions of temperature
and hydrostatic pressure. For B and C &0, Eq. (3) de-
scribes a first-order phase transition. For B & 0, a
second-order phase transition takes place. If B=0, a tri-
critical point (p„T, ) is reached; this is the point in which
a line of first-order phase transition goes continuously
into a line of second-order phase transition. D is the pos-
itive coefficient of the gradient, inhomogeneity term. The

50 13 132



50 PRESSURE-INDUCED KINETICS OF FERROELECTRIC PHASE. . . 13 133

functional derivative dF/dP is a term tending to restore
the value P to its thermal equilibrium value.

When hydrostatic pressure is applied to a crystal with
a centrosymmetric paraelectric phase and a polarization
along one of the crystallographic axes in the ferroelectric
phase, the lowest-order interaction is

f(P,p)=QpP (4)

where 0 is a function of the electrostrictive compliances.
Then Eq. (3} taking into account the term depending on
mechanical strains f, can be presented as follows:

f=f, + pp(T To)+—Qp IP P—+ —P— (5)

2"0(p )= 2'0(0)—2Qp
(6)

It follows from Eq. (5) that dielectric susceptibility e
obeys the Curie-Weiss law. At a constant temperature
the Curie-Weiss law can be written as follows:

—=20(p —po),
1

(7}

1 p[ T To (0)]-
po= (8)

where A =P(T To}+—2Qp. To is the stability limit of
the paraelectric phase, coefficient P does not depend on a
temperature and pressure; this statement is confirmed by
the absence of a temperature and pressure dependence of
the Curie-Weiss constant, for example, in perovskites.
The present form of the coefficient A in Eq. (5) is correct
in ferroelectrics for which the temperature of stability
limit of the paraelectric phase decreases linearly with in-
creasing pressure, for example, in perovskites:

P, =P + «1/Q)(P Pa+1/4Q»1

p'=p, + —Q(3/4Q)(p, —pa+3/16Q),3
(12)

3b c*
16C

B=b(p, —p),

(13)

(14)

where the coefBcient b does not depend on a pressure.
The pressure dependence in Eq. (14} is explained as fol-
lows. This interphase boundary may remain quite sharp
unless the temperature or pressure get suSciently near
the tricritical point, when it becomes dispersed by Buc-
tuations that are large in spatial extent. The temperature
difference between the phase-transition temperature T,
and the temperature corresponding to the stability limit
of the paraelectric phase To decreases with increasing
pressure and this is a manifestation of the fact that the
character of the phase transition changes from first order
to second order with pressure, as seen in
perovskites. ' The tricritical point is characterized
by the temperature T, at which TO= T, =T'= T, and
the pressure p, at which po =p, =p =p, . In many cases
the tricritical pressure is much larger than the atmo-
sphere one. Thus, Bo=bp, (p, »1 bar), where BO=B (at
p=1 bar}. Therefore, the phase transition is accom-
panied by pressure hysteresis (P» —Po) determined by
Eqs. (12) and (13).

Using the above pressure dependences we consider the
pressure-controlled interfacial dynamics at ferroelectric
phase transitions. Variating the functionals (2) and (3)
and substituting the result into Eq. (1), we obtain for the
uniaxial case

In perovskites the crystal obeys the Curie-Weiss law both
with respect to pressure and temperature:

2P+I ( AP BP +CP )
—2I D =0—.

t X
(15)

c
T TQ(p )— (9)

c

P —Po(T)
' (10}

where c is the temperature Curie-Weiss constant and c'
is the pressure Curie-Weiss constant; c = 1/2P and
c'=1/20.

At a constant pressure the interphase boundary exists
at the temperature range To& T&T', where T* is the
stability limit of the ferroelectric phase. Analogously, we
state that the interphase boundary exists at the pressure
range po &p &p'; po, p„and p* correspond to To, T„
and T . Temperature T, and pressure p, at which the
phase transition occurs are determined from df /BP=O
and f=f: (AC/B ), = —,

' and (AC/B2)» =—'. Tem-

perature T* and pressure p * are determined from
df /dP =0 and d f /dP =0. Thus, we have the ranges of
supercooling and superheating and corresponding pres-
sure ranges.

