PHYSICAL REVIEW B VOLUME 50, NUMBER 17 1 NOVEMBER 1994-I

Successive structural phase transitions in a hexagonal linear-chain ferroelectric crystal RbMnBr₃

T. Kato, K. Machida, T. Ishii,* and K. Iio

Department of Physics, Faculty of Science, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152, Japan

T. Mitsui

Department of Physics, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko-cho, Tsukui-gun, Kanagawa 199-01, Japan

(Received 15 July 1994)

Birefringence and dielectric measurements were performed on a triangular lattice antiferromagnet RbMnBr₃. Successive structural phase transitions at T_4 (\sim 220 K), T_3 (= 230 K), and T_2 (= 444 K) were found. Through D-E hysteresis loop observations, the phases IV $(T_4 < T < T_3)$, III $(T_3 < T < T_2)$, and II $(T_2 < T < T_{\text{melt}})$ were determined to be ferroelectric. The spontaneous polarization is along the c axis, which disappears abruptly at T_4 with decreasing temperature. Below T_4 (phase V) the crystal is proposed to be antiferroelectric. The dielectric behavior of $RbMnBr₃$ is very similar to that of KNiCl₃; however, a highertemperature phase transition at T_1 assigned for KNiCl₃ was not detected in differential-scanning-calorimetry data on RbMnBr₃.

I. INTRODUCTION

Recent dielectric studies of $KNiCl₃$ (Ref. 1) and $RbFeBr₃$ (Ref. 2) revealed that so-called KNiCl₃-type hexagonal linear-chain crystals with space group $P6₃cm$ are ferroelectric. The present report on $RbMnBr₃$ describes one of our continuing studies of the successive structural phase transitions accompanied by ferroelectricity in crystals of the "KNiCl₃ family" (KNiCl₃, RbFeBr₃, and RbMnBr₃).

Magnetic phase transitions in those crystals have aroused much interest as they exhibit characteristics of the partially released spin frustration on a triangular lattice with distortion.³⁻⁵ In the fully frustrated XY spin systems without distortion, such as $CsMnBr₃$, the magnetic ordering at the Neel point T_N without an in-c-plane magnetic field $(H= 0)$ is tetracritical, which is characterized by the critical exponents of the chiral " $Z_2 \times S_1$ " universality class.⁶ Application of the magnetic field induces a splitting of T_N so as to produce a magnetic intermediate phase. This knowledge has recently been established theoretically and experimentally. On the other hand, it has been noted as a new viewpoint that an appropriate distortion introduced to the triangular lattice also makes the magnetic phase transition successive.^{8,9} Then it is possible to touch experimentally on a virtual region of H^2 < 0 in a theoretical H -T phase diagram.⁷ The magnetic phase diagram of $RbMnBr_3$, a slightly distorted triangular lattice antiferromagnet, was recently clarified by neutron diffraction.^{10,11} Contrary to the expectation that the magnetic phase transition of $RbMnBr₃$ without the field can be successive as those of RbFeBr₃ (Ref. 4) and RbVBr₃ (Ref. 5) are, RbMnBr₃ has a single ordering point at T_N . Furthermore, an incommensurate spin structure of $RbMnBr₃$, of which the origin has long been unclear, was found to transform into a commensurate structure by applying the in- c -plane field.¹¹ To understand fairly complex magnetic phase transitions in these distorted triangular lattice systems, detailed information on the structures must be sought.

The prototype structure of the $KNiCl₃$ family crystals is the well-known "CsNiCl₃-type" structure with nonpolar

 $P6_3/mmc$ symmetry, characterized as $(NiCl₃)$ ⁻ linear chains of face-sharing octahedra. At room temperature (RT), RbMnBr₃ takes a modified structure with $P6_3$ cm symmetry,¹² which is called "KNiCl₃-type" structure because the first analysis of this type was performed in KNiCl₃ at RT.^{13,14} Since two-thirds of the $(MnBr₃)$ ⁻ chains are shifted along the c axis and one-third of the chains are shifted in the antiparallel direction, the crystal is permitted to be ferrielectric. A freezing of K_4 mode lattice vibrations of the prototype $CsNiCl₃$ structure is proposed to be responsible for this structure.¹⁵ Compatibility relations permit the coexistence with A_{2u} mode distortion, which induces a spontaneous polarization parallel to the c axis.

