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Small-angle scattering by fractal aggregates: A numerical investigation of the crossover between
the fractal regime and the Porod regime
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Fractal aggregates are considered computationally using off-lattice cluster-cluster aggregation models. The

aggregates are made of spherical particles of different sizes distributed according to a Gaussian-like distribu-

tion characterized by a mean ao and a standard deviation 0.. The wave-vector-dependent scattered intensity

I(q) is computed in order to study the influence of the particle polydispersity on the crossover between the

fractal regime and the Porod regime. It is shown that, given ao, the location q, of the crossover decreases as
0 increases. The dependence of q, on cr can be understood from the evolution of the shape of the center-to-

center interparticle-distance distribution function.

Small-angle x-ray scattering as well as small-angle neu-

tron scattering have been widely used to study the structure

of disordered systems. ' In particular they have allowed one
to demonstrate that silica aerogels are made of connected
fractal "blobs. " ' In such materials, the wave-vector-

dependent scattered intensity I(q) exhibits two crossovers
related to the two characteristic lengths, mean particle diam-

eter ao and mean blob size g. The first one separates the

low-q (q((g ') saturation, called the Guinier regime, from
the intermediate power-law behavior, ' called the fractal re-

gime. The second one, on which we will focus in this paper,
separates the fractal regime from the high-q (q))ao ') q
behavior, called the Porod regime.

In some previous studies, it was assumed that the cross-
over between the fractal regime and the Porod regime was

always exactly located at q, =2m/ao. This assumption was

even used by some authors to quantitatively determine the

average diameter ' or the gyration radius ' of the particles.
In several other papers, an average particle radius was ex-
tracted from a fit of the scattered intensity I(q) to analytical
expressions which do not include polydispersity. ' Such kind
of analysis has been done in the case of base catalyzed and

neutrally reacted silica aerogels where the particle size poly-
dispersity impedes the determination of ao by conventional
methods such as electron micrography. In this paper we show
that such an assumption is only valid when the standard de-
viation o. of the particle size is small compared to the aver-

age ao .
In previous papers' *" it has been shown that cluster-

cluster aggregation models can satisfactorily reproduce the
structure of aerogels. Furthermore, if we are only interested
in short-range correlations, it is sufficient to consider a single
aggregate obtained with a simplified aggregation process: the
hierarchical cluster-cluster model. '

Here for simplicity we have considered the case of chemi-
cally limited cluster-cluster aggregation (CLCA) (Ref. 14)
using a three-dimensional off-lattice hierarchical procedure.
The hierarchical scheme is an iterative method which starts
with a collection of N&=2~ particles at iteration i =0 and
ends with a unique aggregate of N~ particles at iteration p.
At an intermediate iteration i, one has a co11ection of

N, =2~ ' independent aggregates, each of them containing
N=2' particles. To proceed to the next iteration, the 2~ '

aggregates are grouped into pairs and a new aggregate is
built with each pair according to a specific sticking rule. As
soon as it is obtained, the new aggregate is randomly disori-
ented and is stored in the collection for the next iteration.
The sticking rules depend on the chosen aggregation process.
In the CLCA case the sticking rule is as follows: A particle of
one cluster and a particle of another cluster are chosen at
random as well as a random direction in space. The two
clusters are disposed such that these two particles are in con-
tact with their centers aligned along a random direction.
Then a test of overlap is made for the other particles. If an

overlap is found, the trial is discarded and another choice is
made for both particles and random direction. Then, the re-

sulting aggregate is stored for the next iteration. In this
model, the resulting fractal dimension' is equal to about 2.

In this work the hierarchical procedure is initialized with
a collection of N polydisperse particles whose diameters a;
are distributed according to a truncated Gaussian distribu-
tion. We use a standard library subroutine which generates a
set of random variables x; of zero mean and standard devia-
tion equal to one, distributed according to the normal prob-
ability law:

g(x) = 2
e

—x /2

The diameters a; are calculated by

N

a =— a.0 N i
l=1

(3a)

a;= 1+sx;,
where s is an input parameter and where all the x s leading
to negative a s have been discarded. Then we calculate the
average ao and the standard deviation cr from the usual for-
mulas:
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FIG. 1.Histograms of the particle size Gaussian-like distribution
for three different cr,~ values.

N

o2= —g (a;—an)2.
l=1

(3b)

By varying the parameter s, one can vary the effective stan-
dard deviation rr,n(= o/aa), which is the only relevant di-
mensionless parameter in our problem. Note that o.,& is prac-
tically equal to s for s~0.17, where ao= 1. In Fig. 1 we
show typical histograms for different values of o,rr.

In the general case (where the standard deviation may be
large) one can no longer calculate the scattered intensity I(q)
as a product of a form factor P(q) and the structure factor
S(q). One should go back to the calculation of the scattered
amplitude, ' which is proportional to:
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where r; refers to the center of the ith particle and x refers to
a running point inside the volume of the ith particle with
respect to its center. The integral inside the sum, which
should be performed over the volume of the ith particle, can
be calculated as a function of a;, assuming isotropy and
homogeneity inside the sphere, leading to

A=+ e'q "~A;(q) (sa)

with

A;(q) =4m

I qa;& (qa;& 1 qa;'t
sin

q
(sb)

Then, assuming a random orientation of the aggregate over
the direction of q, the scattered intensity I(q) =

~A
~

can be
written as

FIG. 2. (a) Log-log plot of I(q) versus qao for o a=0. (b)
4

0 jeff
Log-log plot of I(q)q versus qao for three different o«values.
The white arrows indicate the crossover between the Guinier and
the fractal regime. The black arrows indicate the crossover between
the fractal and the Porod regime. All these curves result from an
average over 32 simulations with ¹ 128 particles.

