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Using the polaron model as an approximation of the t-J model, we have computed in the two-time
Green's-function formalism the spin-wave spectrum and the staggered magnetization at nonzero temper-
ature near the transition to the disordered phase. The incoherent part of the charge spectrum mainly

contributes and leads to an estimate of the doping-dependent Neel temperature which turns out to be in

fairly good agreement with experiment for high-T, copper oxides.

I. IN'I RODUCI iON

Magnetic properties of layered copper oxides have
been investigated intensively by different methods'
during the last years. It was found that the parent com-
pounds are three-dimensional (3D) long-range ordered
antiferromagnets (AFM's) with a well defined spin-wave
excitation spectrum and a Neel temperature Tz of a few
hundred K. With increasing hole concentration 5 within
the Cu02 planes, the staggered magnetization and the
spin-wave velocity are strongly reduced and the AFM or-
dering vanishes at a critical concentration 5, of a few
percent. However, strong AFM correlations still persist
in the disordered state ( T)T~) due to the large in-plane
superexchange interaction between copper magnetic mo-
ments.

It is now widely accepted that the t-J model provides
an adequate basis for the discussion of the essential phys-
ics for layered copper oxide compounds. In the frame-
work of this model there is a strong coupling between
charge and spin degrees of freedom and hence a small
amount of charges, which are controlled by doping, are
expected to modify significantly the magnetic properties
of the system. It has been argued in particular that at
very small doping the long-range ordered AFM state
might be unstable against a spiral phase state. ' In this
paper, we start from a 3D ordered AFM state and study
its instability for finite temperature and doping.

Along this direction, the results of several investiga-
tions were reported. In particular it was shown in
Refs. 5 and 6 that the motion of the holes has a pro-
nounced effect on the spin dynamics. More precisely in
the framework of the slave fermion Schwinger boson rep-
resentation for the t-J model and within the Born approx-
imation in a perturbative approach, a strong softening of
the long-wavelength spin excitations was found, due to
their coupling to "electron-hole" pair excitations. The
spin-wave velocity was shown to vanish at a critical hole
concentration of 5* of a few percent, in agreement with
experiments. ' These calculations also imply that even at

zero temperature there is a finite number of spin-wave ex-
citations produced by the moving holes of the doped sys-
tem that leads to a reduction of the AFM order parame-
ter. Some arguments have been given in Refs. 6 and 8
that a complete suppression of the order parameter takes
place at the critical hole concentration 5, for which the
spin-wave velocity vanishes, i.e., 5, =5'. However, this
point remains to be clarified.

It should also be noted that being restricted to the case
of zero temperature the calculations presented in Refs.
5 —8 do not give the concentration dependence of the
Neel temperature TN=T&(5). The present paper is
motivated by this question. We extend the approach
developed in Refs. 5 and 6 and consider the doped AFM
state for finite temperatures. We assume that the driving
interaction which establishes the 3D AFM ordering at
finite temperature is a weak interlayer exchange interac-
tion J . Starting with the t-J model in a spinless fermion
pseudospin representation, we describe the magnetic sub-
system in terms of two-time spin Green s functions. As is
well known, at zero doping these Green's functions
treated within the Tyablikov random-phase approxima-
tion provide a spin-wave excitation spectrum which is re-
normalized by the staggered magnetization o. In our
self-consistent scheme the staggered magnetization de-
pends not only on the temperature but on the hole con-
centration 5 as well, i.e., o =o(T,5). To obtain the re-
normalization of o and the self-enegy corrections to the
spin excitation spectrum due to the interaction of spin
waves with moving holes, a standard decoupling pro-
cedure for higher-order spin Green's functions is used.
This decoupling procedure, which is the second main ap-
proximation in our scheme, is equivalent to the Born ap-
proximation in the usual diagrammatic approach.

