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Elastic properties of 82-NiTi and 82-PdTi
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Elastic constants of the high-temperature phases of the shape-memory alloys NiTi and PdTi are deter-
mined by means of full-potential linearixed augmented-plane-wave total-energy calculations. Thereby,
insight into the driving mechanism of the martensitic transformation of these alloys can be obtained. In
the case of NiTi, the c' and c44, moduli are found to be low and to decrease with rising pressure. We Snd
that the (parent) PdTi phase is metastable with respect to tetragonal deformations. From these data, we

can explain the different transformation behavior of the two alloys. In the case of PdTi, the Ti-Ti bond-

ing seems to be responsible for the formation of the martensitic phases. Experimental data, if available,
are found to be in good agreement with the results of our calculations.

I. INTRODUCTION

In the last few decades shape-memory metals have
found widespread applications in the fields of engineering
and medicine. Despite of their technological importance,
the driving forces of their behavior on the atomic level
are still not well understood. Since its discovery, ' the
shape-memory effect (SME) of NiTi has been a focus of
investigations in this field, ' possibly due to the simplici-
ty of the structures involved in the transformation (B2 or
CsC1 structure in the high and B19' or AuCd structure in
the low-temperature phase) and the convenient transfor-
mation temperature of 333 K. In two preceding papers '

we have performed a comparative study of NiTi and
another SME alloy, PdTi, in order to find an explanation
for the profound differences in the transformation mecha-
nism and temperature (790 K for PdTi) of these alloys
despite their similarity in structure. In these papers we
discussed the electronic structure of the parent and mar-
tensitic phases. Specifically, we found nesting features in
the Fermi surface of B2-NiTi causing anomalies in the
phonon spectra that are believed to cause an
incommensurate-to-commensurate phase transition from
the B2 to the "premartensitic" R phase of NiTi. In con-
trast, no such premartensitic phase has been found in the
PdTi system and our calculation showed that nesting is
largely reduced due to the formation of "bottlenecks" in
the Fermi surface of B2-PdTi. Some recent results seem
to confirm these findings. This paper, however, is con-
cerned with the energetic aspects of the transformation.

Several mechanisms for the martensitic transformation
of P-phase alloys have been proposed, ' some of them in-
cluding the in6uence of defects. ' " In all cases, there
are two major factors determining the transformational
behavior of the phases: (i) the presence of anomalies in
the phonon system, especially near the transformation
temperature and (ii) the temperature dependence of the
elastic constants. Unfortunately, our calculations cannot
simulate temperature effects in an easy way. Neverthe-
less, the knowledge of the limiting values of the elastic
constants for vanishing temperature and their volume
dependence can provide useful information about the
behavior of these properties near the transformation tem-

perature. Since the volume dependence of the elastic
constants should refiect at least one part of their tempera-
ture dependence, we think that it is instructive to study
this inhuence.

Since first-principles total-energy calculations are quite
sensitive to computational details, we will describe the
employed method thoroughly in the following section.
The results will be presented in Sec. III and a discussion
of the phase transformation will be given in Sec. IV.

II. COMPUTATIONAL ASPECTS

A. Total energies

For the calculation of the total energies E of the phases
we used the full-potential linearized augmented-plane-
wave (FLAPW) method, ' for it is known to be precise
in a wide range of materials and structures. The Barth-
Hedin exchange correlation potential' was used, and
scalar-relativistic corrections for the valence electrons
were included. The core states (Ni and Ti: [Ar]; Pd:
[Kr]} were treated in a fully relativistic fashion. In a
spin-polarized test calculation no evidence for magnetic
moments in NiTi was found. Therefore, spin polarization
was not included in our further calculations.