I(q)=g AP;
qr;J

(6)

where r;; =
~
r; rj ~.

—
Note that, since the i and j dependent product A "

p4) ap-
pears inside the sum, the result cannot be split in two parts.
n particular one cannot use the distance distribution function

f(r)=X;;b'(r —r;;) to calculate an intermediate structure
factor S(q). Here the double sum has been calculated di-
rectly.

The numerical results are reported in Fig. 2 where we
have plotted the intensity I(q) as a function of the "reduced"
wave vector qao. In Fig. 2(a) is shown the I(q) curve ob-
tained for o.,&=0; in this curve we can observe the three
regimes mentioned above. Figure 2(b) shows three I(q)
curves corresponding to three aggregates of different o.,z
values. In this figure, in order to better see the crossover
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FIG. 3. Plot of q,ao versus cr,ff.

between the fractal and the Porod regime, we use the conve-
nient ~q jq repI~ ~

~4 representation where the first maximum corre-
s on thed the crossover. As indicated by the arrows onspon s to e cr

between theft f F' . 2(b) the location of the crossover betw
Guinier and the fractal regime is the same in all cases.
the slope of the fractal regime is unchanged. These two re-

an that the article size polydispersity does not affect
the intra-aggregate long-range particle corre a ion
the overall size of the aggregate. However, the location of

orresponding to the crossover between the

fractal and the Porod regime strongly depends on a.,+. n e
monodisperse case (o,ff=0), one has q,ap —217, as ex
pected, but, for increasing o;tr valu, q, p

'
p

ds low values. On the other hand, in Fig. 2(b), one ob-

serves how the oscillations of the Porod regime are mmore and

d ed as the degree of polydispersity increases.more ampe as
as a function ofIn Fig. 3 we report the variation of q,ao as a func

'

There is first a quite slow decrease, but after a
&0.1 a netsigmoidal-like behavior, q,ao reaches, for 0.,&&0.1, a

linear behavior which can be approximated by

2m
qc= (1 1 6o'ea').

ao

FIG. 4. Plots of f(r) versus r for three oeff vavalues. All these
N= 128curves result from an average over 32 simulations with

particles.

4mr N8r. In Fig. 4 we compare f(r) curves with o,ff=0 I.
d 'th =0.16 with the monodisperse curve (o,tr= ).and wit cr,~=

t atThe 8' pea a r ao=k t /a =1 as well as the discontinuiy
r a =2, which has been attributed to short-range interpar-r/Qp=, w ic a
t' 1 rrelations in a previous publication, p g

' n" are ro res-
sively washed out when introducing polydispersity. . Even if
I( ) and f(r) are not directly related, it is worth noticing
that the bump observed in Fig. 3 occu
I q an r

occurs at the value

cr,ff=0.1 at which the two peaks merge into a single broad
peak. Therefore the change of behavior occurring near

o,it=0.1 can be attributed to a modification of the short-

range correlations due to polydispersity. Note that such e-
fects have nothing to do with the truncation of the Gaussian
distribution that we have considered since this truncation be-

10

r~~
mac & ev'++sQqfree~++

The overall decrease of q,ao when increasing polydispersity
can be attributed to the fact that larger particles dominate the
scattering.

of re ime ob-In order to understand the small change of regime o-
served near cr,z= . in ig., =0.1 F g 3 we have calculated the center-
to-center interparticle distribution function f(r) for aggre-
gates of different degrees of polydispersity, which has been
normalized as follows:

t oo N —1
f(r)4mr dr=

Jp 2
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where N is the number of particles of the aggregate.
In practice, to calculate f(r), we choose a given path Br,

and we calculate the number of interparticle distances lying
between r and r+ Br. Then we divide the result by

FIG. 5. Log-log plots of I(q)q versus qap for three different

models with cr,z= ., =0.34 All these curves result from an average over
32 simulations with N = 128 particles.
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comes effective for o.,ff&0.17. On the other hand, we can
understand why the I(q) curve presents only one maximum

at high-q for o,tr~0. 1 [see Fig. 2(b)].
We have considered other aggregation models: the

diffusion-limited cluster-cluster aggregation' ' (DLCA) and

chemically limited particle-cluster aggregation (the so-called
Eden model' ). The first model gives a fractal aggregate with

a fractal dimension D=1.78, and the second model corre-
sponds to a homogeneous aggregate of dimension equal to 3.
In Fig. 5 we show the two I(q) resulting curves for a fixed
value of o,z, in comparison with the CLCA case. In this Fig.
5, we see that the crossover between the fractal regime and

Porod regime remains at the same q,ao value. This fact is
due to the common short-range correlations in all the consid-

ered cases, meaning that relation (7) is valid for a wide range

of aggregated systems.
In summary, we have demonstrated that the crossover be-

tween the fractal regime and the Porod regime is very sensi-
tive to the particle polydispersity. An empirical relation be-
tween the crossover wave vector q, , the particle average
diameter ao, and the standard deviation o. was obtained. We

have also shown that the results are almost independent on
the aggregation mechanism.
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