Our paper is organized as fo11ows. In Sec. II, the
effective Hamiltonian in a slave-fermion pseudospin rep-
resentation is derived. In Sec. III, Dyson's equation for
the spin two-time Green s function is introduced in the
framework of the irreducible Green's function method.
The main approximations adopted to solve this equation
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are discussed in detail there. In Sec. IV, the self-energy
part for the spin Green's function is calculated with a
particular choice for a hole spectral function which is
valid near the phase transition to a disordered magnetic
state. The equation for the magnetic order parameter is
analyzed to calculate a doping dependence of the Neel
temperature.

II. THE EFFECTIVE HAMILTONIAN

The Hamiltonian of the t-J model can be written as

H= g t; C; Cj + ,'QJ—jS;Sj

using the following notations. In the kinetic term,
C, =C, (1 —n; ) are electron creation operators and
the factor (1 n, —) enforces the constraint of no double
occupancy. The hopping amplitude t; is nonzero only
for nearest-neighbor sites belonging to the same layer,
which is a square lattice. In the magnetic term S; are
electron-spin operators. The exchange integral J; is also
nonzero only for nearest neighbors and is given by a large
constant J-0.1 eV for the intralayer interaction, and a
small constant J'-10 J for the interlayer coupling. '

The hopping parameter t is usually estimated such that
3&t/J~5.

As noted by Zhang and Rice, ' the t-J model describes
the low-energy properties of the more general p-d model
for copper oxides. A proper reduction procedure from
p-d to t-J Hamiltonians was developed later in several pa-
pers (see, for instance, Ref. 11). It is worth noting that
one may incorporate a weak transverse interlayer ex-
change interaction (-J') into the t-J model. This is
quite natural and formally could be done in the same
reduction procedure as in Ref. 11. In the present paper
we also dropped some more involved structural peculiari-
ties of copper oxides such as, for instance, the bilayer
character of Y-Ba-Cu-0 compounds. However, that
would not significantly change our main conclusions.

In a previous paper, ' a kind of slave-fermion represen-
tation was proposed for the t-J model that can be derived
in a few steps. First, to simplify the matter it is con-
venient to perform a 180' rotation of the spins on the B
sublattice which leads to the changes

C; ~C;

C )=f; n.;,
—f+ +

S, =s, (1 n—;),

(3a)

(3b)

(3c)

where n; =f;+f; denotes the hole number operator at site
i. The projection operators ~; act on the pseudospin sys-

tem and are given by m; =
—,'+s in the case of —,

' spin.
In the above representation, the t-J Hamiltonian

H =H, +H~ reads

H, =gt;, f;+f, (n, s, +ms;+). ,

H~= —,'QJ;, (1 n;
—)(1 n,—)

X —s's'+ —'s.+s++ —'s. s
/ J 2 I J 2 I J

j T+J(j s&sj + 2$& sj + ps& sj+
I,J

As is discussed in Ref. 12, this representation with
n.; =—,'+s,.' is rigorously equivalent to the t-J model, and is
well adapted to further approximation when considering
an AFM spin background. The additional factors
(1—n; ) in the Hz term take care of the loss of magnetic
energy in the presence of holes. In the mean-field ap-
proximation we may replace (1 n; ) b—y (1—5), where 5
is the concentration of holes that leads to a renormaliza-
tion of the exchange constants

J; ~Jj(1—5)

For the sake of shortening the notations, we omit this re-
normalization for a while, to restore it at the final stage of
calculations.

It is possible to generalize representation (3) for an ar-
bitrary spin S in such a way that the constraint imposed
by the operators m.; is relaxed in the large-S limit.
Indeed, the essence of the projection operator m; is the
following: because of the presence at a given site i of a
fermion, one pseudospin state, say, the lowest one at the
site, must be forbidden. Then in the large-S limit the
operators n, relax to the identity operators, so that finally

the effective Hamiltonian is written as

H, =gt, f,+f [s, +s,+ ],"

s;—~S;
S ~—S

(2)
We take this effective Hamiltonian as the basic one for
our consideration, without mapping the pseudo spin
operators onto the boson's ones done in Refs. 5—7.

