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Nuclear relaxation in half-integer spin chains at low-temperatures (T (( J, the antiferromag-
netic exchange constant) is dominated by dissipation from a gas of thermally excited, overdamped,
spinous. The universal low-temperature dependence of the relaxation rates 1/Tq and 1/T2o is com-

puted.

Nuclear magnetic resonance experiments have recently
been shown to be a powerful tool in studying the
electronic spin dynamics of the two-dimensional quan-
tum antiferromagnets in the cuprate compounds. The
combined measurements of the longitudinal relaxation
rate, 1/Ti, and the spin-echo decay rate I/T2r, over a
wide temperature (T) range allow one to learn a great
deal about the antiferromagnetic spin-fluctuation spec-
trum.

Another class of Heisenberg antiferromagnets with
novel properties are the one-dimensional spin chains with
half-integer spins per site. Some nuclear relaxation mea-
surements on such systems have been performed and
more detailed studies are under way. 7 Our theoretical un-
derstanding of the ground state properties of this system
is in good shape, and there has been limited discussion
of the behavior at finite temperatures. It is the pur-
pose of this paper to use results on the T, wave vector,
and frequency dependence of the uniform and staggered
spin susceptibilities to obtain the NMR relaxation rates.
There have been earlier discussions ' 2 of the Tq relax-
ation rate in spin-1/2 chains and we will comment on
their relationship to our results below.

An important difference between the two-dimensional
antiferromagnets and the half-integer spin chains is that
the latter are generically critical. This means that the
zero-temperature spin correlators have power-law decays
in both space and time, over a finite range of ratios
of short-range exchange interactions —this happens be-
cause the critical fixed point has no relevant pertur-
bations which respect the symmetry of the underlying
Hamiltonian. However, for sufII.ciently large second-
neighbor coupling (for example), there is a transition to
a gapped, dimer phase which is not critical. We will re-
strict our attention here to the range of couplings where
the ground state is critical. This immediately has impor-
tant consequences for the finite temperature spin corre-
lators: the entire low-temperature region (T (( J) may
be considered as the analog of the quantum-critical re-
gi on of two-dimensional antiferromagnets. ' ' There
is now no requirement that the temperature be larger
than some stiffness-associated energy scale, as there is no
analog of the renormalized-classical region. Of course,
when the small interchain coupling is taken into account,
three-dimensional long-range order, and the correspond-
ing renormalized-classical region, can appear at very low
temperatures.
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at large spatial separation R. The constant D is nonuni-
versal and depends upon the choice of microscopic ex-
change couplings. In the absence of the lnR term, this
result is sufhcient to specify the staggered susceptibility
at finite temperatures. As noted above, we will pro-
ceed in the remainder of this section by ignoring the ln R
term —we will put it back in the next section. Then, a
simple application of the results of Refs. 11 gives us the
following result for y, (k, ~), the wave vector (k) and fre-
quency dependent staggered susceptibility at finite T (for
y„kis the deviation of the wave vector from vr/a, where
a is the nearest-neighbor spacing):
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The quantity e is the T = 0 spinon velocity. Note that
the only microscopic input into this result for the suscep-
tibility are the values of e and D. A plot of the spectral
function Imp, (k, u)/ur was presented in Ref. 11 for a dif-
ferent value of the critical exponents; here we present

The principles of conformal invariance allow one to ob-
tain the exact scaling functions of the quantum-critical
region of many one-dimensional quantum systems15, 9

Half-integer spin chains however possess a complicating
feature. There is a marginally irrelevant operator at the
critical fixed point, which spoils conformal invariance by
inducing logarithmic corrections to the leading scaling
behavior. ' There is no analog of this efFect in the
two-dimensional antiferromagnets. To keep the analysis
simple, I will first discuss the computation in which this
marginal operator is ignored. The logarithmic correc-
tions induced by it will be discussed in the next section.

Let us first look at the staggered spin correlations of
the half-integer spin chain. It is known ' that the
equal-time, ground state spin correlators have the stag-
gered component
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the imaginary part of the result (2) in Fig. 1. For small
wave vectors, with hck smaller than or around k~T, the
peak in the spectral function is at u = 0, indicating the
presence of overdamped excitations —spinon excitations
interact strongly with other thermally excited spinons,
acquiring a very short lifetime. We will see below that
the NMR relaxation is dominated by the contribution of
these spinons. At larger k, hck &) k~T, the peak in the
spectral function moves to finite u (see Fig. 1)—these are
propagating spinons with a lifetime of order h/k~T

We turn next to the uniform spin susceptibility,
y„(k,u), where k is now the true wave vector, measured
&om the zone center. Unlike the staggered component,
the overall normalization of the uniform spin suscepti-
bility is not arbitrary, as the total spin is a conserved
quantity. It is therefore useful to define a magnetization
density m (R) which is the spin per unit length. The
T = 0 correlator of m is given by
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FIG. 1. A plot of the universal spectral weight

[(ksT) /D]Imp, (k, u)/hu of the half-integer spin chain as a
function of V = hu/ksT for various values of k = hck/ksT
The values for k = 1 have been scaled down by a factor of 1/3.
Notice the overdamped peak at k = 1 and the propagating
peaks at k = 3, 5.
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where w is the Euclidean time. We can obtain the finite
I

