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Characteristic velocities of the electromagnetic waves propagating in vertically stacked Josephson

transmission are theoretically discussed. An equation for solving n velocities of the waves in an n

Josephson-junction stack is derived. The solutions of two- and threefold stacks are especially focused

on. Furthermore, under the assumption that all parameters of the layers are equal, analytic solutions for

a generic N-fold stack are presented. The velocities of the waves in two- and three-junction stacks by

Nb-Al-A10„-Nb systems are experimentally obtained by measuring the cavity resonance (Fiske step)

modes. Comparison of the theory with the experimental data reveals good quantitative agreement.

I. INTRODUCTION

Recently, Sakai, Bodin, and Pedersen (SBP) have
theoretically investigated the fluxon dynamics in
superconductor-(insulator-superconductor)„multilayers. '

Such structures can be made, for example, using Nb-
(Al/A10, -Nb) „or NbN-(Mg0„-NbN) „Josephson tunnel
junctions. Here n is the number of tunnel barriers in the
multilayer. Major interest is in a very-strong-coupling
case, i.e., the superconducting layer thicknesses in the in-
side layer are smaller than the London penetration
length, where Josephson vortex currents extend over
many layers. Fundamental study on various interactions
of fluxon modes and small phase variation modes among
difFerent layers will give rise to a new field of the non-
linear physics and applications. One of directions for a
future high-frequency application is to study phase-lock
motion of fluxons. ' Such a phase-locking behavior has
been recently reported for Nb-(Al/A10, -Nb)2 stacks.

The SBP theory covers a variety of the system of verti-
cally stacked Josephson junctions. In the thick limit of
superconducting layers, the theory represents a series
connection of single junctions. By taking the limit of
zero-thickness superconducting layers (i.e., ideal two-
dimensional layers) and ignoring the time-dependent
terms, the formulations derived from the SBP theory
coincides with a vortex lattice theory for strongly aniso-
tropic high-T, cuprate superconductors. In the limit of
zero-thickness insulating layers, the SBP theory also cov-
ers the results of Volkov, where the thicknesses of insu-
lating tunnel barriers are assumed to be zero, and thus
the magnetic flux penetrations in the insulating layers are
neglected.

Recently Nb-(Al/A10„-Nb)„stacked containing up to

n =10 have been successfully made with good fabrication
controllability, and Ustinov et al. s have found experi-
mentally flux-flow and Fiske-step modes for the case of
n =2,3. Their data revealed unique behavior of charac-
teristic velocities that are dependent of the strong cou-
pling in adjacent layers. A strong anisotropic cuprate su-

perconductor, Bi2Sr2CaCu20„, can be interpreted as a
natural superlattice of extremely strongly coupled
stacked Josephson junctions as has been discussed much
in Ref. 9. The SBP theory and the analysis of the present
paper are thus very useful for describing fluxon dynamics
in high-temperature cuprate superconductors.

In the present paper, Sec. II describes the formulas of
the electromagnetic modes and characteristic velocities
on the nontunneling limit and small phase variation con-
ditions for a general N-stacked junctions. Furthermore,
the specific analytic form of two-junction and three-
junction stacks are presented. A generic N-fold stack of
identical junctions and layers is also discussed. Section
III presents experimental results on Nb-(Al/A10„-Nb)„
(n =1-3) and discusses the coupling behavior of two-
and three-junction stacks as a function of the thickness of
the intermediate superconducting layers. In Sec. IV, the
theoretical results are compared with the experimental
ones.

II. THEORY

A. Formalism

The formalism of describing the motion of fluxons in
vertically stacked Josephson junctions was presented very
generally in Ref. 1. In particular, the equation of motion
of the overlap-type ¹tacked junction (Fig. 1) is
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matrix expression in Eq. (1) we have defined s; (0. d. .
is the barrier thickness of the ith junction, A,; is the mag-
netic penetration length of the ith superconducting layer,
and C, ;, and 6;;, are the capacitance and quasiparti-
cle tunnel conductance, respectively, per unit length.
J;;, is the dc maximum Josephson current.