when i E.B. Hence from now on the spin background is
effectively a ferromagnetic one, and one should not dis-
tinguish between sublattices anymore. Second, we define
the action of the operators C;,C; on an extended quan-
tum space associated with spinless fermions f, ,f,+ and

pseudospin operators s;. To eliminate unphysical states
one must introduce projection operators m,. that are
equivalent to the familiar constraint reducing the number
of states at a given site in the widely used slave-fermion
Schwinger boson representation. ' %'e then have

III. TWO-TIME GREEN'S FUNCTION
FOR THE SPIN SYSTEM AND DYSON'S EQUATION

We will study the properties of the magnetic subsystem
and its interaction with holes by using a matrix Green's
function defined as
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where []stands for the commutator, and

with

s+
+ — +=(s,s ),s

q

(10)

~«S, IS,+ ».= & [S„S,+]&

+[0,+A, (d))]«S, ~S+ &&„, (12)

S
1 kiqJ

~iv J

To obtain an equation of motion for the Green's function,
one may follow Refs. 15 and 16, differentiating
«Se(t) ~Sq+(t') && with respect to both times t and t'. In
this way, after performing some algebra one obtains
Dyson's equation for the Fourier transform of (9} in the
following form

s ~&s &
=o, which should be evaluated self-consistently

as a function of temperature. As is well known, this ap-
proach leads to a fairly good extrapolation of the spin-
wave dynamics at finite temperatures and provides a
reasonable estimate for the AFM (or FM} phase-
transition temperature.

In the work that follows, our main goal is to extend the
Tyablikov approximation to the cases of a doped AFM
state and examine efFects of moving holes on the stag-
gered magnetic moment 0.. These effects, which are ex-
pected to be due mainly to a coupling of spin waves to
particle-hole pair excitations, will be examined by es-
timating the self-energy part in (12) to the lowest order(-t ). Of course, the particular character of the energy
spectrum of holes in an AFM background' ' will be tak-
en into account in the calculations. Hence, after per-
forming Tyablikov linearization, the Fourier-transformed
equation (18) reads

where the matrix 0 reads

n, =
& [iS„S,'] & i& [S„S,'] & (13)

is~ =2o —gt(q —k)f„+ f»+ —,'J(0)s,+
N»

and describes a free evolution of the system, while the
matrix A (co) given by

A (Co)=« l'S
~

!S+—&&'„' 'l&[S,S+]& (14)

is the self-energy part accounting for the interaction
effects. Here iS =[Se,H] and « iSq~ iSe+—&&'"' is an
irreducible Green's function defined as

where

+—,
' J(q}s (19)

(20)

« iS, I

—iS,+ »""'

=« iS, ( iS,+ »—

—« tS, ISq+ »„

(15)

Using the definitions of t,J and J;. one obtains

t (q) =zty, y =
—,
' [cosq„+cosq~ ],

J(q) =zJ[y +g cosq, ), g =J'/2J,
(21)

(22)

which is a higher-order Green s function with respect to
«S, ISe+ »„.

Noting also that lSe =20'A, eSe +Je (23)

where z =4. The equation for S (t) can be now written
as

& [S„S,+] & =2~~, , (16) where iL is 2 X2 matrix,

where o =&s;*& is the staggered moment and r3 is the
Pauli z-component matrix, it is useful to rewrite Eq. (12)
as

J(0) J(q)
—J(q) —J(0) (24}

«S, IS,'»„=2~[~—fl, —A, (~)] '~, ,
and jq is the current produced by the presence of the
holes. It reads

where according to definition (9), to stands for co+i 0+.
Let us now consider the equation of motion for s;+(t),

which reads

t (k q)f»+ f»—
v'N ~»