2 23Bc T, T+B c
0 c 8~ 0

d P2rD +U r(AP BP'+C—P')=0-.
/$2 8$

(16)

Equation (16) was solved and studied in Refs. 21, 3, and
9. The solution of Eq. (16) for the interface boundary
conditions has the kink form

PoP=
v'1+exp(s/5)

where Po is the equilibrium value of polarization

Po= (1++1 4AC/B ), —B

(17)

Equation (15}is therefore the equation of motion for the
polarization and it is mean-field representation of the
nonequilibrium interphase boundary kinetics. Now we
look for a steady-state solution of Eq. (15) for which, in
the moving reference frame of the interphase boundary,
the profile of polarization P is time independent, i.e., let-
ting s =x —vt:

(11)
and 5 is the width of the interphase boundary given by
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(3DC)'i
BV 1 —2a+v 1 —4a

(19)
stable and metastable regions of the crystal specimen.
Under isobaric conditions, we can rewrite Eq. (20) as fol-
lows:

where a=AC/B, which moves with the velocity u,

given by

V2 I DB (8a —1 —v'1 —4a}
v C V 1 —2aV1 —4a

I5 (2/3)[1+&1 (3/4}5]]
V 1 —(3/8)5+ V 1 —(3/4)5

16Q P Po
(21) T To5=

T~ To

The driving force of the interphase boundary move-
ment is the tendency of the system to diminish its free en-

ergy through a kinetic relaxation towards equilibrium.
The meaning of Eq. (17), as the moving interphase
boundary, can be understood as follows. For shoo,
P~PO and the ferroelectric phase is obtained, for
s~+ ~ the paraelectric phase P=O is obtained. Since
x ~—x, v —+ —v is a symmetry problem, for the kink
solution there is an antikink solution with the opposite
velocity, i.e., for the antikink we obtain exp( —S/6) in
(17). Consequently, the kink described by Eq. (17) is the
moving interphase boundary separating between the
paraelectric and ferroelectric phases. According to Eq.
(17) the paraelectric phase is located at the right, and the
ferroelectric phase is situated at the left. The negative
sign reverses this situation and puts the paraelectric
phase at the left. Strictly speaking, Eq. (15) admits a
multitude of particular solutions. We restricted ourselves
to steady-state solutions, where the interphase boundary
moves with a constant velocity u given by (20), but does
not change its shape. The fixed interphase boundary
shape is expected for a nonconserved order parameter.
The interphase boundary preserves its shape (17) during
the propagation because of the competition of the two
terms: the homogeneous part of the free-energy density
tends to bring the system to a stable state, while the inho-
mogeneous part of Eq. (2) has the opposite tendency.
The ferroelectric phase transition proceeds at a finite rate
by means of the phase transition front which separates

It is seen that the interphase boundary velocity may be
positive or negative depending on whether T & T, or
T & T, . The velocity v is therefore a function of super-
cooling and superheating. In Fig. 1, the interphase
boundary velocity u [Eq. (20)] is shown as a function of
temperature in BaTi03 at atmosphere pressure, where

T, =406 K, TO=391 K, T'=411 K. Analyzing the
temperature dependence of the interface velocity we ob-
tain for T) T„u ~(T T, )",—where n =1.49+0.02, and
for T&T, u ~(T, —T), where m=0. 82+0.02. Thus,
the interphase boundary velocity is expressed in terms of
the superheating and supercooling with the help of sim-

ple power laws. We can justify the application of the
theory in ferroelectric perovskites by three following ex-
perimental facts.

(a) The experiment in BaTiOi (Ref. 33}shows that the
interphase boundary velocity is an increasing function of
temperature of the type demonstrated in Fig. 1 for the su-

perheating part of the curve, i.e., it does not reach a satu-
ration: n & 1; the experimental data in Ref. 33 are con-
centrated in a very narrow temperature range,
AT=0.9-0.2 K, and for this reason it is difBcult to com-
pare quantitatively between the theory and the experi-
ment. However, it is clear that n & 1 implies that the case
under consideration describes the overdamped motion of
the interphase boundary.

(b) The experiment in PbTi03 (Ref. 7) shows that for
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FIG. 1. The interphase boundary velocity u

as a function of temperature T in BaTi03. The
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the same value of supercooling and superheating the in-
terphase boundary velocity in the heating process is
larger than in the cooling one, as is seen from Fig. 1.

(c} The calculated velocities are in agreement with
measured ones for reasonable values of I and D. '