If the magnetic flux density 8, is applied in parallel to
the y direction of Fig. 1, the boundary conditions to be
satisfied are, at both x =0 and x =L„

d;, =d;, , +A;, coth +A,; coth
i —1 I

sinh(t, /t(, , )

(3a)

(3b)

t)„(t,;,=8,(s;,+d;, +s; )

for i =1,2, . . . , N . (4)

Here J, , 1 is the total current flowing in the ith junction,
and I~ is the uniform bias current per unit length, which
is supplied to the Nth S layer and extracted from the
zeroth S layer. If there are no x-dependent excitations in
the system, Eq. (1) gives b J. . .=0 for all i That is .to
say, J;; 1=I& at any points at any junctions is satisfied.
Thus, hJ;;, is the total current flowing in the ith junc-
tion measured from the medium biased constantly and
uniformly by Is. d,', , may be called the effective thick-
ness of the junction that includes the shield current effect
for the magnetic flux density in the ith insulating layer,
and s, which expresses the shield current effect of the
magnetic flux density in the adjacent insulating layer,
may be called the coupling parameter. To simplify the

!

B. Motion in the limit of nontunneling

Let us first consider the electromagnetic modes when
both the Josephson- and quasiparticle-tunneling effects
are ignored. The velocity of the electromagnetic waves
that will be obtained is referred to hereafter as the
characteristic velocity of the N junction stack. After put-
ting zero into G;; „J;; „and Is in Eqs. (1) and (2), the
equations of motion become linear. By putting a set of
exponential-type traveling waves (j = —1),

, exp[jk(x —ut)] for i =1,2, . . . , N

into these linear equations, it is found that the following
determinant must be zero:

pO 1 pC1 p

P81C1,P

I Ot 1~2, 1

ppd 2 1C2 1 u pps2C3 2

PPS2C2, 1

0

(6)
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The roots of this equation are the characteristic velocity of the waves of the system. In the case of noninteractions
(s, =0 for all i ), each junction has the velocity of ~u

~
=(tttpd, ,C;;, ) ', which is known as the Swihart velocity in a

single junction. ' In this case the stacked junctions are simply the gathering of independent single junctions. With s, %0
the interaction appears and these velocities are modified and solved from Eq. (6).

C. Small phase variation limit

Let us next consider a small phase variation limit under the condition of no loss (a=O) and no bias (g=O). Then
Eqs. (1) and (2) are linearized using the approximation, sintI);, , =t)It;, , for all i The wave form.
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The characteristic velocities obtained frotn Eq. (6) are and for u =u +,

with

1' 3/1+S

co =(pod1, oC1,o)
I —1/2

and the coefficients of the wave in Eq. (5) are

(13a) Alp A32 ~

A21=—
A 1,0d 1,0 d2, 1 +

d1, O

dz 1t

d1,O

$1+8
d1, O

' 2 1/2

A, o=A2, for Iul=c+,

A, o= —A2, for lu I
=c

(14a)

(14b)

Thus, in the case of
I
u

I

=c+, the phases change in an in-
phase manner, and, in the case of

I
u

I
=c, they change

in an out-of-phase manner.
The plasma dispersion relation described in Sec. II C is,

in this two-junction stack case, expressed as

k2 +1.
1+S (15)

At the limit of k ~~, u ( =co/k ) approaches asymptoti-
cally the characteristic velocity c+ in Eq. (12). As shown
in Ref. 1, in the bunched coherent mode of the soliton in
the two-junction stack, the velocity approaches c+, and
the separate symmetric mode (when the ffuxons move
separately) approaches c . From these discussions the
characteristic velocities obtained in the limit of non-
tunneling are essential quantities describing the
electromagnetic-wave propagation such as Quxons and
small phase varying modes in the system.