—t(k+q)f„+f„+, (25)

is,+=[s,+,H]=2+t, s,'f+f, +gJ, (s,+s*+"s s. ) . (18)
J J

Let us first discuss a pure magnetic system without
doping, in which case the first term in (18) does not con-
tribute. Then Eq. (18) can be linearized by using the Tya-
blikov approximation. This approximation applied to a
magnetically ordered system consists of replacing the z
component of the spin operators by its expectation value,

Taking into account that

& [J„S,'] & =o,
for the frequency matrix Q we obtain the result

0 =2o.A,q,

(26)

(27)

leading to a usual zero-order AFM spin-wave spectrum
renorrnalized with the magnetization cryo =2crmq, us-
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ing the definition

(28)

To obtain the self-energy part Aq(co) from (14) and
(15), one should notice, first, that in Eq. (23) the linear
terms in S» do not contribute to the irreducible Green's
function (15) and, hence, A (co) is given by a simple sub-
stitution into (15) ofj,Eq. (25), instead of the full deriva-
tive i% Se.cond, the lowest-order self-energy contribu-

tion is provided by the first term on the right-hand side of
expression (15), while the second term gives rise to
higher-order corrections. Then, restricting ourselves to
lowest order, we have

(29)

By substituting j from (25) into (29) we explicitly ob-
tain Aq(co) as

t (k q}t—(k' q) —t (k q)t—(k')

Jy ~~q k "' —t(k)t (k' — ) —t (k)t (k')
kk'

(30)

where

Xq, k, k (CO) = «fk' qfk ~f-k'fk q». - (31)

+ + n (co] —]]c)—n (co2 —]]c)
yq k(co) = dco, dco2

00 QO N+ N
~

602+10

Below, we calculate the Green's function (31) with a
proper decoupling procedure which is equivalent to the
Born approximation in a usual diagrammatic ap-
proach. '

Let us now consider the Green's function yqk k.(t)
which is the Fourier transform of (31). By definition

y k k (t) involves two time correlation functions of the
from & fk+ q(t)fk(t)fk+fk q

). We decouple them in the
following way:

&fk+ q(t)fk(t)fk+fk q &

=&fk+ q(t}fk, &&fk(t)fk+ q & (32)

Xp(co„k —q)p(co2, k), (38)

and corresponds to a simple "bubble" diagram in the
conventional approach ' developed for T =0. It is
worth noting that the factor 2' entering the self-energy,
Eq. (30), may be regarded as a hole-spin vertex correction
which is a function of temperature T and hole concentra-
tion 5 in our consideration. In the following it is con-
venient to indicate more transparently the explicit depen-
dence of Aq(co ) on the staggered moment o by introduc-
ing thenotation A (co)=2oA (co).

It is easy to derive some relations between the matrix
elements of the self-energy (30). One obtains

Then introducing a one-particle retarded Green's func-
tion for holes as G'"'(k, co)=« fkfk+))„and applying
the Fourier transform

A (co)= —A" (
—co),

A '(co)= —A' (co)
(39)

&fk+fk )„=J d« '&fk+(t)fk ),
one obtains

& fk+fk. ) =2»r5kk n(co)p(co+p, , k) .

(33)

(34)

Hence the poles of the Green's function (17) are given

by the equation

B (co)+A' (co)
q) 1+ ~J(0)+J(

2

Here n(co)=1/(1+e~ ) is the Fermi distribution func-
tion, and

B (co) A' (co)—
—,
' [&(0)—&(q) ]

=0, (40)

p(~, k) = ——lm&&fk Ifk' &&.+;o+
1

(35)
with the following notations:

2 (co) =—A"(co) —A "q( —co)

+~&=—g I dco n(co —]]c)p(co,k) .
k co

(36)

Finally, by making use of the spectral representation for
Green's functions, one comes to the result

is the spectral density of the hole Green's function. The
chemical potential p, which is a function of the hole con-
centration 5 and temperature T, satisfies the self-
consistent equation

18 (co)=—
2

A "(co)+A" ( —co)

(41)

IV. STAGGERED MAGNETIZATION
AND NEEI. TEMPERATURE

One can see that the solutions of Eq. (40) scale with the
factor 2o', therefore, a notation coq 20& will also be
Used.

