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Scaling in ferroelectrics with critical points induced by an electric field
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A method of constructing a susceptibility scaling function and extracting critical exponents from ex-

perimental susceptibility data for physical systems with discontinuous phase transitions and/or un-

symmetrical critical points induced by a nonzero field is proposed. The coordinates of these points do
not appear in the derived form of the scaling function. The transformation of the field E conjugate to
the order parameter to a new field h =E —Eo{T) where Eo(T) represents the critical isochore and/or
two-phase equilibrium line, is shown to reduce the scaling function for unsymmetrical systems to that for
symmetrical ones. Transforming original isothermal experimental data for deuterated triglycine selenate
with a deuterium content of x =100%, the asymmetrical scaling function and values of the nonzero-field
critical invariants 5, a =b, /y, and Q (equal to 1.5, 3, and 1.2, respectively) were obtained.

I. INTRODUCTION

Most of the ferromagnets are well known to undergo
continuous phase transitions, while most solid and liquid
ferroelectrics' exhibit discontinuous phase transitions,
similar to the liquid-gas transition. Systems with can-
tinuous phase transitions have symmetrical critical
points: P, =0, E, =0, T,AO, whereas systems with
discontinuous ones show an unsymmetrical critical point:
P,AO, E,AO, T,+0, where E is the (electric} field conju-
gate to the order parameter P (polarization). The two-
phase equilibrium line E =En(T) and its continuation
above T„ the critical isopolare (P =P, ), are both depen-
dent on temperature [E=Eo(T)%0] for unsymmetrical
systems in contrast with symmetrical ones, where
E =Eo(T}=0.The above name, isopolare, is introduced
by analogy to isochore for the liquid-gas transition. We
refer the reader to the couple of schematic diagrams in
other papers, ' ' where more information about symme-
trical and unsymmetrical points (Fig. 1 in Ref. 6, Fig. 1.1
in Ref. 7) as well as the phase diagram (Fig. 11.11 in Ref.
1) for ferroelectrics with discontinuous phase transitions
are given.

In the prevailing investigations ' of scaling the coordi-
nates (P„E„T,) of the critical point were required.
These studies are much easier for a symmetrical critical
point, where only one parameter, T„remains to be deter-
mined. We have proposed ' another approach which
makes the knowledge of the critical temperature T, un-
necessary. The only thing required is the certitude that
measurements are carried out in a definite phase (mainly
above T, ).

Our method is based on the relation

x(»E)/x(T o}=f[E[x(T0)]']
a =5/(5 —1)=4/y,

where x( T,E) is the electric susceptibility at temperature
T and electric field E, x( T, O) is the zero-field susceptibili-
ty. Parameter 5 is a critical exponent and represents the
power-law relation, E-P, between external electric 6eld

Q=x[T «»0]/x[T (E»El . (2)

Relation (1) defines the susceptibility scaling function and
was derived from the scaling hypothesis. It is true for all
physica1 systems satisfying the scaling hypothesis and be-
longing to difFerent universality classes, which have a
symmetrical critical point.

In this paper we generalize relations (1}and (2) and all
the results given in Ref. 9 for symmetrical systems to un-
symmetrical ones. In Sec. II, considering a simple model
of the discontinuous phase transition, we show the ex-
istence of a general structure of scaling function for an
unsymmetrical critical point. This scaling law is indepen-
dent of coordinates of this point. Finally, in Sec. III, the
experimental isothermal data for the susceptibility of
DTGSe ferroelectric are transformed into the scaling
function due to the results of Sec. II.

II. DISCONTINUOUS PHASE TRANSITION
AND THE SCALING

As the structure of the susceptibility scaling function
(1) is common for all experimental and theoretical
symmetrical systems obeying the scaling law, we can ex-
pect a similar result for the unsymmetrical critical point.
To get the generahzation of Eq. (1}it is sufficient to con-
sider the simplest theoretical model which is subject to
the scaling law and provides the symmetrical critical
point as a limit of an unsymmetrical one. The best candi-
date for that purpose is the I.andau-DeGennes model. It
satis6es all the mentioned requirements and does not con-
tain any corrections to the scaling.