Our recent experimental findings of ferroelectricity in $KNiCl₃$ and $RbFeBr₃$ will stimulate studies on the structural phase transitions in the hexagonal ABX_3 compounds with (BX_3) ⁻ linear chains, and also on the magnetoelectric properties in the distorted triangular lattice antiferromagnets. The present study aims to characterize the successive structural phase transitions in $RbMnBr₃$ through optical birefringence and dielectric measurements.

II. EXPERIMENTAL PROCEDURES AND RESULTS

Single crystals of $RbMnBr₃$ (Ref. 3) were grown by the vertical Bridgman method. To prepare c -plate samples, a few pieces of crystals with c planes were selected after the crystals were cut with a knife. A sanding process³ was not employed to avoid introducing microcracks. By cleaving, acplate samples were easily obtained.

From now on, we use the prototype $CsNiCl₃$ -type structure to define the primitive lattice. Then, a unit cell of the RT structure becomes $\sqrt{3}a \times \sqrt{3}a \times c$. A cleavage plane is the ac plane, normal to the a^* axis.¹⁰ The birefringence Δn^{ac} for light propagating perpendicular to the c axis indicates the difference between principal indices n_c and n_a . Nevertheless, from a measurement of electric capacitance of the cleaved ac plate, we show the dielectric constant as ε_a for

FIG. 1. The ac-plane birefringence of RbMnBr₃ (a) around T_4 (\sim 220 K) and T_3 (= 230 K) measured relatively from T= 245 K and (b) around T_2 (=444 K) from $T=300$ K. T_4 indicates the first-order phase transition with thermal hysteresis of about 5 K $(218 - 223)$ K).

convenience. Temperature detection was performed through an AuFe-chromel thermocouple for $T < RT$ or a chromelalumel thermocouple for $T > RT$.

The temperature dependence of the ac-plane birefringence $\Delta n^{ac}(T)$ at λ =632.8 nm is measured, as shown in Fig. 1, which is complementary to the data shown in Ref. 3. The rotating-analyzer method $16,17$ was used for the birefrin gence measurement. Anomalies at \sim 220 K (= T₄) of the first-order phase transition accompanied by a thermal hysteresis of about 5 K, and at 230 K (= T_3) and 444 K (= T_2) of the second-order transitions are clearly seen. At lower temperatures below T_4 (= T_{S2} in Ref. 3), $\Delta n^{ac}(T)$ of RbMnBr₃ exhibits an anomaly solely at the magnetic ordering temperature $T_N = 8.5 \text{ K}^3$

We also performed an optical-microscope observation for the c plate. The c -plate sample was chosen thus that the conoscopic pattern for the uniaxial crystal was observable at RT. At T_4 , twin layers appear in the c plane in cooling and disappear in heating. The twinning patterns are different in each observation in cooling. The typical thickness of the layer was roughly estimated to be \sim 3 μ m. The conoscopic pattern disappears below $T₄$ because the incident light is scattered. The optical anisotropy below $T₄$ in the c plane was also confirmed through the averaged c -plane birefringence Δn^c for light propagating along the c axis, where the value Δn^c below T_4 is not reproducible.

Next, the dielectric constants were measured by means of a low-frequency impedance analyzer (HP 4192A) at a frequency of 1 MHz. For the electrodes silver paste was used. The representative dimensions of the samples were 10 $mm² \times 1.5$ mm. The temperature dependences of ε_c and ε_a of $RbMnBr₃$ are shown in Fig. 2. In this figure the traces above 300 K are of heating measurements, and those below 300 K are of successive cooling and heating measurements. Anomalies associated with the structural phase transitions at T_4 , T_3 , and T_2 were observed only in ε_c . Thermal hysteresis was observed at T_4 . The ε_c measurement at lower temperatures down to \sim 11 K revealed that meaningful change does not appear below \sim 200 K. Data above T_2 , especially around $T = -535$ K, were not reproducible. At such high temperatures, the dielectric loss (=tan δ) became larger with heating. The loss was negligible at temperatures near to 300

FIG. 2. Temperature dependence of dielectric constants ε_c and ε_a of RbMnBr₃, which were obtained from measurements of capacitance of the c and the cleaved ac plates, respectively.