K. Three-junction stack

um =(podI, 0C1,0)
—1/2

I
d2, 1u+=&2u ~1+ ' +
d1 P

d2, 1t

p

'2

2 1/2 —1/2
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Note that the relation u (u (u+ is always correct
and, needless to say, we have the velocities of the same
values and opposite polarity (u &0). The coefficients of
the wave form in Eq. (5) are for u =u

A1 0= A32 A2 1=0 (17a)

Here we discuss the characteristic velocities in the lim-
it of nontunneling. From Eq. (6) we can obtain analytic
form, but to avoid the complexity of the expression, we
assume a similar symmetric configuration to the one we
have discussed in the case of the two-junction stack.
That is, the system is mirror symmetric with respect to
the plane cutting the middle insulating layer equally into
two. Thus, we have to=t3 t1 t2 Ao A3 ~1

dl, o d3, 2 Cl, o C3,2 Gl, 0=G3 2 and J1 0
=J3 2 These

give automatically s1 =sz and d1 0 =d 3 z. In addition, we
assume the capacitance in the middle junction is equal to
the others, i.e., C21=C10. Then we have three charac-
teristic velocities u, u, and u+ .

F. An N-fold stack of identical junctions and layers

Let us consider a generic N-fold stack, where all super-
conducting layers are identical and the insulating layers
are identical. One of possible cases is a BizSrzCaCuzO„
single crystal, which may be regarded as a natural super-
lattice. In this case, all subscripts in d; „s;, C;;
J;; 1, and W~; 1 {for i = 1,2, . . . , N ) can be eliminated,
and thus the determinants in Eqs. (6) and (8) for the
characteristic velocities and the dispersion relation, re-
spectively, have a well-known tridiagonal symmetric
form. "Consequently, the analytic forms of the eigenval-
ues of Eqs. (6) and (8) are given by

' 1/2
(N)

1+2Scos[n m/(N+ 1)].

and
for n=1, 2, . . . , N {18)

k[~(N) ]2
1+2Scos[ntt/(N+1)]

for n =1,2, . . . , N . (19)

Here the normalization used with respect to S, x, and t is
similar to that in Sec. II D [Eqs. (11) and (12)]. The only
differences are that all the subscripts in Eqs. (11) and (12)
are eliminated by the assumption of identical junctions
and layers. Thus, k and co'„are normalized to the in-
verse Josephson penetration length A,J' and the plasma
angular frequency coo, respectively, and c„' ' is normalized
to A,J coo.

(1)

The dynamics is given by the eigenvectors
' 1/2

2
N+1

ln 77

N+1

for n =1,2, . . . , N and i =1,2, . . . , N, (20)

where the index n corresponds to different velocities and i
represents the ith layer. From these relations we make
the following observations: (1) The dynamics does not

(17b)

In the mode of u =u, the phase in the bottom junc-
tion changes in the out-of-phase manner with respect to
the phase in the top junction. For the mode of the
highest velocity (u =u+ ), the phases of three junctions
varies in an in-phase manner. (Note that s1 &0.) For the
mode of the lowest velocity (u =u ), only the phase in
the middle junction varies in an out-of-phase manner
with respect to the other junction phases.
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FIG. 2. The characteristic velocities in a fivefold stack of
identical junctions as a function of the coupling parameter S.

depend on the coupling factor S, which is a characteristic
of all the identical junction. It generally depends on S as
shown in Eq. (17b). (2) For an N-layer stacked junction
we have N difFerent limit velocities. (3) The index n

determines the state of all junctions. All variables,
cop', c„'+' for diff'erent junctions in a definite state are the
same. (4) For n =1, i.e., the largest velocity, all the am-
plitudes have the same sign (the arguments of sine are al-
ways in the first and second quadrants), which means an
in-phase behavior. (5) For n=N, the smallest velocity,
neighboring amplitudes are always opposite, indeed the
arguments of sine now stay alternatively in the first (or
second) quadrant and third (or fourth) quadrant. (6) The
results in the case N=2, 3 coincide perfectly with the spe-
cial case (i.e., all the equal junction cases) of the results of
the preceding subsections.

Note that using a different approach, units, and nor-
malization, Eq. (19) was also obtained by Kleiner'~ for
the resonant modes of a finite n-stacked junction embed-
ded in a field different from zero. As an example of appli-
cation, Fig. 2 shows the normalized velocities in a fivefold
stack varying the coupling parameter.