E and the polarization P on the critical isotherm
( T = T, ). The exponent y describes the power-law form,
X(T,O)-(T/T, —1) r, of the initial susceptibility
X(T,O}. b, is the gap exponent, which appears in Eq. (2c)
in Ref. 9 [referred to hereafter as Eq. (2c.9)],
E—[T (E)/T, —1],where T=T (E) is the tempera-
ture of maximum of susceptibility x(T,E) for a given
value of the electric field E. From Eq. (1) the existence of
the nonzero-field critical invariant Q was deduced:
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The free energy (F}for this model' is given by

~=T/Tc 1—, C2&0, C3 &0, C4&0,
(3)

P, =—C3/(3Cq), E, =(—Ci) /(27Cq),

T, = To[1+C3 l(3C2C4)] .
(4)

Inserting P =P, into the equation of state we obtain the
linear relation (Eo E, -r')—of the two-phase equilibrium
curve (T & T, ) and the critical isopolare (T & T, }

where P is the polarization, C„'s are constant coeScients,
and To is the lowest temperature at which the metastable
paraelectric phase may exist. The free energy (3) and, of
course, the thermodynamic potential 6 =I' —EP are not
invariant under the transformation: P~ —P, E~—E.
Therefore, a discontinuous phase transition at zero elec-
tric Seld and unsymmetrical critical point induced by
nonzero electric Geld E do exist.

The equation of state, E =BF/BP, and the susceptibili-
ty, X=BP/BE, are needed to get the coordinates of the
unsymmetrical critical point
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E=Ec(T)=E—, +P,Cia', r'= T/T, —1,
Cg =C2 Tq/Tp =C2+ C3 /(3C4) .

(5)

Substituting P, for P in the corresponding equation for y
we get the susceptibility X[T,EO(T)] on the critical iso-
polare (5)

1/X[T Ec{T)]=C2r=1/X(T 0) C3/(3C4) (6)

and its relation to the zero-Seld susceptibility
X(T,O)=(C2r) '. Moreover, it is seen from Eq. (6) that
the difFerence of reciprocal susceptibility at zero Seld
(E =0) and on the critical isopolare [E=ED(T)] is con-
stant for all temperatures T & T, . Of course, X[T,EO( T)]
is the largest value of X(T,E), which can be gained for a
constant temperature when E is changing. From this fact
and Eqs. (5) and (6) the following behavior of isothermal
susceptibility can be deduced. When E is increased from
zero to Eo( T) (0 & P &P, ), X(T,E) increases from y( T,O)
to the maximum value X[T,Eo(T)]. Subsequent increase
of E in the region E &Ec(T) (P &P, ) causes decreasing
of X(T,E). If T is increased, Eo(T) increases too, but
X[T,Ec(T)] decreases. Besides, it should be mentioned
that if E & Ec(T) the points (E,T) are situated above the
critical isopolare (5} on the phase diagram and corre-
spond to the polarization P &P„while for E &Ec(T)
they lie below the isopolare and are connected with polar-
ization P &P, . This behavior is in a qualitative but not
quantitative agreement with the experimental data, given
in Fig. 1(a).

By elimination of polarization P, equations of state and
susceptibility may be reduced to one relation

[X[T,Ec(T)]/X(T E)—1 j'i [X[T,EO(T)]/X(T, E)+2]

=3(3C4)'~ ~E —Eo(T)~ [X[T,E0(T)]]' (7)

between susceptibilities X(T,E) and electric fields E on

FIG. 1. Functions: (a}y(T, E}and (b} [y(T,E}] ' vs electric
Seld E for seven temperatures (~= T/T, —1 &0.006, T, =309.9
K); T: 1-309.95, 2-310.30, 3-310.60, 4-310.87, 5-311.13, 6-
311.37, 7-311.70 K. The experimental data for the DTGSe fer-
roelectric crystal with deuterium contents x = 100%%uo are,
displayed by dots: about 200 values of E for each temperature.
The solid lines represent polynomial Sts using the least-squares
method.

[E=Ec(T)] and beyond [EAEc(T)] the critical isopo-
lare, where the values of critical exponents,
a =5/(5 1}=b,/—y=3/2, 5=3, y=1, LE=3/2, are the
same as for Landau theory of symmetrical critical point,
i.e., for C3=0 in Eq. (3). The presence of the absolute
value of the difFerence E —Ec(T) in Eq. (7) causes the ra-
tio Y=X(T,E)/X[T, Eo(T)] to be an even function (f) of
the argument

X=[E—Eo(T)][X[TEO(T)]]'.