In the same spirit we can analyze the pressure depen-
dences of the width and velocity of the interphase bound-
ary under isothermal conditions. We use experimental
data for the ferroelectric BaTi03 which is a well-studied
substance. It is seen from (19) that at p=p, the inter-
phase boundary width 6 tends to infinity and thus at this
pressure the first-order phase transition is transformed
into a second-order one as it should take place at tricriti-
cal point. In Fig. 2, the pressure dependence of the width
4 is shown [Eq. (19)]. This is an increasing function of
pressure. It is seen that the maximal increase of the
width is approximately equal to 2. This means that the
interphase boundary remains well defined under the hy-
drostatic pressure influence. In Fig. 3(a} the pressure
dependence of the velocity v is demonstrated [Eq. (20)).
The sign of the velocity U de5nes the direction in which
one phase grows at the expense of the other, i.e., the sign
depends on the direction in which the interphase bound-
ary propagates thus leading to formation of the paraelec-
tric or ferroelectric phase. At p=p, the interphase
boundary stops because the difFerence between the free-
energy densities of the two phases being the driving force
of the phase transition is equal to zero. True equilibrium
between the two phases is possible only at p=p, . The
above-mentioned interfacial broadening results from the
increase in the interphase boundary velocity. We can
clarify the above pressure-controlled dynamics of the in-
terphase boundary by using Fig. 3(b), in which the free-
energy density f is demonstrated as a function of pressure
p. The free-energy density is presented for three pres-
sures: p=20 kbar (po&p &p, -curve 1};p=20. 24 kbar
(p =p, -curve 2), and p =20.5 kbar (p, &p &p -curve 3).
Below po two minima of the ferroelectric phase exist. At
pressures above po a third, local minimum of the
paraelectric phase appears (P =0}. The paraelectric
phase is here metastable, whereas the ferroelectric one is

stable (curve 1). At the phase-transition pressure p =p„
the central minimum has the same depth as the two other
minima (curve 2). At p =p, the free-energy densities of
the paraelectric and the ferroelectric phases are equal.
At pressures above p, but below p

' the central minimum
is deeper than the two outside minima (curve 3); the fer-
roelectric phase is metastable, whereas the paraelectric
phase is stable. The two outside minima Snally disappear
at pressures above p*, and only the central minimum at
p =0 remains. Therefore, the interphase boundary exists
at the pressure range po ~p ~p'. The increase in pres-
sure leads to the interphase boundary motion such that
the paraelectric phase grows at the expense of the fer-
roelectric one. The decrease in pressure leads to the in-
terface motion such that the ferroelectric phase grows at
the expense of the paraelectric one.

For our calculations we used the following experimen-
tal data for BaTi03 at room temperature: p, =34 kbar,
p0=18.5 kbar, C'=2. 8X10 kbar, C (p=1 bar-
atmosphere pressure) =2.28 X 10 ~ CGSE, Bo=6.8
X10 ' CGSE. We can estimate the coeScient D ac-
cording to Ref. 30: D =(n/15)d2, where d is the lattice
parameter. Using d(p} from Ref. 31 we see that at the
pressure range of the interphase boundary existence (18.5
kbar &p & 20.65 kbar) the largest pressure change of the
length of the unit cell in BaTi03 (along the c axis) is
about 4%. This change is negligible in comparison with
the pressure effects presented in Figs. 2 and 3. For this
reason we do not include d(p) in Eqs. (19) and (20).
Analyzing the pressure dependence of the interface veloc-
ity for p )p, we obtain that v ~ (p —p, )", where
n=1.38+0.02 and for p &p, we have v 0-(p, —p),
where m =0.78+0.02.

Experimental investigations of the temperature dynam-
ics of interphase boundaries were carried out in ferroelec-
tric' ' ' and antiferroelectric perovskites under
isobaric conditions. As was shown in Ref. 37, the inter-
phase boundary of the Kittel antiferroelectric may also
be expressed by the kink solution (17). Consequently, the
results presented here for the ferroelectric interphase
boundary kinetics may be also applied for the pressure-
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FIG. 2. The interphase boundary width h,

as a function of pressure p in SaTi03. The
width is given in units of (3DC )' /B.
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FIG. 3. (a) The interphase boundary veloci-

ty u as a function of pressure p in BaTi03. The
velocity is given in units of
(2' /3)(I DB/C' ). (b) The free-energy den-

sity f as a function of polarization p for three
values of hydrostatic pressure p; p =20 kbar
(curve 1), p=p, =20.24 kbar (curve 2), and

p =20.5 kbar (curve 3). For the present tem-

perature the interphase boundary exists at 18.5
kbar &p (20.65 kbar.

controlled kinetics of antiferroelectric interphase boun-
daries.

In conclusion, are have presented a study of the
pressure-induced kinetics of ferroelectric phase transi-
tions. Our research is based on the exact solution of the
time-dependent Ginzburg-Landau equation taking into
account the hydrostatic pressure in6uence. The mean-
field approximation describes well many static and dy-
namic phenomena in ferroelectrics, for example, in
perovskites discussed here. ' ' For this reason, the
temperature-induced kinetics of perovskite ferroelectrics

has been successfully used for the interpretation of exper-
iments on the interphase boundary motion under isobaric
conditions. ' Therefore, the application of the pressure-
induced kinetics of ferroelectric phase transitions can be
also useful for the interpretation of corresponding hydro-
static pressure measurements. We have also calculated
the pressure hysteresis.
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