III. EXPERIMENTAL RESULTS

nc
2L

(21)

In order to study the dynamics of the electromagnetic
waves in the stacked junctions, we investigated resonant
structure on IV characteristics in the applied magnetic
field, which are known as Fiske steps' (FS's). In general,
such resonances occur when the Josephson generation
frequency coincides with the frequency of one of the cavi-
ty modes in the junction. For a junction of length L, the
cavity mode frequencies correspond to an integer number
n of half wavelengths on the junction length and are
given by the relation

where c is the electromagnetic wave propagation velocity
in the junction called Swihart velocity. This is the
characteristic velocity in a single junction. Because of
the ac Josephson relation, each resonance [Eq. (21)] yields
a step at approximately constant voltage in the IV
characteristics of the junction. The external magnetic
field provides a spatial modulation of the Josephson pair
current in the junction and determines the current ampli-
tudes of the steps in the IV curve. For a single barrier
junction with given c and L, one observes a set of
voltage-equidistant steps, which we ca11 a "Fiske-step
(FS) family, " with a voltage spacing b, VFs =4+, . In a
stack of N junctions, the velocity c is predicted to have N
possible difFerent values (see Sec. II); thus, X different FS
families are expected to be seen in the IV characteristics.

In a long junction placed in suaciently high magnetic
field H, the fluxon motion gives rise to a flux-flow (FF)
step in the IV curve. At the flux-flow regime, fluxons
perform a unidirectional motion with the velocity close to
the Swihart velocity of the junction. Typically, in a junc-
tion of a finite length, a flux-flow step appears as one or
two neighboring Fiske steps at the maximum of their
current amplitude. Increasing the magnetic field yields
the increase of the flux-flow-step voltage, and thereby the
flux-flow voltage hits the FS with high numbers n

For twofold and threefold stacks the Fiske-step split-
ting in different families has been observed in Ref. 8,
where stacks with only one t value (t=35 nm) were in-
vestigated. It was noted that the difference in the voltage
spacing of different FS families, b, V„s; (index i denotes
the number of the FS family), should depend on the mag-
netic coupling between the junctions, i.e., on the thick-
ness t of the intermediate superconducting layers. In this
section we report a quantitative investigation of the volt-
age spacing 6V~; dependence on t for twofold and three-
fold stacks.

A. Samples

The fabrication method for stacked Nb-(Al/A10„-
Nb)„ tunnel junctions containing up to n = 10 tunnel bar-
riers has been demonstrated. In the present study, high-
quality Nb-(Al/A10„-Nb)„Josephson tunnel junctions
with n=1, 2, and 3 were fabricated. The gap voltages
were about 2.6 mV and varied for the different junctions
in one stack within 2—3%. The diff'erence between the
critical current densities (of typical J, =200 A/cm ) in
one stack was estimated from the maximum currents at
the gap voltages and found typically to be less than 20%.
The thickness t of the intermediate Nb layer between the
junctions in different stacks varied from 30 to 140 nm.
These values cover the thickness interval of interest,
around the London penetration depth A, , which for our
sputtered Nb was estimated to be 90 nm. The parameters
of the samples are summarized in Table I.

A typical value for the Josephson penetration depth A,J
in our single-barrier junctions was about 25 pm. For a
quasi-one-dimensional long junction, the length L and
width 8'have to be L &&A,J, and 8'& A.z. In the present
work we used the stacks with the dimensions in plane L,
from 150 to 400 p,m and W from 10 to 40 pm (see Table
I).
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TABLE I. Parameters of the investigated samples.

Sample No.

1

2
3

5

6
7
8

9
10
11
12
13
14
15

L
(pm)

150
200
300
400
300
200
400
300
300
200
200
200
150
400
200

(pm)

40
10
10
10
40
20
10
20
40
20
10
20
10
20

fo

(nm)

90
90
90
90
90
90

105
90
70
90

180
100
100
90

180

tl
(nm)

330
330
330
330
30
30

140
120
105
60
90

130
35
60
90

E2

(nm}

330
330
330
330
330
330
615
330

35
60
90

E3

(nm)

300
330
615

~ ~FS1
(p~)

