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Order and disorder in Ni;V: Effective pair interactions and the role of electronic excitations
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In situ neutron diffuse scattering experiments were performed on disordered Ni,V. Effective pair in-
teractions (EPI) were deduced from the measured short-range order parameters. The EPI were used to
predict successfully the disordering temperature and the temperature dependence of the excess free ener-
gies of two different antiphases in the ordered phase. We also computed the energy difference between
DO,, and L1,: our result is eight times lower than found by electronic structure calculations at 0 K.
This discrepancy is partly due to electronic excitations.

Many theoretical studies have shown that the thermo-
dynamics of a substitutional binary alloy 4.B,_. may be
described by a generalized Ising Hamiltonian,
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where the J,’s are the effective pair interactions (EPI)
and the o,’s are pseudospin variables (o, =+1 or —1
depending on whether or not site n is occupied by an 4
species), and where ¢ is the mean value of o, on all the
lattice sites (0 =2c¢ —1). This form for H is a result of
the generalized perturbation method.""? H represents the
difference between the total energy of a given
configuration {o,,0,, - - - | and the energy E ;(c) of the
totally disordered alloy.

We will show how a set of effective pair interactions
has been deduced from in situ diffuse scattering of neu-
trons in the disordered state, and used to predict correctly
not only the transition temperature Ni;V, but also the
values and the temperature variations of the dissociation
width of superdislocations in the ordered state. This
stringent test of the model gives us confidence in its pa-
rameters and leads us to compare them with results of
first-principles electronic structure calculations: with our
model, we can compute an energy difference between the
DO,, and the L1, structures which strongly contradicts
the value yielded by linear muffin-tin orbital-atomic-
sphere approximation (LMTO-ASA) (Refs. 3-5 and
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present work) and linear augmented plane-wave® (LAPW)
calculations. We show that this discrepancy is partly due
to the difference of electronic free energy between DO,,
and L1,.

The EPI have been deduced from diffuse scattering ex-
periments in the disordered phase: the diffuse intensity is
a modulation of the Laue intensity ¢ (1—c)(b , —bg)* by
the Fourier transform a(gq) of the short-range order
(SRO) parameters

a(R)={{oy0x)—(ap){og)}/4c(1—0),

where the brackets denote thermodynamic averages and
where R is a lattice vector with respect to some origin O.

Ni,;V has been investigated in situ at 1100°C in a dedi-
cated spectrometer’ located at LLB. The elastic intensi-
ties were submitted to a least-squares fitting procedure,
using 10-25 a(R) and first-order displacement parame-
ters. We present in Fig. 1 the diffuse intensity a(q).

The short-range-order parameters were then used to
deduce the EPI. A previous investigation using an in-
verse cluster variation method (ICVM),? limited to the
first four EPL%'0 led to the results displayed in the first
column of Table I. The diffuse intensity map, simulated
by Monte Carlo (MC) with these four interactions, is
displayed in Fig. 2. The overall shape of the experimen-
tal map is correctly reproduced, but the calculated maxi-
ma are more elongated along (150) and weaker than for
the experiment.
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FIG. 1. Experimental diffuse intensity a(g) in Ni;V at
T =1100°C in the {100) plane (Laue units).

1.0

In order to investigate longer-ranged interactions, we
have developed an inverse Monte Carlo (IMC) code,'®!!
based on the general trial and error algorithm already
used in our ICVM. In a first step, we have checked
(Table I) that the first four EPI obtained by IMC were the
same as by ICVM. In a second step, we have selected all
the EPI up to Jy and used the corresponding short-
range-order parameters. The results are shown in the
third column of Table I. Finally, in order to check the
relevance of the EPI J5 to J4 we tried to suppress them,
one by one and used again the IMC with these reduced
sets, but keeping all the SRO parameters up to the ninth
neighbors. The criteria used to select an interaction set
are the convergence of the IMC and the faithfulness of
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FIG. 2. Calculated diffuse intensity a(g) at T=1100°C in the
{100) plane, using four interactions (second column of Table I)
(Laue units).

the diffuse intensity map computed by using the output of
the inverse algorithm as an input of a direct MC simula-
tion.

Our best set is displayed in the last column of Table I.
The corresponding intensity map (Fig. 3) is very close to
the experimental one (Fig. 1), particularly for the ampli-
tudes and the shape of the intensity maxima [Table I
displays the values of the calculated and experimental
maxima a(qg =110)].

These EPI can be used to predict other physical prop-
erties. The comparison of the predicted quantities to
those from other experimental fields will be a test of the
validity and transferability of our interactions.