It is the sought susceptibility scaling function

X(T,E)/X[T Eo(T)]=f([E Ec(T)][X[TEo—(T)]]')

(8)

for an unsymmetrical critical point of Landau-Deoennes
model. This function is thus symmetrical with respect to
Y axis. This is a consequence of symmetry of each iso-
thermal susceptibility X( T,E}with respect to a direct line
perpendicular to the electric-Seld axis at the point
E=EO(T) and coming through the maximum value,
y[T,EO{T) ], of susceptibility. There are two branches of
function (8}. One branch (X&0,0& Y&1) originates
from the points {E,T) of phase diagram situated above
[E &Ec(T) or P & P, ] and the other (X &0,0& Y & 1) is
determined by the points lying below [E &Ec(T} or
P &P, ] the critical isopolare [E =ED{T) or P =P,AO].
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The whole isopolare is reduced to one point X =0, Y =1
of the scaling function (8).

In the limit C3~0 due to Eqs. (4)—(6) the Landau-
DeGennes model (3) goes over the Landau model of a
symmetrical point with P, =0, E, =0, T, = To, Eo( T)=0,
C2 =C2 and Eq. (7) is reduced to Eq. (3a) in Ref. 10 [re-
ferred to hereafter as Eq. (3a. lO)] for the susceptibility
scaling function (1) for Landau symmetrical point.

The isothermal susceptibility y(T, E) behaves quite
differently in symmetrical and unsymmetrical cases. The
electric field, E =Eo(T), of maximum of y(T, E) is equal
to zero for all temperatures T & T, in the first case,
whereas in the second one it increases with a rise of T due
to the formula (5). Therefore, the isothermal maxima
y[T,Eo(T)] of g(T, E) decrease, widen and shift to the
higher fields E with increase of T for the unsymmetrical
case and do not move otherwise; they are just standing at
E =0 and decreasing with rise of T.

The dependence of y( T,E) on T for constant values of
E is completely difierent in continuous (1), (3a.10) and
discontinuous (8), (7) cases. The relations (2) and (2c.9),
which hold for the continuous transition, are no longer
true for the discontinuous one. The susceptibility calcu-
lated from Eq. (7) as a function of T at constant values of
E exhibits maxima which move with a change of E.
However, the relation (Zc.9) is not satisfied and the ratio
(2) is not constant and depends on temperature.

After all the relations (2) and (2c.9) are also true for un-
symmetrical case (7), however, not at constant field E but
at a constant new field h:

h =E —Eo(T), (9)

which is a difference of the electric fields E and Eo( T) (of
maximum of isothermal susceptibility) on the critical iso-
polare (5). This statement is a consequence of the struc-
ture of Eqs. (3a.10) and (7) taking into account relations
(4}-(6}.The calculations or experimental measurements
at constant values of new field l'i are equivalent to those
run on a line

where 6=—'„T, and C2 are given in Eqs. (4) and (5), re-

spectively. The symmetrical limit of these results is re-
ported in Eq. (13)of Ref. 10.

Let us notice that in the limit C~ ~0, Eq. (8) coincides
with the general form (1) for the susceptibility scaling
function for all different universality classes and symme-
trical critical points. Therefore, we can set up a hy-
pothesis that relation (8) also represents a general struc-
ture of the scaling function for all different universality

E =h +Eo(T)=h +E,+P,C2(T/T, —1),
parallel to the critical isopolare (5), where h is an usual
translation of (or a constant distance from) the critical
isopolare. According as the translation is positive or neg-
ative the system is above [E & Eo(T),P & P, ] or below

[E & Eo( T),P & P, ] the critical isopolare on the phase di-
agrarn E versus T. The calculations on the line
E =Eo(T}+h due to Eq. (7) give us (a) the invariant

Q =2; (b) the formula (2c.9) in the forin

classes with unsymmetrical critical points (or discontinu-
ous phase transitions). Formula (8) is very important for
the experimental investigations of scaling in unsymmetri-
cal systems, because, in contrast with the traditional ap-
proach, ' makes the knowledge of the coordinates of the
critical point redundant. The only information needed is
that for which phase the measurements are made.

