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Quantum liquid of vortices in superconductors at 7=0
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We investigate the existence of a T=0 quantum melting transition in the vortex system of a type-II
superconductor. We find that homogeneous high-resistance thin films are good candidates for the obser-
vation of this effect. We calculate both the continuous dislocation-mediated melting line BZ(T) as well
as the first-order melting line BS(T) driven by Gaussian fluctuations and present the resulting H-T
phase diagram. At low temperatures the melting line BS extrapolates to a value below the upper critical
field, resulting in a quantum liquid state in the region BS <B < H.,.

One of the most fascinating phenomena in the field of
quantum statistical mechanics is the occurrence of a
T'=0 phase transition driven solely by quantum fluctua-
tions. Nature provides us with only a few such systems,
the most famous example being the solid to liquid transi-
tion in He with decreasing pressure. In this paper we
show that the Abrikosov vortex lattice in a type-II super-
conductor undergoes a T=0 quantum melting transition
and we discuss the most favorable system conditions
rendering this phenomenon accessible to experimental
observation. We find that homogeneous high-resistance
thin films close to the superconductor-insulator transition
are good candidates for the observation of a quantum
melting transition in the vortex system, with the transi-
tion to the vortex liquid phase taking place close to the
upper critical field H.,.

The influence of quantum fluctuations on the melting
of the vortex lattice has been studied before in the high-
temperature cuprate superconductors.! The parameter
determining the importance of quantum fluctuations is
the resistance ratio Q=R./R,, where R,=#/e’
~4.1kQ) is the quantum resistance and R 4=p, /s, p,
denoting the normal-state resistivity and s the relevant
scale for the fluctuations. The copper oxide supercon-
ductors with their large normal-state resistivity p, and
short coherence length £ (or short layer separation d)
produce a large ratio Q =~0. 1, rendering quantum effects
important in these materials, as exemplified by the obser-
vation of quantum creep,” > a classic low-temperature
quantum phenomenon. The influence of quantum fluc-
tuations on the vortex-lattice melting transition® is more
difficult to resolve due to the competition with thermal
fluctuations. A careful analysis shows’ that quantum
fluctuations become appreciable at high fields and assist
the thermal ones in the melting of the vortex lattice; how-
ever, an unambiguous verification of quantum melting re-
lies on a low-temperature experiment involving extremely
high magnetic fields. Furthermore, the oxides belong to
the class of clean superconductors where the Hall com-
ponent in the vortex dynamics® and the occurrence of
dispersive effects in the transport coefficients’ complicate
the theoretical analysis.’
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The above discussion then shows that favorable materi-
al parameters for the experimental observation of a quan-
tum melting transition in the vortex system involve a
large resistivity p,, a moderate zero-temperature upper
critical field H,,, and a small length scale s for the fluc-
tuations. The last requirement is in conflict with the
small value required for H,,, except for a thin film where
the relevant scale for the fluctuations is given by the film
thickness d rather than the coherence length £. Thin
films of a conventional low-T, material close to the
superconductor-insulator transition possess a large quan-
tum resistance ratio Q S1 and thus are good candidates
for the observation of this effect.

The melting of a two-dimensional (2D) crystal is an in-
teresting phenomenon in itself: Depairing of (edge) dislo-
cations at the Berezinskii-Kosterlitz-Thouless transition
temperature'®

Td = c“a% d
" 2V3r

replaces the low-temperature quasisolid phase character-
ized by algebraically decaying correlations with a vortex
liquid above the transition (we set the Boltzmann con-
stant ky=1). Here,

ce6 =[DPoH.,/(87A)*1b(1—b)*(1—0.3b)