K; however, at the temperatures around T_4 and T_3 , the loss for the c plate showed a slight increase.

Figure 3 shows the representative 50 Hz $D-E$ hysteresis loops observed by use of the conventional Sayer-Tower circuit. Obtained values of coercive field E_c and spontaneous polarization P_s are 1.17 kV/cm and 3.8 μ C/cm² at 470 K (in phase II), 0.071 kV/cm and 0.0032 μ C/cm² at 243 K (III),

FIG. 3. The representative 50 Hz $D-E$ hysteresis loops for c-plate samples of $RbMnBr_3$. Coercive fields E_c and spontaneous polarization P_s obtained from this figure are 1.17 kV/cm and 3.8 μ C/cm² for 470 K (phase II), 0.071 kV/cm and 0.0032 μ C/cm² for 243 K (III), and 0.082 kV/cm and 0.030 μ C/cm² for 225 K (IV), respectively. Neither is detectable for 215 K (V). The maximum values of applied electric field E_{max} are 4.60 kV/cm for phase II and 1.25 kV/cm for III—V.

FIG. 4. Temperature dependence of the spontaneous polarization P_s of RbMnBr₃ obtained from the $D-E$ hysteresis loops in heating measurements. Circles, squares, and triangles represent different samples.

and 0.082 kV/cm and 0.030 μ C/cm² at 225 K (IV), respectively. Neither is detectable at 215 K (V). It should be noted that the maximum intensity of applied electric field E_{max} is small (4.60 kV/cm for phase II and 1.25 kV/cm for phases III—V). The dielectric loss appeared compensated enough to present the saturation of the loop at higher fields. The temperature dependence of the spontaneous polarization $P_s(T)$ measured up to 511 K is plotted in Fig. 4. $P_s(T)$ in RbMnBr₃ is very similar to that of KNiCl₃;¹ $P_s(T)$ is zero in phase V, rather large in phase IV, and nonzero but very small in III, but drastically increases at temperatures near $T₂$ $(III \rightarrow II)$. Through such observations, three phases IV $(T_4 < T < T_3)$, III $(T_3 < T < T_2)$, and II $(T_2 < T)$ of $RbMnBr₃$ are determined to be ferroelectric.

From these results, the structural phase transition points of $RbMnBr₃$ are summarized in Fig. 5, where those of $KNiCl₃$ (Ref. 1) are referred to for comparison. The dielectric properties in the successive phase transitions of the two types of crystals are very similar. However, a question arises as to whether or not the higher-temperature phase transition $(T_1$ of KNiCl₃; the first order) above T_2 also exists in RbMnBr₃. The anomaly at 535 K in the temperature dependence of ε_c might suggest the presence of T_1 . To examine it, differential-scanning-calorimetry measurements of powdered crystals of about 40 mg in an aluminum cell were performed by use of the calorimeter of Perkin-Elmer DSC-7. No

FIG. 5. Phase transition point lists of $RbMnBr₃$ and $KNiCl₃$. Temperatures for $RbMnBr₃$ are from the present study, and those for $KNiCl₃$ are from Ref. 1. The broken lines indicate the first-order phase transitions, and the solid lines indicate the second-order ones. The prototype phase I for $RbMnBr₃$ is hypothesized to be above the melting point.

anomalies were observed in the scans repeated several times in a temperature range between RT and 630 K. In the first heating above 630 K, only melting point $T_{\text{melt}}=727$ K was detected. However, once the samples were heated above \sim 630 K, extra anomalies at 535.7, 599.3, 712.6, and 719.6 K were observed, which indicate the synthesis of RbBr-rich compounds¹⁸ such as Rb_2MnBr_4 . Thus the first-order transition in pure RbMnBr₃ does not exist above T_2 .