50+2.0
37.5+1~ 0

26+0.4
17.4+0.3

13+0.5
18.5+0.3
15.6+1.0
20.5+0.7
20.4+0.3

26+1.5
27.5+0.4
32.5+0.5

21+1.0
10.4+0.2
26.2+0.5

30+2.5
45.020.8
19.2+1.0
25.1+1.0
28.2+0.5

4622. 5

38.3+0.6
39.0+0.8

33+2.0
16+1.0

31.2+0.8

78+3.0
22.7+0.6
50.3+1.5

During the measurements a sample was surrounded by
a cryoperm shield. The magnetic field H was applied by
a solenoid inside the shield in the plane of the tunnel bar-
rier and perpendicular to the larger dimension I. of the
junctions. Measurements were performed at T=4.2 K.
In the IV curves presented below, the stacked junctions
are measured in series. During the field sweeps, the IV
curves were preamplified and recorded by a digital
storage oscilloscope.

1.6

1.2-

0.8-

FF1

B. IV characteristics

Typical IV characteristics of a twofold stack in the ap-
plied magnetic field is shown in Fig. 3(a). In this stack
one of the junctions (A) had somewhat lower critical
current than junction B. Thus, in the applied external
magnetic field H, the magnetic flux was first entering
junction A, and then, at the higher fields, junction B In.
a finite bias current, there was an interval of H, where
junction A switched to the flux-flow state, while junction
B stayed at the stationary (zero-voltage) state. In Fig.
3(a), when the bias current I is increased from zero, the
flux-flow step FF1 corresponding to the lowest FS family
in A is traced up to V= VFF, . At some current junction,
A switches to the single junction gap voltage V~ of about
2.5 mV. The single gap voltage is observed because the
other junction B is still not switched to the gap. Further
increase of I leads to the switching of junction B to the
second gap voltage (not shown). If from the state at the
first gap voltage the current is decreased, with B not yet
switched, we observe another flux-flaw step (FF2) corre-
sponding to the second FS family (at V= V„Fz) in junc-
tion A. Both voltages VF„& and VFF2 were found to in-
crease approximately linearly with H. Each flux-flow
step (FF1 and FF2) consists of a series of Fiske steps (FS1
and FS2). It is worth noting that these separate Fiske-
step families appear in different voltage ranges but are ob-
served in the same junction ( A ) of the stack. The single
junction origin of the steps FFI and FF2 is confirmed by
appearance of very similar branches (as FF1 and FF2) be-
tween the first and the second gap, at 3.2—3.6 mV. Such

0.4-

0.0
0

V (mV)

3.0-

2.5-
FF1

E

2.0—

1.5—
FF3

3.0 3.5
V (mV)

4.0 4.5

FIG. 3. Typical IV curves with fiux-Sow steps of twofold
stack No. 8 (a) and threefold stack No. 15 (b) in the applied
magnetic Seld.
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traces [see Fig. 3(a)] were observed when the current is
decreased from the bias point at the second gap
(V=2V ). These steps are the same branches FF1 and
FF2 in junction A added to the gap voltage of junction B.
The high rate of the quasiparticle injection into the com-
mon electrode by junction B at V= V increases the
losses in junction A. This makes the resonances above
the first gap smoother, more stable, and even easier to
measure than the lower ones. In higher magnetic field,
we observed flux-flow branches similar to FF1 and FF2,
but in junction B. These branches appeared in a similar
manner between the first and the second gap voltages.
Within the experimental error their Fiske step voltage
spacings (see below) were found to be equal to those in
junction A.

Carrying out similar measurements on threefold
stacks, we found three flux-fold steps, as expected. Fig-
ure 3(b) shows such an example of the steps observed be-
tween the first and the second gap voltage in a threefold
stack. These steps correspond to the fluxon motion in
one of the junctions in the stack (one of the other two
junctions remains in the stationary state, and the other
one is switched to the gap state). For the weakly coupled
stacks with large t, it was more difficult to distinguish be-
tween different FS families due to their close voltage
ranges.

C. Measurements of the Fiske step voltage spacings

Figure 4 shows multiple traces of the IV curve of the
threefold stack sample 15 [shown in Fig. 3(b}] obtained
with continuously varying the external magnetic field H
using a digital storage oscilloscope. Each flux-flow step
[FFl, FF2, and FF3, as shown in Fig. 3(b)] consists of a
series of Fiske steps (FS1, FS2, and FS3). To obtain the
field tuning picture of the steps FF2 and FF3, after bias-
ing on the step, we swept the current in small intervals
and varied the 6eld H. This procedure was necessary to

avoid switching between different families of steps on the
hysteretic IV curve of the stack. As seen in the insets of
Fig. 4, each flux-flow step displays a different voltage
spacing between the Fiske steps. Such a measuring rou-
tine has been performed for samples with different num-
ber of barriers n =2,3 and electrode thicknesses.