TABLE 1. Effective pair interactions in Ni;V for different sets of EPI (see text). An * means an in-
teraction not used in the inverse algorithm. a,, is the calculated diffuse intensity maximum, i.e.,
alg= 1%0) (Laue units). T is the calculated ordering temperature of the DO,, phase. AE is the ener-
gy difference, per atom, between DO,, and L1,, as defined in (3). £(100) and £(111) are the energies of
the conservative antiphases in the (100) and (111) planes [per site of the antiphase plane, see (2)]. Exper-
imental data are given in square brackets and error bars in parentheses; same units.

Inverse Inverse Monte Carlo

CVM Four potentials Full set Best set
Jy 35 (5) 34.4 (5) 34.3 (2) 36.2 (2)
J, —10 (3) —10.2 (3) —8.4 (2) —7.8 (2)
J3 —1.5(2) —1.5 (1) —2.5 (0.5) —0.5 (0.5)
A 4 (2) 4.0 (2) 0.9 (1) 3.5 (0.7)
s * * —0.7 (1) *
T * * —0.9 (1) *
Jq * * —1.3 (0.5) —0.5 (0.2)
J3 * * —2.8 (0.7) —2.4 (0.3)
Jy * * —2.0 (0.7) —1.5 (0.2)
Aoy [exp: 4.3] 35 4.7 43
Tc [exp: 1045°C] 730°C 735°C 850°C 840°C
AE (DO,,—L1,) —12 (5) —12 (5) —12 (2) —12 (2)
£(100) [exp: 50(10)] 24 (10) 24 (11) 36 (4) 34 (5)
&(111) [exp: 75(15)] 59 (2) 59 (2) 75 (3) 72 (4)
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FIG. 3. Calculated diffuse intensity a(q) at T=1100°C in the
(100) plane, using our optimal interaction set (last column of
Table I) (Laue units).

First, by MC simulations, we have calculated the tran-
sition temperature T between the disordered phase and
the DO,, compound, which is the stable low-temperature
phase of Ni;V. The results are reported in Table I. They
are in reasonable agreement with the experimental 7.

A much more stringent test of the transferability of the
EPI issued from our measurements in the disordered state
is to use them to compute antiphase energies in the or-
dered state and to compare the computed values to those
obtained experimentally through a study of the dissocia-
tion length of superdislocations in the DO,, phase.'? The
excess energies of the conservative antiphase boundaries
in the (100) and (111) planes of the DO,, phase'® are
given by (per site of the antiphase plane):

EN11)=J, —J, — 4], + 2], +6J5+6J
—120,—6J5+3J, . (2b)

Their numerical estimates, based on our optimal interac-
tions set, are displayed in Table 1.

The experimental values'> have been deduced'* from
the measurement of the dissociation width of dislocations
in samples deformed in situ at various temperatures, by
transmission electron microscopy (weak beam technique).
The experimental values, extrapolated at 0 K, are
displayed in Table I: the agreement with our computed
value is excellent, in particular for the (111) antiphase.

A finite temperature, when entropy effects are no more
negligible, the dissociation lengths are governed by the
free energies of the antiphases. We have computed these
free energies through MC simulations, with appropriate
boundary conditions, and with our optimal interaction
set (last column of Table I). The results are shown in Fig.
4, along with the experimental data. The agreement is
again very good.

Now, we can safely discuss our results in relation to
electronic structure calculations. Up to now, no reliable
calculation of individual EPI is available for Ni,V, but
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FIG. 4. Free energies of the (100) (empty symbols) and (111)
(solid symbols) antiphases in the DO,, phase, as functions of
temperature. The circles represent the Monte Carlo calcula-
tions using our optimal interaction set (last column of Table I);
the squares are the experimental data with their error bars (en-
ergy units: meV/atom).

quantities which can easily be related to our EPI have
been calculated: the energy difference AE=E(DO,,)
—E(L1,) in Ni;V has been investigated using the
LMTO-ASA (Refs. 3-5 and present work) and the full
potential-augmented plane-wave® (FP-APW) methods.
The results are reported in Table II. All these studies
lead to the same AE~ —100 meV/atom, in agreement
with the observed stability of DO,,.

In our model, AE, which is close to half the opposite of
the antiphase energy £(100) (2a), is given by

AE=—J,+4J,—4J,—4J+8J, . 3)

Numerical values, evaluated for each interaction set, are
displayed in Table I: all of them are negative, also in
agreement with the stability of DO,,. We also note that
they are almost the same for all the interaction sets: the
average value (AE~=—12 meV/atom) is displayed in
Table II, together with its error bar. It is in strong
disagreement with the theoretical results.