X,, k, k (~) ~kk X,,k(~) .

The function yq „(co} is given by

(37) Let us recall that the staggered magnetization o =
& s )

should be obtained self-consistently through the follow-

ing equation:
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0'= — s s
1

2 1V qq (42)
The corresponding spectral function is then represented
as

where

(s, s,+&=f "dco
——Im((X, ~X+ && "+,.+

e~"—1
(43)

p(k, co) =p "(k,co)+p'"" (k, co),

with

p (k, co) =Z„5(co E„—) .

(45)

(46)

with the imaginary part of ((Sz~S& &&" being defined
from Eq. (17). Equation (42) then becomes

—,'J(0)+B (20co )
coth(Poco )

N Sq

A (2crco )
(44)

with the spin excitation spectrum coq =2crco being a solu-
tion of Eq. (40). Below we will solve Eq. (44) for the stag-
gered magnetization cr in the vicinity of the phase transi-
tion to a disordered magnetic state when o.~O. Accord-
ingly the quantity y z(co) should be estimated by taking
into account a particular character of the hole spectral
density p(k, co) in the AFM spin background near the
phase transition.

The Green's function G'"'(k, co) for a single hole mov-
ing in a 2D square lattice with a quantum Neel back-
ground was calculated' ' within the self-consistent Born
approximation on the basis of Hamiltonians (7) and (8),
with spin operators mapped onto boson ones. In this
consideration the hopping of a hole is only possible by
emitting (or absorbing) a spin-wave excitation that leads
to a strong renormalization of the hole propagation prop-
erties. When the system approaches an AFM phase tran-
sition due to a strong anisotropy of copper oxides a 3D
long-range order tends to be broken by losing the inter-
layer magnetic correlations while strong 2D interlayer
spin-spin correlations still persist and survive even in a
disordered phase. ' This makes it reasonable to assume
that the approach for the one hole motion developed in
Refs. 13 and 14 is also applicable near the phase transi-
tion. However, the effects of finite hole doping and tem-
perature should be taken into account, and a strong re-
normalization of the spin-wave excitation spectrum is one
of them. Below, we first briefly sketch some results of a
calculation of the spectral density function p(k, co} for a
single hole at zero temperature, ' ' and then estimate
how p(k, co) varies with increasing hole concentration 5
and temperature T. In this way some insight is gained
about the shape of the spectral density p(k, co) when the
system approaches the AFM phase transition.

First suggested by Schmitt-Rink, Varma, and Rucken-
stein', and then developed by Kane, Lee, and Reed' and
Martinez and Horsch, ' a perturbative approach within a
slave-fermion formalism and self-consistent Born approx-
imation proved to be very successful in reproducing the
spectral density function p(k, co }for a single hole obtained
by exact diagonalization of small clusters. ' All of that
led to the consensus that the hole spectrum involves a
narrow quasiparticle band of coherent states at low ener-
gies and a broad continuum of incoherent states above.

The quasiparticle (QP) dispersion Eq possesses minima at
k = (km /2, km /2) with the value E;„(J)= —3.2t
+2.9J ' for the relevant values of the exchange constant
0. 1 &J/t & 1; the QP bandwidth W is estimated to be of
order of J, while the residue Zz -J/t. Kane, Lee, and
Read' estimated the incoherent part p(k, co) of the spec-
tral density to be practically a constant, p(k, co)-1/t, in a
wide energy interval above the QP band. Martinez and
Horsch' calculated this interval to range from E;„+8'
up to I & zt, where z =4.