Each point of the energy surface was calculated to
self-consistency with a remaining pressure of maximum
250 mbar or approximately 2 pRy total-energy difference
between the last two iterations. The multipole expansion
of the potential and charge density in the muffin-tin
spheres was cut o8' at I =8. In the interstitial region,
plane waves with reciprocal lattice vectors up to

~
G

~

= 10
were included. The plane-wave basis was tested for con-
vergence and, typically, 200 basis functions per atom
were found to yield sufficient accuracy in all cases. The
k-point sampling in the Brillouin zone (BZ}was also test-
ed for convergence, and we found a regular mesh of 4096
points in the BZ to give accurate results. This corre-
sponds to 165, 405, and 525 k points in the irreducible
part of the BZ for cubic, tetragonal, and trigonal struc-
tures, respectively. The BZ integration was performed by
means of the linearized tetrahedron method. '

The muffin-tin radii were kept constant for all calcula-
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tions and chosen to be 2.300 a.u. for Ni and 2.150 a.u. for
Ti in NiTi and 2.537 a.u. for Pd and 2.416 a.u. for Ti in
PdTi, respectively. A mesh of 331 points with a logarith-
mic step size of 0.029 was used for the radial functions.

B. Elastic constants

For the calculation of the elastic constants we applied
the following procedure: We started with the experimen-
tal geometries and varied the volume of the phases in or-
der to determine the bulk modulus B and the equilibrium
volume Vo at T =0 K. We calculated total energies for
seven different volumes and used a second-order Birch
fit, ' thatis

E( V) =Eo+—980 VO

' 2/3
0

V

where Eo, Bo, and Vo denote the equilibrium energy,
bulk modulus, and volume, respectively. Fitting errors
were less than 10 Ry. The tetragonal and trigonal de-
formations for the calculation of the shear moduli c' and

c44 were applied to the cubic structure with the equilibri-
um volume.

The deformation tensor for the tetragonal distortion
can be written as

0 0

5 0
2

0 0 +5

(2)

conserving the volume of the phase up to second order in
the deformation parameter 5. This parameter was varied
in a range from —0.067 to +0.067 resulting in c/a ratios
from 0.9 to 1.1. We calculated the energy density
U =E/V of seven to nine deformed phases and fitted a
polynomial of fourth order to the results. Again, this
yielded fitting errors less than 10 Ry. With the rela-
tions

BE 1Bo= Vo =—(c,)+2c,~)

and (3)

1 8 U 1
C =—(c —c )11 12

6=0

two of the principal moduli of the phase can be calculat-
ed.

The c~ modulus can be calculated directly from trigo-
nal or monoclinic distortions with deformation tensors

The trigonal tensor changes the volume to the third order
in the deformation parameter, thus being slightly inferior
to the monoclinic deformation that is often applied. Nev-
ertheless, because of the relation

a'U 1 O'U
(&)

45t„ 5=0 a5 5=0

the deformation parameter can be chosen much smaller
in this case. The convenience of the higher symmetry of
the trigonal phase makes this method preferable. As be-
fore, a polynomial of fourth order was fitted to seven
points of the energy-surface, with fitting errors less than
10 Ry.

III. RESULTS

In Table I we present the experimental' and calculated
elastic constants of 82-NiTi and the relative errors. The
experiments were conducted near room temperature and
the temperature dependence of the elastic constants was
determined in a narrow range around this value. From
these experiments, it can be seen that, whereas B and c'
remain approximately constant, c44 shows pronounced
softening with decreasing temperature.

The bulk-modulus is given at the experimental volume
and is—apart from the typical overbinding that is often
attributed to the local density approximation —in quite
good agreement with experiment. The equilibrium lattice
constant is 1% lower than the experimental one.

The c' modulus of NiTi is known to be small, and our
calculations yield a still smaller value for c'. From Fig. 1

we can see that the minimum of the U„,vs c/o curve is
not at the expected value c/a =1.0. The lowest curve
was calculated for the equilibrium volume Vo, the upper
one for the experimental, and the in-between curve for an
intermediate volume. We note that the energy differences
resulting from these deformations are very small (i.e., less
than 1 mRy over the range of deformation), so care has
to be taken to use well-converged results.

The calculated value of c44 is 34% higher than the ex-

perimental one. Our calculations are valid at absolute
zero only and the experimental value was taken in a small
interval at room temperature, therefore better agreement
of our theoretical value with an experimental value near
absolute zero can be expected.