T form of this correlator by conformally mapping onto
a Matsubara strip, keeping in mind that the magnetiza-
tion density is a component of a current and has nonzero
conformal "spin. " This procedure yields
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Performing a Fourier transform of this result to wave
vectors k and Matsubara &equencies u„,we 6nd the re-
markably simple result

c k2
y„(k,i(u„)= 2xhc2k2+u2 '

Note that, unlike y, (k, ur), all T dependence has disap-
peared. The T dependence in (4) is obtained while per-
forming the discrete Fourier transform from &equency
to time: the T dependence is contained entirely in the
&equency spacing of the Matsubara sum. Analytically
continuing to real &equencies we get

c k2
y„(k,(u) =

27rh c2k2 —(~+ ie)2 ' (6)

where e is a positive infinitesimal. A conspicuous prop-
erty of this result is that there is no damping of the pole
at u = ck, even at 6nite T. This is, of course, a prop-
erty only of the scaling limit. Upon considering correc-
tions to scaling, some damping should appear, but will
be suppressed by powers of TjJ. Related to the absence
of damping is the fact that the spectrum of magnetiza-
tion Huctuations is propagating and not difFusive. The
spin difFusion constant is efFectively infinite in the scal-
ing limit.

One might, at this point, raise the issue of whether it is

legitimate to neglect the damping of the uniform magne-
tization modes: perhaps the damping coeKcient will be
dangerously irrelevant and will contribute a singular T
dependence to the relaxation rates computed below. This
possibility appears to me to be quite unlikely. The only
role of temperature in all of the computations discussed
here is to act as a finite-size cutofF in the imaginary-time
direction to a critical theory: the T = 0 result should
surely be obtained in the limit T ~ 0.

We are now 6nally in a position to compute the nuclear
relaxation rates. We will use the following expressions, 8

which are appropriate for the relaxation of a nucleus cou-
pled to the electronic spins by a hyper6ne term:
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where a is the lattice spacing, and A~~ (A~) are the hyper-
fine couplings parallel (perpendicular) to the field; their
k dependence is expected to be smooth and arises from
appropriate form factors. We have also neglected con-
tributions &om nucleus-nucleus dipolar couplings which
could be important in some materials. The susceptibil-
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ity y should include contributions from both the uniform
and staggered spin Buctuations. It is now a straightfor-
ward rnatter to insert (2) and (6) into (7) and obtain
the T dependence of the rates. Simple power counting
shows that the contribution of y, to the rates behaves as
1/Ti T and I/Tz~ T ~, while the contribution
of y„scales as 1/Ti T and I/Tz~ T . In both cases
the contribution of the staggered component is dominant
for small T. A complete calculation of this term yields
6nally the following leading low T result:

1 2 ~D—=&((( / ),
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where the numerical factor, I, is given by the integral

I = dz . = 71.276591604. . . . (9)
r HI + z*)/4
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We emphasize that these results have neglected the loga-
rithmic corrections to scaling which we will consider be-
low. Note that the unknown prefactor D cancels out
upon considering the ratio of the rates: this should be a
convenient way of experimentally testing these results.

The T-independent behavior of 1/Ti (modulo loga-
rithmic corrections discussed below) has already been
noticed in previous analyses; ' however a different T-
independent value was obtained as these works did not
account for the damping of the spinon states.

We now consider the consequence of the marginally
irrelevant operator present in the field theory of half-
integer spin chains. The basic result is easy to state:
both expressions for the relaxation rates in (8) acquire
an identical, multiplicative prefactor of ln ~ (J/T). Fur-

ther there are subdominant additive corrections which
are suppressed by powers of 1/ ln( J/T): the form of these
additive corrections will be different for the two relax-
ation rates. As these additive corrections are only log-
arithmically suppressed, it may be necessary to have T
significantly smaller than J before the leading results (8)
with their ln ~ (J/T) are accurate.

The arguments for the logarithmic corrections are sim-
ple and closely parallel those presented in Refs. 16 and
17. One begins by writing down the Callan-Symanzik
equation for I/Ti(T, A), where A J is an ultraviolet
cutoff. It is known that this quantity is finite in the limit
A m oo after multiplication by a A-dependent renor-
malization factor Zp. This fact can be used to derive a
Callan-Symanzik equation for I/Ti in which the tempera-
ture T scales under its canonical dimension as it is noth-
ing but an inverse length in Matsubara time direction.
Integrating the Callan-Symanzik equation ~ to a scale
where T A, expresses I/Ti as ln (A/T) times the
value of I/Ti in a system in which the coefficient of the
marginally irrelevant coupling 1/ ln(A/T). To lead-
ing order, we can neglect this coupling and carry out the
latter calculation in the critical theory with no marginal
coupling, which is exactly what was done above. A sim-
ilar argument can be made for I/T2~. the ln ~ (A/T)
factor will be the same because the rescaling factor Zp is
identical to that for 1/Ti. However, the perturbative cor-
rections in powers of the coupling constant 1/ ln(A/T)
should be different in the two rates.
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