Igarashi and Fulde applied the self-consistent Born
approximation to calculate p(k, co) at finite low doping
concentration 5((1 and T=0. They found that for any
particular momentum k a hole spectral density is redistri-
buted in such a way that an extra incoherent structure
appears quite below the QP band. This extra structure,
with a spectral weight of the order of 5, provides a
fulfilling of a sum rule [Eq. (36} in our notations] with a
chemical potential located inside the QP band. Along
this way a four-pocket Fermi surface for noninteracting
quasiholes was justified within that consideration and
used to calculate a renormalization of spin-wave excita-
tions due to their coupling to particle-hole excitations.
As a result it was proved that a broad incoherent part of
the hole spectrum makes the main contribution to this re-
normalization. Similar results have been also obtained by
Khaliullin and Horsch, who estimated the incoherent
part of the hole spectral density as a constant p-1/2I',
where I ~zt, within proper energy intervals below and
above the QP band. They also emphasized that
quasiholes produced a minor effect in a spin-wave veloci-
ty reduction. That is mainly due to the fact that the QP
band is rather narrow and the residue Z& of a quasihole
pole is strongly reduced, i.e., Zz-(J/t) «1, in the
relevant range ofJvalues.

The results outlined above with respect to a hole spec-
tral density function p(k, co} and its evolution with hole
doping were also examined in Ref. 19, and proved to be
correct. However, as the system approaches the AFM
phase transition a further transformation of p(k, co) takes
place. Actually, in our approach the spin-wave energy
cu =2o.co tends to zero as o.~O. It was shown in Refs.
13 and 14 that in the limit co ~0 the hole spectrum be-
comes purely incoherent, in close resemblance to that ob-
tained by Brinkman and Rice ' within the retraceable
path approximation (rpa). The rpa predicts a relatively
flat k-independent spectral density with rather sharp
edges at +2v'z —lt. This rpa result for the bandwidth
2I =zv'z —lt was also reproduced within the refined
self-consistent Born approximation in a perturbative ap-
proach. ' ' A physical reason for the disappearance of
the QP band in the hole spectrum was pointed out by
Kane, Lee, and Read. ' In fact, the existence of coherent
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quasihole states depends crucially on the density of states
of low-lying spin-wave excitations. The number of such
excitations increases dramatically due to a softening of
the spin-wave spectrum near the phase transition. ' In
our approach this softening is governed by the staggered
magnetization o. As a result the processes of scattering
of a quasihole by spin-wave excitations prove to be dom-
inant, leading to a broadening of the QP peaks. These
peaks lose their identity and the entire hole spectrum be-
comes incoherent.

Hence, to evaluate the function yq «(co) [Eq. (38)] near
the AFM phase transition, we assume a purely in-
coherent k-independent hole spectral function

p(k, ) =p( ) = e(l' —
I ~ ),1

2I
(47)

where 21'=z&z —1 t in accordance with Refs. 13, 14 and
21.

With this spectral function the quantities A (co) and

Bq (co }become q independent. Moreover, note that

J 1 — y(T, 5)

X 1 — 1 — y(T, 5)
N

(52)

where the Neel temperature T~(0) for the undoped case,
5=0, is expressed as follows:

T~(0)=, C =—g 1—J 1 J (q}
Cg

' ~ N J'(0) (53)

When (~0 the dominant contribution to the sum in Eq.
(53) comes from q=O leading to a logarithmic diver-
gence, namely, C&-in( '. Hence the Neel temperature
vanishes when $~0, and the correct thermodynamic
behavior is restored in the 2D limit.

From Eq. (53}one can see that at finite doping concen-
tration the staggered magnetization vanishes at a temper-
ature T~(5), which is determined by the equation

A (2ocoq)=0,
'2

Tiq(5) zt 2

y(T~(5), 5) .
N

(54)

Bq(2ocoq) g(T 5)+O[(2oco ) ]

Bq(2crco)+A' (2oro )
(48}

(1+yq )y( T, 5)+0[(2oco ) ],

Xp(coi)p(c02) . (49)

The function y(T, 5) depends on temperature T and
doping concentration 5 through the chemical potential

p =p( T,5) which satisfied Eq. (36). The self-consistent
equation (44) for the staggered magnetization cr then be-
comes