(1)

is the (bulk) shear modulus, a3=®,/B is the unit cell
area (®,=hc /2e is the flux unit), d is the film thickness,
and b =B/H_(T) denotes the reduced magnetic field.
The upper critical field H,, and the London penetration
depth A are given by the appropriate dirty-limit expres-
sions.!"12 The numerical constant 4 ~0.65 accounts for
the renormalization of the shear modulus at the transi-
tion.”>!* With c¢ depending both on temperature and
field, Eq. (1) determines the shape of the dislocation-
mediated melting line BZ(T). This finite-temperature
transition is a classic example for an entropy-driven tran-
sition: T2 is determined by the competition between the
inner energy E; =(cea’d /V37) In(L /aq) (the energy to
create a dislocation) and the entropy T In(L2/a3)(L
= sample size). The quantum melting of a crystal at
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T=0 1is fundamentally different from this finite-
temperature melting scenario: Here the competition is be-
tween an ordered and a disordered ground state.
Whereas the crystalline arrangement produces a very
pronounced potential with deep minima and high maxi-
ma, the potential landscape is much smoother in a disor-
dered (liquid) state. As a result, the bottom (top) of the
potential-energy distribution is increased (lowered) in the
disordered state as compared with the crystalline one (see
Fig. 1). Classically, the ordered state is that of lowest en-
ergy and the crystal never melts at 7=0. However,
quantum fluctuations make the particles probe also
higher-energy configurations and the ground-state energy
increases (zero-point energy). This increase in energy is
larger for the crystal state with its steep potential
landscape. As a result, quantum fluctuations can drive
the energy of the ordered state above the disordered one
and the crystal melts. The physics of this melting transi-
tion is well captured by the Lindemann criterion, stating
that the crystal melts as the mean dlsplacement ampli-
tude (u?2)!/2 for the lattice constituents increases beyond
a fraction ¢; <1 of the Iattlce constant a,; the condition
for melting then is (u?) =c2a3 The Lindemann number
¢, is typically'>1¢ of the order of 0.1-0.3. In general,
the mean squared displacement amplitude {u?) is driven

by the combination of quantum and thermal fluctuations
]

2 dK; Koz dK
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FIG. 1. Potential landscape for the crystalline (¥y) and for
the disordered/liquid (V) arrangement of the vortex system.
The bottom (top) of the potential-energy distribution is shifted
up (down) in the disordered structure as compared with the or-
dered one. Accounting for the zero-point motion of the vor-
tices, the steep energy landscape of the crystalline state can pro-
duce a higher ground-state energy than the smoother disordered
potential and the true ground state becomes the liquid one.

and the Lindemann criterion defines a first-order melting
transition within the H-T phase diagram which is driven
by Gaussian fluctuations and which we denote by BS(T).
The solid-liquid phase boundary then is given by the
minimum of B2 (T) and BS(T). In the following we cal-
culate the mean squared displacement amplitude {u?2)
within a standard quantum statistical formalism both in
the 2D limit (ultrathin films with d <£) and in 3D (films
with d > £).

We start out with the fluctuation-dissipation theorem
for the more general 3D case:
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The tilt and compression moduli are both dispersive, and
close to H,, we can use the simplified expressions'®
cay =BX1—b)/47\2k?
and
¢ =ce+BA1—b)? 20N EK?
kKP=K?+k}>(1—b)/&" .
The viscous drag coefficient is given by the usual
Bardeen-Stephen expression, n~BH.,/c%p,. No disper-
sion effects complicating matters’ appear in the dirty lim-
it considered here. The k-space integration extends over
the (circularized) Brillouin zone with K%, =4m/a3; the
appropriate cutoff kg, depends on the actual situation;
see later. The frequency integration is divergent at T=0
and we introduce the high-frequency cutoff
fiw.~2 Atanh(A/2T), A=1.76T, [for w>w,,, the
diffusion length (ey/ne’p,®)'/? becomes less than & and
neighboring vortices are dynamically decoupled].