We find that the calculated c' modulus softens with ris-

ing pressure, but the effect is rather small. Recent experi-

TABLE I. Elastic constants and bulk moduli of 82-NiTi and

82-PdTi. Calculated values refer to 0 K, while experimental
data were measured at room temperature. Experimental values

taken from Ref. 16.

5 5 5

e„;= 5 5 5

L5 5 5

6ore = — 0m

Q2
0 0

4 $2

NiTi (expt. )

(GPa)

162.4
129.2
34.8
16.6

140.3

NiTi (calc.)
(GPa}

178.2
147.6
49.0
15.3

157.8

Error
(%)

+9.3
+ 13.3
+34.1
—8.2

+ 11.7

PdTi {calc.)
(GPa)

109.3
160.9

0.6
—25.8
143.7
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FIG. 1. Strain energy density U of B2-NiTi at the experimen-
tal (dot-dashed), equilibrium (full) and an intermediate volume
(dashed line) as a function of the c/a ratio.

mental data' of Ni48Ti50Fe2 con5rm these results. In
contrast, c44 is experimentally found to harden with ris-
ing pressure. The authors of this reference agreed, how-
ever, that the applied pressure (0.6 GPa} was probably
too small to give the correct behavior at the phase transi-
tion (6 GPa). Figure 2 shows the theoretical variation of
the c' and c44 moduli with the volume of the unit cell.

In the case of PdTi, the situation is not so simple. As to
the bulk modulus, we find PdTi to be approximately 10%%uo

softer than NiTi, this result being quite reasonable. The
lattice constant is 1.5% smaller at equilibrium geometry

c' c44 [GPa]

(T=O K) compared with the experimental value at
T =790 K.

The c' modulus turns out to be negative, thus indicat-
ing an instability of cubic PdTi with respect to tetragonal
distortions. Since B2-PdTi is, in fact, unstable at 0 K, we
can understand this instability, but we want to investigate
this point further. As can be seen from Fig. 3, the Ut t vs
c/a curve has two minima at c/a =1.37 and 0.85. It is
interesting that the nearest neighbor Ti-Ti (and also Pd-
Pd} distances are equal and =5.3 a.u. in both geometries.
Furthermore, we notice that the nearest-neighbor Ti-Ti
distance in the low-temperature phase 819-PdTi is also
5.3 a.u. If we assume that the stabilization of the two de-
scribed geometries is due to Ti-Ti bonding, we can also
explain why the minimum at c/a =1.37 is deeper than
its counterpart at c/a =0.85. In the first case, eight
nearest-neighbor Ti-Ti bonds can be formed on the top
and bottom squares of the tetragonal unit cell, in the
second case only four Ti-Ti distances on the sides of the
unit cell are suited for efficient bonding. To illustrate this
effect, Fig. 4 shows the valence-electron density in the
Ti-Ti directions (parallel to the crystallographic c and a
axis}. First, we notice that the electron density is lowered
as the cuts move further away from the large Pd atom.
On the left, a small maximum in the valence-electron
density appears with increasing c/a ratio in the bonding
direction parallel to the crystal's c axis. It is most pro-
nounced at a Ti-Ti distance of 5.3 a.u. corresponding to a
c/a ratio of 1.37. The same holds true for the direction
parallel to the a axis of the crystal as the c/a ratio is
lowered (right side of Fig. 4). These findings suggest that,
indeed, tetragonal deformations enable the formation of
weak Ti-Ti bonds, thus destabilizing the cubic geometry
of B2-PdTi.

The same ideas can be applied to NiTi, and we would
expect two minima at c/a =1.09 and 0.95. In fact, no
such minima can be found, and we notice that there is
only one minimum at the average c/a value of 1.02.
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FIG. 2. Volume dependence of the elastic constants c~ and
c' of B2-NiTi and B2-PdTi.