This discrepancy could be due to the elastic effects, as
our EPI are extracted from experimental observations in
the disordered phase, which does not a priori exhibit the
same elastic relaxations as the ordered L1, and DO,,
compounds. But this is not the case, for the following
reasons: (1) the lattice distortions in the disordered phase
are small, as indicated by the small deviation from
periodicity in the experimental intensity maps;’ (2) the
lattice parameter change on ordering is small ( < 1%); (3)
the ab initio calculations mentioned above lead to the
same AE, whether or not the volume relaxation in L1,
and DO,, is taken into account (see for instance Fig. 3 of
Ref. 4, where the curves of the total energies of the two

TABLE II. Energy difference AE between DO,, and L1, in
Ni;V (meV/atom). Comparison between electronic structure
calculations and the experimental determination.

Electronic structure calculations

AE —109 —95 —108 —100 — 100
[Ref. 3] [Ref. 4] [Ref. 5] [Ref. 6] (our work)

Experiment

—12 (5)
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compounds as a function of the lattice spacing are paral-
lel to each other); (4) AE is not sensitive to the tetragonal
relaxation in DO,,, as the authors taking those effects
into account’ find the same results as those who do not.*

It might also be argued that the choice of the EPI be-
lieved to significant and used in the IMC is arbitrary:
different sets of selected interactions might satisfy the
procedure and yield the same simulated intensity maps.
This point has been discussed above, and our choice
yields the best maps. We also notice that we get almost
the same AE with all the sets of EPI selected above (see
Table I). Moreover, the order of magnitude of AE can be
read directly on the experimental diffuse intensity maps,
independently of any interaction set, using the approxi-
mate Krivoglaz-Clapp-Moss (KCM) formula.!> By this
method, '® we obtain AE ~ — 10 meV.

Concerning the antiphase energies £(100) and £(111),
we have seen above that their values and their behaviors
are correctly predicted by our model (see Fig. 4) This
gives us extra confidence in our model.

We have finally concluded that our results for the ener-
gy difference and the antiphase energies were soundly es-
tablished, and that the results of the electronic structure
calculations need to be revisited: a gradient expansion of
the otherwise local contribution of the exchange energy'’
does not modify significantly AE, nor does a calculation
performed without any shape approximation for the po-
tential and the charge density (full potential LMTO).
The conclusion of these new calculations is that no obvi-
ous source of error shows up for the theoretical value of
AE itself.

At this step, it must be noticed that our EPI have been
deduced from measurements performed around 1400 K.
At this temperature, excitations are important. Of
course, the configurational entropy S, and energy have
been explicitly accounted for (this is the very nature of
our inverse procedures). However, the order of magni-
tude of the other excitation terms must be evaluated, in
order to know to what extent they could bias the EPI.
The vibrational free energy difference between L1, and
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DO,, amounts to a few meV only, but, as shown below,
the difference AF, of electronic free energy F, is sizeable.

Taking F, into account, the true free energy of the sys-
tem is

F=E +Fe—TSC=%2Jnm(o,,om)+Fe——TSc , 4)
n,m

whereas we have chosen the set of J,,, such that the ex-

perimental correlation functions minimize:

F‘=E—TSC=%2.7nm(onam )—Ts, . ()
n,m

Of course, the J’s differ from the true J’s; in particular,
they are temperature dependent. However, since the J’s
have been obtained by forcing the model to fit the situa-
tion at 1400 K, Eq. (5) is a rough approximation of Eq.
(4) at temperature close to 1400 K and for configurations
which, like L1, or DO,,, are not too far from the local
order present at 1400 K. Thus, using (3) with our set of
Js, we have, instead of the true AE, estimated
AE=E(DO,,)—E(L1,)=—12 meV, which is just the
difference AE +AF, between DO,, and L1, at 1400 K.
Hence, in order to obtain the theoretical counterpart of
this  experimental  quantity, we must add
AF,=F,(DO,,)—F,(L1,) to AE. As the density of
states at the Fermi level n(Eg) of Ni3V in the DO,,
structure is about 30 Ryd ! per cell (or 0.55 eV~ !/atom),
to be compared with 170 (or 3.13) for L1,
AF,=—7*An(Eg)(kzT)*¢ (Ref. 18) amounts to about
60 meV at 1400 K. It improves considerably the agree-
ment with the low value we found experimentally for AE.

To summarize, we have shown, that for Ni,V, EPI can
be deduced from diffuse scattering in the disordered state.
We used them to predict successfully the transition tem-
perature and the dissociation widths of dislocations,
which are properties of the ordered phase. However, the
computed value of the energy difference between DO,,
and L1, is eight times lower than found by electronic
structure calculations at 0 K. This discrepancy is partial-
ly explained by the electronic excitations.
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FIG. 1. Experimental diffuse intensity a(g) in Ni;V at
T=1100°C in the (100} plane (Laue units).
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FIG. 2. Calculated diffuse intensity a(g) at T =1100°C in the
(100} plane, using four interactions (second column of Table I)
(Laue units).
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FIG. 3. Calculated diffuse intensity a(g) at T =1100°C in the
{100) plane, using our optimal interaction set (last column of
Table I) (Laue units).