To get Eq. (8) more similar to Eq. (1) let us make a
change of variables due to Eq. (9). Then the scaling func-
tion (8) takes the form

X[T Eo(T}+hl/X[T Eo(T)]=f(h IX[»Eo(T)]j')
~ =5/(8 —1)=b,/y .

In the limit C3~0, Eo(T)=0, h =E, and Eq. (10) as-
sumes form (1) for the symmetrical case. Furthermore,
the unsymmetrical form (10} can exactly be reduced to
the symmetrical one (1);

by the transformation y'(T, h)=y[T, Eo(T)+h]. It is
now completely clear that all the statements derived in
Ref. 9 for the symmetrical point are also true for the un-
synzmetrical critical case, when we go over from the field
E to the new field h (9). Of course, the linearity of field
Eo(T) is a consequence of relation (5) for Landau-
DeGennes model. In general, Eo( T}may be nonlinear or
even singular. It may happen when

Eo( T)=E,+P, Ci( T/T, —1)

with noninteger exponent b.
As we have already stated, the scaling function (8} for

the Landau-Deoennes model is even. The same is true
for function (10}. However, for real physical systems, we
can expect several departures: (a) exponents 5, b, , and y
may be different from their classical counterparts 3, —,',
and 1, respectively; (b) scaling function (8) or (10) does
not have to be even; (c) the relation E =Eo( T}describing
the critical isopolare does not have to be linear, it may be
singular.

The ferroelectric system investigated experimentally in
this paper (DTGSe, about 100% of deuterium, deter-
mined as in the paper by GeSi ) shows all the mentioned
deviations and confirms our hypothesis that relation (8)
or (10) as derived for Landau-DeGennes model is indeed
a general structure of susceptibility scaling function for
systems with discontinuous phase transitions. Of course
it is impossible to carry out the measurements at constant
distance h from the critical isopolare E =Eo(T) because
we do not know it before.

The experiments can be realized at constant tempera-
tures T or at constant fields E. Both these methods are
applicable for symmetrical systems (1). The isothermal
experiments are preferred for unsymmetrical systems be-
cause maxima of the isothermal susceptibility determine
the critical isopolare, which is not true for the experi-
ments at constant electric field E, where the maxima have
nothing in common with critical isopolare. We have
shown elsewhere that the critical isopolare is the en-
velope of a family of curves g(T, E) versus T for constant
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values of E and is situated to the right of the maxima of
g(T,E). The point of tangency of this envelope with a
given curve is approaching its maximum when E ( &E, )

goes to the critical value E,. So it is clear that the deter-
mination of the critical isopolare from the measurements
of y(T, E) at constant electric fields E is more difficul
than from analogous measurements at constant tempera-
ture T.

IH. SUSCEPTIBILri Y SCALING FUNCI'ION
FOR DTGSe FERROELEt.IRIC

C)

0
0 1 2 3x 10'5

The experimental results have been achieved from the
measurements of ferroelectric sample DTGSe with deu-
terium contents x =1. The gold evaporated electrodes
completely covered the surfaces of area about 4 mm of
crystal plate with crystal thickness equal about 1.1 mm.
The susceptibility was calculated from the formula
y=C/Cs —1=C/Cs for y»1, where Cis the measured
capacity of the capacitor with the sample and Cs is the
geometric capacity. The measurements of electric capa-
city were carried out by means of TESLA BM 595
RLCG meter. The frequencies of measuring the electric
field and its amplitude were 1 kHz and 44 V/m, respec-
tively. The measuring electric field and the constant elec-
tric field E were applied along the ferroelectric axis. The
measurements were made at the constant temperatures
T & T, =309.9 K and the electric field was increased and
decreased step by step.