1 1

2o N

'2
Zt

—,
' J(0}— —y( T,5)

coth(pcrco ), (50}

and to the lowest order in o, Eq. (40) leads to the follow-
ing spin-wave spectrum

Zt'
=2crco'0' 1 — y(T, 5) =2crro

Note that we approximated the factors J(0)2 J(q) in Eq.
(40) as the 2D factors zJ(lay ), while the quantity co' '

preserves its three-dimensional nature, Eq. (28).
After substituting (51) into (50), we expand the right-

hand side of Eq. (50) in terms of o, which leads to the re-
sult

when 2o co tends to zero, and we define y( T, 5) as

n (co, p) n(—coz
—p)—

y(T, 5)= —f dco, f dco2
00 oc N~ N2

To simplify the matter, let us first rewrite y(T, 5) in the
following way:

g(T, 5)= ——f dx n[I'(2x —1)—p]ln, (55)
1 X

r 0 1 —x

where the chemical potential p =@(T,5) satisfies Eq. (36).
To derive formula (55},the spectral density function p(co)
is taken in the approximate form (47} which is valid near
the AFM phase transition. With this constant density,
Eq. (36) for the chemical potential p can easily be solved
to give the Fermi distribution function entering in (55}as
follows:

[I (2 —1)— ]= 1+ exP[2pl'(x —5)]
1 —exp( —2PI 5)

(56)

2Pl"5 «1 . (57)

In this case, from Eq. (56) one obtains

n[I (2x —1)—p]=2PI'5e ~ " (0&x &1) .

This Boltzmann-type form of the distribution function
arises due to a strong renormalization of the chemical po-
tential p, Eq. (36). Such behavior resembles a low-density
Fermi gas in a strongly nondegenerate limit. However, it
is only a formal analogy, because there are no well-

defined quasiparticles in our consideration. Inserting (58)

with P= T
One can see that y(T, 5) is a rather complicated func-

tion of T and 5. Then we estimate y(T, 5) and solve Eq.
(54) in two limiting cases. In both cases Eq. (54) leads to
qualitatively close results, and describes a sharp drop of
the Neel temperature with increasing doping concentra-
tion.

First we estimate the quantity g( T,5) at an extremely
low hole concentration, and high enough temperatures
P-T~ '(0) such that
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into (55},we obtain

g(T, 5)=2P5F(2PI'), (59)

able. Therefore, let us return to the basic equation (54)
and examine the other limit,

with
2Pr5&&1, (63)

F(2PI ) = f dx e ~""ln
0 X

(60)
in which case Eq. (54) can also be treated analytically.
The Fermi distribution function (56) then becomes

Typical values for 2PI —t/Tz(0) are quite large. There-
fore an asymptotic expression for F(2PI ) can be used
that yields the following estimate:

F

F(2PI )= ln2PI +C+01 1

2 I' (61)

where 8 is the Euler constant (8-0.6). Hence Eq. (54)
reads

JI 1 —v
2t2 8+ in —in'21

N

(62)

0.8

C)

fP

0.6

0.4

0.2

where v(5) =Tz(5)/Tz(0) denotes the reduced Neel tem-
perature. We have plotted the corresponding curve r(5)
in Fig. 1 with t=0.5 eV, J/t =0.2, and I =2~3t, and
with the Neel temperature TN(0)= J/3 (-300'K) which
is typical for the undoped copper oxides.