Let us first focus on the 2D limit relevant for thin films
with d <&. In this case the tilt modes are absent and we
can substitute the k, integral in (2) by [dk,/m=1/d.
An additional complication to be dealt with at finite tem-
peratures is the K —0 logarithmic divergence in (u?)
leadin% to the loss of long-range order in the Berezinskii
phase.”® These long-wavelength modes are irrelevant in
the Lindemann criterion which is only concerned with

the short-range order in the lattice extending over a few
lattice constants. We will thus cut off the K—0 diver-

2 PR
ces K “tcpuk;—ion

(2)
cnK*+ceyki—ion

f

gence at half the Brillouin zone, which is tantamount to
considering fluctuations involving next-nearest neighbors
in the lattice. The result for the mean squared displace-
ment amplitude can be split into a zero-(f) and a finite-
temperature () contribution:

2 4 RD

(2_2> ""“—““[foaB +frla,y)],
B2x2
___f dx +In ta) ], (3)
2

=Y [ —

fr 3 fo dy y(cothy —1)
G)(x—%) xz

X 5t
f (x 2+a)2+72 2,2
The parameters are a=4/b(1—0.3b),

B=nw . /cecK bz =8/[mb(1—b)(1—0.3)],

and y =1 (27T, /egd)(Ry /REb); RP=p, /d is the sheet
resistance, t =T /T, denotes the reduced temperature,
and g,=(®y/47A)%. The B— o (b—1) limit for f, is
fo=~In(B/2.45). At low temperatures fr=~0.4y>
whereas at high temperatures we obtain the result
sz(ﬂ'/4)’}’ In(R /a())lR =2a, i.e.,

2+,y

(u?)=(T /4mced )In(R /agy)| x —24,

Combining the Lindemann criterion (u2)=c}a} with



50 BRIEF REPORTS

the expression (3) we obtain the melting line BE(T). The
result for an optimized amorphous thin metal film [e.g.,
based on MoGe,?® Nb;Ge,*! or Bi (Ref. 22)] is shown in
Fig. 2 together with the dislocation-mediated melting
line BZ(T). We have chosen a density n =102 cm ™ a
resistivity p, =300 u( cm, and a thickness d =25 A, re-
sulting in a sheet resistance R U=1.2 kQ and a mean free
path /=2 A. The critical temperature was chosen T, =2
K leading to an upper critical field H,,=4.2 T. The L1n-
demann number ¢; =0.25 has been used.'® As expected,
the dislocation-mediated melting mechanism wins over
the Gaussian fluctuations at high temperatures,
B2(T)<BS(T) and hence B, (T)=BZ(T). On ap-
proaching zero temperature, however, the dislocation-
mediated melting line approaches H,,, whereas quantum
fluctuations lead to a melting transition below the upper
critical field. Using the above results we find a T=0
quantum melting transition at

77301% RQ
4 R°©

BS=H_,[1—1.2exp 4)

Second, let us turn to films with d > &, where the tilt
modes of the vortex lattice become relevant. Close to the
upper critical field we can neglect the compression and
shear modes involving c,; and c¢ [both proportional to
(1—b)*] as compared to the tilt modes with ¢, < (1—b).
Similarly to the 2D case, where we have excluded long-
wavelength contributions K —0 to the Lindemann cri-
terion, here we exclude long-wavelength tilt modes from
the integral in (2). Choosing kg; =vm/a, with v a nu-
merical constant of order unity, we obtain a similar result
as before in Eq. (3) but with R"—R%:=p,v/a, and
fo,fT now replaced by
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FIG. 2. H-T phase diagram for an optimized thin film.
Shown are the (normalized) upper critical field line 4., (dotted
line), the dislocation-mediated melting line b2 (solid line), and
the “Gaussian” melting line b (dashed line). Typical parame-
ters for such a thin film are T,~2 K and H_,~4 T. The inset
shows the region (T =~0,H =~ H_,) on an expanded scale.
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with the parameters a=2/ V?rv,
B=N0max/Caskd; =2/mb(1—b) ,
and
Y =t(2T, /egvay)[Ro /RG(1—b)b] .

Note that close to H,, we have a,=V2r£; the above
choice for the cutoff correctly reproduces the high-
temperature result for {u2). The B— o (b—>1) limit of
fois fo=InB+a(2m/3—a/2), a<<1. At low tempera-
tures fr=~(772/36)y% The high-temperature limit r — 1
is fr=(m/2)y, reproducing (at least parametrically) the
high-temperature result?® (u?)=~Ta,/e(1—b). The
T=0 quantum melting transition takes place at a mag-
netic field value

2 2r  «a
B,S= cz[l—;exp a —3'—2
3.2
mci R
Xexp |— L—g , (6)
2 Reﬂ'

close to the upper critical field H_,.