FIG. 3. Strain-energy density U of 82-PdTi at the experi-
mental (dashed) and equilibrium (full line) volume as a function
of the c/a ratio.
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FIG. 4. Top: valence-electron density p
along the Ti-Ti directions parallel to the a (left)
and c axis (right) of tetragonally deformed B2-
PdTi for various c /a ratios. Bottom:
Geometries of the tetragonally deformed B2-
PdTi structure at c/a ratios corresponding to
the minima of Fig. 3 and of B19-PdTi. Thick
lines indicate where the Ti-Ti distance is at its
optimal value of 5.3 a.u.
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Figure 3 also shows the variation of the strain-energy
density of 82-PdTi with respect to tetragonal deforma-
tions at two different volumes. We see that, as the pres-
sure decreases, the c' modulus becomes less negative (Fig.
2), and the minima are not so pronounced.

The deeper minimum is very close to c/a =&2, corre-
sponding to the I 10 structure. We also calculated NiTi in
the I.10 structure, but no stabilization of this geometry
was found.

IV. DISCUSSION

In order to study the in6uence of the elastic constants
on the transformation behavior of NiTi, we follow the
procedure adopted by Pushin, Kondrat'ev, and
Khachin. These authors derived conditions for the for-
mation of an intermediate shear structure (ISS) that acts
as a precursor for the R phase of NiTi. Three waves in
the [112] and [110]directions are involved in the transi-
tion, and an expansion of the free energy of the anhar-
monic crystal in these lattice-displacement waves was
carried out. Finally, the authors arrive at conditions, ex-

pressed in terms of elastic constants, which determine
whether an ISS, co or 9R structure is formed from the
parent phase. These structures appear also at martensitic
transitions of other bcc-type alloys. If the anisotropy pa-
rameter A =c~/c' gets too large by softening of c', a
shear in the [110](110)direction easily leads to the for-
mation of the 9R phase or directly to the AuCd struc-
ture. Otherwise, if c~ (and A) is drastically lowered, co-

phase formation is favored. In the case of NiTi, both
elastic moduli are decreasing, so the anisotropy constant
remains small (experiment 2.1, calculation 3.2) and the
complex three-wave reconstruction, leading to an ISS for-
mation, of the phase occurs.

In the case of PdTi, the situation is much difFerent. At
temperatures well above the martensitic transformation
temperature M, both shear moduli are positive; at abso-
lute zero only c44 has a small but non-negative value.

Therefore, c' should go to zero at M„while c44 should
still be positive. Thus, A gets very large and the direct
82~819 transformation occurs. As c' gets very small
due to the destabilizing efFect of the Ti-Ti bonding, the
(110) planes are free to move in the [110] direction to
form the AuCd structure. A direct transformation path
from 82- to 819-PdTi involves a deformation with the
strain tensor (e„„=e„=e =5/2, e~ = —5, e~, =e =0)
with 5 =0. 1 and a lattice-displacement wave

u(r}=aoesin(q. r) with q in the [110] direction and
e=0.09(110). The energy change associated with the
orthorhombic deformation is U =(5 /2)(3c' —c~) and
the dispersion relation (in the long-wavelength limit} of a
wave in the [110] direction with the indicated polariza-
tion depends solely on the c' modulus. Since c' vanishes
as the transformation temperature is reached (while all

other elastic constants remain finite), this direct transfor-
mation path could in fact lead to the geometry of the
martensitic phase. So far, no formation of an intermedi-
ate phase has been observed in the transformation of
PdTi. In fact, studies of Ni& „Pd„Tialloys' have shown

that the mechanism changes from a typical
82~R ~819' sequence at x =0 gradually, via mixed

types, to the direct 82~$19 mechanism at x =1. To-
gether with the mechanism, the shape-memory parame-
ters (e.g., maximum reversible deformation) change with

stoichiometry.
From the difFerences in the calculated elastic constants

we can explain the difFerent transformation behavior of
the NiTi and PdTi alloys. Experimental investigations of
the temperature dependence of the elastic constants of
82-PdTi mould be helpful to verify this model.
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