III. DISCUSSION

From the hysteresis in the $D-E$ loops, at temperatures between T_4 and T_{melt} , RbMnBr₃ is found to be a ferroelectric crystal in which P_s is parallel to the c axis. The temperature dependence of P_s of RbMnBr₃ shows quite unusual behavior; however, it resembles that of $KNiCl₃$.¹ A possible interpretation for the $P_s(T)$ in phase III is that the observed saturation is a central loop of the triple hysteresis loops in such also is a central toop of the triple hysterests loops in
ferrielectrics.¹⁹ Since the reported crystal structure in the RT phase III is of the $KNiCl₃$ type, the simplest model for its ferroelectricity is that all chains become polar and align ferrielectrically on a basal-plane triangular lattice. The virtual ferroelectric Curie temperature of $RbMnBr₃$ is thought to be very high; thus at RT the complete saturation of $P_s(E)$ is rarely observed. Phase II in KNiCl₃ and RbMnBr₃, in which the spontaneous polarization was found to be rather large, is expected to be a ferroelectric phase with $a \times a \times c$ unit cells from supergroup-subgroup relations of symmetry considerations.¹ At near T_2 in the heating run, the apparent increase of P_s must be due to the change from the $D-E$ triple loop to a single one. It is interesting to compare this with the fact that a related crystal $RbFeBr_3$ exhibits a typical paraelectric-ferroelectric phase transition at the Curie temperature T_c =34.4 K, below which the structure is reported to be of the KNiCl₃ type.²

Below T_4 (phase V) in RbMnBr₃, P_s vanishes completely. A single-crystal x-ray diffraction study on phase V of this crystal²⁰ revealed that RbMnBr₃ at $T=200$ K is a commensurate structure with a long period $(4\sqrt{3}a \times 4\sqrt{3}a)$ in the basal plane, where the anisotropy in the c plane was not detected. Phase V may be regarded as paraelectric; however, we can presume that in phase V the polar chains are aligned we can presume that in phase \vee the polar enams are angieed antiferroelectrically²¹ in the c plane. The $D-E$ loops in phase V are evidence enough to understand that only the central part of the triple loops in phase III is suppressed. The $D-E$ loop observations with higher electric fields will be reexamined.

By electron diffraction, Visser and Prodan¹⁴ showed that the KNiCl₃ structure at RT has considerable crystal disorder, giving weak reflections with orthorhombic symmetry. The model suggested by them, which is illustrated with a figure in their report, is similar to antiphase boundaries in a longperiod hexagonal system.²² Parallel lines of antiphase boundary in the basal plane of $KNiCl₃$ and $RbMnBr₃$ can be present in a homogeneous polar domain, as observed in a ferroelectric crystal β' -GMO \lceil Gd₂(MoO₄)₃]²³ It must be pointed out that since T_3 of KNiCl₃ is near to RT, ambiguity remains on the phase (III or IV) in their measurements. Luminescence studies^{$24-20$} showed recently that there are considerable amounts of crystal defects in the $CsNiCl₃-type$ crystals. Ramaz, Vial, and Macfarlane²⁴ and Wolfert and Blasse²⁵ have suggested that stacking faults in the sequence of CsC13 layers, which is of the hexagonal-close-packing type for regular crystals, might be important for the structural phase transitions in $KNiCl₃$, though they have not clarified how the defaults are related to them.

Finally, a comment should be made about the recent neutron-scattering study of $RbMnBr₃$,¹¹ in which the presence of a nonmagnetic commensurate Bragg peak below about 10 K was reported. This was not detected in neutron scattering performed by a different group¹⁰ including one of the authors (T.K.). Furthermore, no anomaly was detected at such temperatures in the present birefringence measurement.

ACKNOWLEDGMENTS

This study was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture. We thank Professor H. Tanaka for valuable discussions.