In Fig. 1(a) the experimental data of susceptibility
y(T, E) versus the electric field E are given by seven iso-
therms of about 200 points each (-100 points for in-
creasing and decreasing field E, respectively). The tem-
peratures of these isotherms fulfill the inequalities:
T & T„~=T/T, —1(0.006, where T, =309.9 K. The
critical value of T, was estimated due to difFerent
behavior of field hysteresis above and below T, . It is
worthwhile to mention that the electric-field hysteresis
loops can be measured also above T, . However, they are
of different type from the classical ones observed below
T, . Our experiments showed that they were smaller
when the change of electric field was slower. But slowing
down the change did not always allow us to eliminate
these loops completely. It seems that other factors must
be involved, for example, history of the sample, its inho-
mogeneity, etc. The critical temperature was also es-
timated' from similar behavior of the temperature hys-
teresis of y(T, E) for measurements at constant electric
fields. Let us point out that Landau-DeGennes and other
models do not provide hysteresis above T, . The solid
lines in Fig. 1(a) are the mean values of y(T, E) for in-
creasing and decreasing field E and are represented by
polynomials generated using the least-squares method.
Their reciprocals are shown in Fig. 1(b).

The data from Fig. 1(a) are plotted in Fig. 2 due to Eq.
(1) for two values of 5 (=1.5, 3). The first value is the
best one estimated in Fig. 5 according to Eq. (10) whereas
the second one arises from the Landau theory. Vfe inves-
tigated that Eq. (1) gives no concentration of points
around any curve for any value of 5. This indicates that
Eq. (1) for the symmetrical critical point cannot be used

0
0 1 2 3 4 Sx 101O

FIG. 2. Symmetrical critical point function (1) for the experi-
mental data [the dots in Fig. 1(a)] and two values of 5; the lack
of scaling for any value of 5.
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FIG. 3. Function 1jy(T,E) from Fig. 1(b) vs Tfor E=0 and
on the critical isopolare E =SO( T) shown in the inset.
E =Eo(T) is the electric Seld of minimum in Fig. 1(b) for a
given value of T.

with the data for the unsymmetrical critical point and
there is a necessity to discover a new relation, which is al-
ready suggested in this paper, cf. Eq. (10).

The results in Fig. 1(b) are utilized in Fig. 3 to plot the
reciprocals of susceptibility y( T,E) versus temperature T
at E =0 and on the critical isopolare Eo( T). These curves
are not parallel in contrast with the curves given by Eq.
(6) for the Landau-DeGennes model. The inset in Fig. 3
shows the behavior of the critical isopolare, Eo(T), i.e.,
the temperature dependence of electric field E at max-
imum of the isothermal susceptibility y(T, E). This rela-
tion is nonlinear. It does not agree with Eq. (5) for the
Landau-DeGennes model, where the critical isopolare is
linear in temperature.
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Q =X'[T (h ),0]/X'[ T (h ),h ] .

6 may be found due to the relation h —[T (h)/T, —1],
however, more isotherms are required for that purpose.
We do not see any maxima on Fig. 4(b}. It does not mean

20.
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FIG. 4. Function y'(T, h) =y[TEO(T}+h] vs T at constant
distances (h) from the critical isopolare Eo(T) {see inset in Fig.
3) as the result of computer simulations due to Eqs. (10) and
{11)on the solid curves in Fig. 1(a) for 11 distances h. In both
(a) and (b), the value h =0 corresponds to the highest curves;
translations h;=ih~ (i =1, . . . , 5) numerate the next curves
from the top to the bottom; (a) h+ =3 X 104 V/m; (b)
h = 5.5 X 10 V/XI1.

To obtain the results discussed below we were obliged
to run computer simulations on polynomial fits of experi-
mental data from Fig. 1(a) to form new data, X'(Tk, h),
"measured" at a constant distance h from the critical iso-
polare Eo( T).

In Fig. 4 we show the transformed susceptibility

X'(Tk, h) =X[Tk,EO(Tk )+h]

versus Tk (k =1, . . . , 7). The solid lines join the dots of
the same translation h of the electric 6eld E. The highest
curves in Figs. 4(a) and 4(b) are just the maximum values,
X[T,Ec(T)]=X'(T,O}, of X(T,E), i.e., the values on the
critical isopolare, P =P„E=Ec(T)+h; h =0, shown in
the inset of Fig. 3. The successive five curves,
X[T,E0(T)+h, ]=X'(T,h, ), in Figs. 4(a} and 4(b} from
the top to the bottom are obtained for the sequence of
translations, h;=ih+ (i =1, . . . , 5); E; =Eo(T)+h;,
made to the right [Fig. 4(a), h+ =3 X 10 V/m, P )P, ] or
to the left [Fig. 4(b), h = —5.5X10 V/m, P &P,] of
the maxima for lines in Fig. 1(a).