From Fig. 1 one can see that being valid at extremely
low hole concentration, 5 &0.01 and temperatures v & 1,
Eq. (62) describes a sharp decrease of Tz(5) in the upper
part of the magnetic phase diagram. Being formally ex-
tended to lower temperatures and higher concentrations
5, the curve r(5) crosses the temperature axis at 5' =0.04
i.e.,~(5*}=0, that is in a good agreetnent with an experi-
mental value 5, -0.03. '

An extrapolation of Eq. (62) to the region of higher
values of 5 and lower temperature still remains question-

n [I (2x —1}—p] = [1+e ~ '" '] (64)

In comparison with the case we considered above, Eqs.
(57) and (58), the values of the parameter 2PI'-t/T„(5)
is now strongly enhanced due to a strong reduction of the
Neel temperature T&(5} at finite hole concentration 5.
This allows us to approximate further Eq. (64) with a fa-
miliar step function. Then a straightforward algebraic
calculation of y(T, 5) leads to the following result:

zt2
r(5) =1-

&
~51n5 —(1—5)ln(1 —5) ~,2I'J (1—5)

(65)

where a mean-field renormalization of the exchange con-
stant J~J(1—5) is also taken into account in accor-
dance with (6}. With the same values for the parameters
as above, we found that ~(5'}=0 at 5'=0.08. It is
worth noting that in our calculations the chosen band-
width value 2I =4~3t differs only slightly from the max-
imum given by the free band value 8t. It can easily be
seen, for instance, from Eq. (65) that a smaller bandwidth
2t' would lead to a lower critical concentration 5'.

Finally, we solved Eq. (54) in two limiting cases. The
first solution (62} is applicable at an extremely low hole
concentration, and the second one (65) is for somewhat
higher values of 5. Both solutions reveal a strong de-
crease of the Neel temperature at a very small doping lev-
el, that is consistent with the experimentally observed
behavior of T~(5) in copper oxides.

It remains to discuss the particular form chosen for the
hole spectral density. A purely incoherent k-independent
and relatively flat character of the hole spectral function
p(k, co) near the phase transition was argued above. The
obvious advantage of the specific rectangular shape [Eq.
(47)] is in its simplicity, allowing us to perform analytical
calculations. However, assuming that the shape for
p(k, ro) is not strongly different from Eq. (47), but a co-

dependent one, we inferred a minor importance of the de-
tails of the chosen shape. Actually, in Eqs. (38) and (49)
an integrated area of the spectral density function con-
tributes to the y function. This contribution is deter-
mined mainly by the magnitude of the chemical potential
p. Being calculated at a particular 5, the magnitude of p
itself does not depend significantly on fine details of the
spectral density. Hence we expect our results to be at
least qualitatively independent of the choice of p(k, ro).

0 I I k I s I I I I I I I I I ~ I s

0 0.02 0.04 0.06 O.OS 0.1
d

FIG. 1. The reduced Neel temperature dependence on hole
concentration as follows from Eq. (62}. The parameters are
defined in the text.

V. CONCLUSION

Based on the t-J model in a slave-fermion pseudospin
representation, we have studied a mechanism of magnetic
phase transition for a doped antiferromagnet. Not only
thermally excited spin fluctuations, but also processes of
decay of spin waves into particle-hole pair excitations
lead together to a strong suppression of AFM 1ong-range
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order. The self-energy corrections to the spin Green's
function are calculated in the self-consistent Born ap-
proximation with a particular form for a hole spectral
function p(k, to) which is valid near the phase transition
to a magnetically disordered phase. By using results of
previous studies as a background, we argued in favor of a
broad structureless shape for p(k, co). In this approxima-
tion an equation for the magnetic order parameter is ana-
lyzed to obtain the Neel temperature dependence on the
hole concentration. Analytical estimations carried out in
the final stage clearly show a sharp decrease of the Neel
temperature with doping. This same behavior was ob-
served in copper oxides.

The scheme developed in the present paper could be
considered a preliminary step to start accomplishing a
more tendentious program. Actually, a more accurate
description could be done within complete self-consistent
calculations when both systems, holes and magnetic exci-
tations, are treated on an equal footing. This program is
clearly formulated using the Born approximation both
for the spin Green's function and for the hole Green's
function. That leads to a set of self-consistent equa-
tions for these Green's functions which should be solved
numerically, This work is now in progress, and the re-
sults of the numerical computations will be presented
elsewhere.
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