The melting line B,,(T) and the upper critical field
H_,(T) of amorphous Nb;Ge have been determined resis-
tively down to T=38 mK on a film with d =300 nm,
T.=2.7 K, and p=200 uf cm, using the procedure de-
scribed in Ref. 21. The data for H,,(T) closely follow the
theoretical expectations for a dirty superconductor.!!
For temperatures away from T'=0 very good agreement
is obtained between the data for the melting transition
and the dislocation-mediated melting line B2 (T) as given
by (1) (see Fig. 3; no adjustable parameters), providing
clear evidence for the topological melting scenario. At
very low temperatures the data do not approach H,, but
extrapolate to a lower field value with 1—5S~4X 1072
This experimental finding can be reproduced by the
present theory, Eq. (6), if we choose a parameter
c? /v=~4X1073; for a Lindemann number?* ¢; =0.16 we
obtain v=6. The corresponding melting 11ne BS(T)
closely follows the upper critical field line H,,(T) and
only becomes relevant at low temperatures after its inter-
section with the dislocation-mediated melting line B2 (T);
see Fig. 3.

Finally, we estimate the width of the critical region.
We concentrate first on the 2D case. For a simple esti-
mate we can compare the mean-field energy density of
the vortex system Fyp=[eod /E2](1—b)? with the shear
energy density {ceK?u?) due to fluctuations of the vor-
tices. This approach correctly reproduces the (B =0)
Ginzburg criterion close to T,: With (cgK2u?) =T /£
we obtain the width 1—¢ =T,/ g,(0)d. On the other
hand, we can write

(cesK?u?) ~[eod(1—b)/adu?) /a}
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FIG 3. H-T phase diagram for a d =300 nm Nb;Ge film.
The upper critical field H,, (open squares) and the melting line
B,, (full squares, measured at constant T; full triangles, mea-
sured at constant field) have been determined resistively. Away
from zero temperature the data agree well with the dislocation-
mediated melting line BZ (no adjustable parameters). Close to
zero temperature the data cross over to the “Gaussian” melting
line B, providing evidence for the observation of a T=0 quan-
tum melting transition in a vortex system.

and extract the critical amplitude {(u?) ~a3 by compar-
ison with Fyp. Since at the melting transition
(u?)=c}a} we find that due to the smallness of the Lin-
demann number the melting line is always outside the
critical region. In 3D the mean-field energy density is
Fur=[£0/E?)(1—b)? whereas the energy density for the
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tilt modes is (cyk2u?). Again we can reproduce the
(B =0) Ginzburg criterion close to T, using the thermal
result {cok2u?)=T/E,1—t=~[T,/e,(0)&0)]%. Vice
versa, expressing the fluctuation contribution via {u?),

(cagk2u?) ~[eo(1—b)/E* ) u?) /ad ,

we obtain a critical amplitude (u?) ~(1—b)a} and hence
the applicability of our result depends on the smallness of
1—b as given by the criterion 1—b >c}. With ¢; =0.16
we obtain the condition 1—b >3X 1072 and hence our
calculation is at the border of the regime of its applicabil-
1ty.

In the above analysis we have neglected the influence
of a static disorder potential leading to pinning of the
vortex system. This approximation is well justified as
long as the disorder is weak, e.g., in the sense that the
transverse collective pinning radius?® R, is much larger
than the lattice constant a,, a requirement usually
fulfilled in the amorphous films studied here.

In conclusion, we have investigated the possibility of
observing a T=0 quantum liquid of vortices in a type-II
superconductor. We find that the most promising candi-
dates for the observation of this effect are thin amor-
phous films with a high resistance placing them close to
the superconductor-insulator transition. We have calcu-
lated the dislocation-mediated as well as the “Gaussian”
melting lines and have found favorable conditions for a
melting transition driven by quantum fluctuations for
fields close to the upper critical field H_, but still outside
the critical region. The possibility that this effect has
been observed in a Nb;Ge film has been pointed out.
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