Studying the maxima, X'[T (h), h], of four curves,
X'( T, h; }, in Fig. 4(a) we have estimated the value 1.2 for
the invariant

that there are no maxima at all below critical isopolare
Eo(T) (P &P„h; &0). They still may exist very close to
T, . But in this region it is very difBcult to approximate
the curves X(T,E) with very sharp peaks by polynomials
in a smooth way. For the Landau-DeGennes model the
invariant Q =2 both above and below the critical isopo-
lare (5), because the scaling function, Y=f (X), arising
from Eq. (7) is symmetrical with respect to the Y axis.

To test the dependence of the ratio
Y =X'(Tk, h)/X'(Tk, 0) versus X =h [X'(T„,O)]si+
[relations (10) and (11)]on diff'erent values of 5, we have
previously formed some curves, similar to those in Fig. 4,
for 29 values of the translation h: h =0, h; = ih z
(i =1, . . . , 14), h+ =1.5X10 V/m, h = —2X104
V/m. The positive translations, h;=ih+, produced the
right branches, while the negative, h, =ih, produced
the left branches of the plots shown in Fig. S. The best
concentration of points is found for 5=1.5 and their lo-
cation shows the sought scaling function. In contrast
with the Landau-DeGennes model, it is asymmetrical
with respect to the Y axis. For 5=1.5, Eq. (10) provides
the relation 6=3y.

It is worth mentioning that the same scaling function
can be derived not only from the solid curves in Fig. 1(a),
but also by separate consideration of the data for increas-
ing and decreasing field E, respectively. It seems there-
fore that, within the limits of experimenta1 error, the in-
variants 5, Q, b, /y, and the scaling function do not de-

pend on the field hysteresis above T, . This is the reason
why in Fig. 1(a) we have included the experimental data
with field hysteresis.

IV. CONCLUSIONS

It is ~orth it to finally give the list of the most impor-
tant results. The DTGSe crystal with about 100%%uo of
deuterium exhibits an unusual critical behavior. The
phase transition is discontinuous at zero external electric
field. There is the critical point ( PA ,0EA OT, AO) in-

duced by an external electric field. For this crystal it is
impossible to construct the susceptibility scaling function
due to Eq. (1) for a symmetrical critical point for any
value of 5. The general structure of the unsymmetrical
scaling function (10) is crucial for investigation of the
scaling in the real unsymmetrical systems. The recipro-
cals, 1/X(T, O) and 1/X[T,EO(T)], of zero-field suscepti-
bility and the isothermal susceptibility X( T,E}at its max-
imum are not parallel when plotted versus T. The critical
invariant Q characterizing the maxima of susceptibility
X'(T,h)=X[T,Ec(T)+h] at constant distances h from
the critical isopolare Eo(T) is estimated to be Q =1.2.
The critical exponent representing the relation
E E, -(P P, }s at —T, is, to o—ur surprise, 5= 1.5. The

gap exponent 6=3y. Making use of the scaling rela-
tions ' between the critical exponents, a=a', y=y*,
p5 =b, =y +p, a'+ 2p+ y' =2, one can speculate that
critical exponent p=2y. This relation (p& y) has never
accompanied any experimental or theoretical system so
far. Having independently measured 6 or y, we are able
to determine values of all exponents. These results may
change, when taking into account surface layers, ' which
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FIG. 5. The test of scaling for transformed
experimental data "measured" parallel to the
critical isopolare (see the next to last para-
graph of Sec. III). The best concentration of
points for 5=1.5 qualifies the corresponding
curve as the scaling function.
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are, unfortunately, diScult to implement, but seem now
to be the only way out. The critical isopolare is non-
linear, probably singular, ' Eo( T) E,- ( T/T—,—1)"
(0&b (1), contrary to the result (5) for the Landau-
DeGennes model, where the critical exponent b is equal
to the exponent y= 1 of zero-field (h =0) transformed
susceptibility y'(T, O) =1/[Cz(T/T, —1)]. However, the
problem of eventual singularity of the critical isopolare
Eo( T) should be investigated in more detail.

Finally, let us emphasize that the scaling law (10) is

also valid for the liquid-gas system by replacing P by den-
sity and E by pressure.
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