- Present address: NEC Corp. , Kawasaki, Kanagawa, Japan.
- 1 K. Machida, T. Mitsui, T. Kato, and K. Iio, Solid State Commun. 91, 17 (1994).
- ²T. Mitsui, K. Machida, T. Kato, and K. Iio, J. Phys. Soc. Jpn. 63, 839 (1994).
- ³T. Kato, K. Iio, T. Hoshino, T. Mitsui, and T. Tanaka, J. Phys. Soc. Jpn. 61, 275 (1992).
- 4 K. Adachi, K. Takeda, F. Matsubara, M. Mekata, and T. Haseda, J. Phys. Soc. Jpn. 52, 2202 (1983).
- 5 H. Tanaka, T. Kato, K. Iio, and K. Nagata, J. Phys. Soc. Jpn. 61, 3292 (1992).
- ⁶H. Kawamura, J. Phys. Soc. Jpn. **61**, 1299 (1992).
- 7 M. L. Plumer and A. Caillé, Phys. Rev. B 44, 4461 (1991).
- G. Parker, W. M. Saslow, and M. Gabay, Phys. Rev. B 43, 11 285 (1991).
- 9^9 M. L. Plumer and A. Caillé, Phys. Rev B 45, 12 326 (1992).
- 10 T. Kato, T. Ishii, Y. Ajiro, T. Asano, and S. Kawano, J. Phys. Soc. Jpn. 62, 3384 (1993).
- 11 L. Heller, M. F. Collins, Y. S. Yang, and B. Collier, Phys. Rev. B 49, 1104 (1994).
- 12 H. Fink and H.-J. Seifert, Acta Crystallogr. B 38, 912 (1982).
- 13 D. Visser, G. C. Verschool, and D. J. W. Ijdo, Acta Crystallogr. B 36, 28 (1980).
- 14 D. Visser and A. Prodan, Phys. Status Solidi A 58, 481 (1980).
- ¹⁵ J. L. Mañes, M. J. Tello, and J. M. Pérez-Mato, Phys. Rev. B 26, 250 (1982).
- 16 D. E. Aspnes and A. A. Studna, Appl. Opt. 14, 220 (1975).
- ¹⁷T. Nishino, K. Iio, and K. Nagata, J. Spectrosc. Soc. Jpn. 29, 263 (1980).
- 18 Von H.-J. Seifert and G. Flohr, Z. Anorg. Allg. Chem. 436, 244 (1977).
- ¹⁹ Y. Shiroishi and S. Sawada, J. Phys. Soc. Jpn. 46, 148 (1979).
- 20 T. Kato and M. Isobe (unpublished).
- ²¹ T. Yamaguchi, S. Sawada, M. Takashige, and T. Nakamura, Jpn. J. Appl. Phys. 21, L57 (1982).
- ²² M. Hirabayashi, S. Yamaguchi, K. Hiraga, N. Ino, H. Sato, and R. S. Toth, J. Phys. Chem. Solids 31, 77 (1970).
- 23 J. R. Barkley and W. Jeitschko, J. Appl. Phys. 44, 938 (1973).
- 24 F. Ramaz, J. C. Vial, and R. M. Macfarlane, Europhys. Lett. 22, 217 (1993).
- 25 A. Wolfert and G. Blasse, J. Solid State Chem. 55, 344 (1984).
- ²⁶C. Andraud, F. Pellé, and O. Pilla, J. Phys. (Paris) Colloq. 46, C7-489 (1987).

FIG. 3. The representative 50 Hz $D-E$ hysteresis loops for c-plate samples of $RbMnBr_3$. Coercive fields E_c and spontaneous polarization P_s obtained from this figure are 1.17 kV/cm and 3.8 μ C/cm² for 470 K (phase II), 0.071 kV/cm and 0.0032 μ C/cm² for 243 K (III), and 0.082 kV/cm and 0.030 μ C/cm² for 225 K (IV), respectively. Neither is detectable for 215 K (V). The maximum values of applied electric field $E_{\rm max}$ are 4.60 kV/cm for phase II and 1.25 kV/cm for III-V.