Table I summarizes measured spacings between the
steps for various FS families in different stacks. In each
case, the voltage spacings were measured several times
between different steps and the experimental mean square
error was calculated. These measurements were easier to
perform for stacks with small t (strong coupling), where
the voltage intervals of different FS families did not over-
lap, and there was a clear distinction between these fami-
lies. For larger t (weaker coupling) a voltage interval of
every FS family was more narrow, thus increasing the ex-
perimental error.

We note that the presented data contain additional ex-
perimental uncertainties due to the difference in the mea-
sured frequency ranges for difFerent FS families. Some of
the Fiske steps were found to be stable only in narrow
voltage intervals near 1 mV or higher where the efFects of
dispersion already play an important role. At frequencies
comparable with the gap frequency (about 650 GHz for
our Nb} the phase velocity is expected to decrease. This
gives a decreasing of the Fiske-step voltage spacing at
high voltages, which we always observed in experiments
with single-barrier Nb junctions. We did not study this
efFect systematically for the stacked junctions; its role is
estimated to be a possible relative correction of 5—8%
for some FS families (in particular, FSF2 and FSF3).

Table I clearly shows the general tendency predicted
by the theory. With decreasing t, the coupling between
the junctions in a stack is expected to increase, thereby
increasing the difference between c and c+ (the
difference Fiske-step voltage spacings of FS families). A
detailed quantitative comparison of the theory with the
experiment is made in the following section.

FS1

2.5— FIG. 4. Stored traces of the Fiske steps ob-
tained by varying the external magnetic Seld
for a stack No. 15. A single IV curve is shown
in Fig. 3(b) for a fixed Seld value. Insets show
the Fiske step structure on the expanded by
factor of 4 voltage scale.

1.5-
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IV. COMPARISON OF THE THEORY
WITH THE EXPERIMENT

10
8-

Before analyzing the stacked junction data, we first dis-
cuss the characteristic (Swihart) velocity of ordinary sin-
gle junctions. The velocity is obtained by
c"'=2L(EV„s)/@o. Using the data in Table I, the ve-
locity is found in the range, (6.6—7.6) X 10 m/s, with the
mean value of 7.2 X 10 m/s. Since the velocity is also ex-
pressed as Eq. (13b) using the junction parameters, the
specific capacitance obtained is 7.3 pF/cm on the aver-
age, which is in good agreement with the data pub-
lished. '

A. The two-junction stack

As described in the preceding section, the thickness of
the top superconducting layer is different from that of the
bottom superconducting layer, and these are also
different from sample to sample. In the data analysis
below these differences are taken into account, but the
difference of the capacitance between the top and bottom
junctions is ignored. The spread of the critical current
density, which is very sensitive to the barrier thickness
values, between both the top and bottom junctions did
not exceed 30—40% for all the samples listed in Table I.
Thus, we can assume that the capacitances, which are
much less sensitive to the barrier thicknesses, are identi-
cal. When the thickness difference of the superconduct-
ing layers (toAt2) is considered, the expression of the
characteristic velocities of Eq. (12) is modified as

CU

O
+

O

5-

2-

/
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/J
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r ~

/
/rr

I I I I I

4 5 6 7 8 9
10

(1-S')/(1+ S*)

10x10

FIG. 5. Plot of experimental data for twofold stacks (points)
on a plane of (c+/c )' vs {1—S )/(1+S ). The theory pre-
dicts that these quantities are equal, as shown by the dashed line
in the figure. This analysis is independent of the junction capac-
itance.

c+ =co'Vl+g' '

where co is defined in Eq. (13b) and

S' =xS, ,

with

(22)

i /2

SI
(24)

Here a is the correction factor due to the asymmetry
corning from the thickness difference, and

D i, o d i o /d,'„,
D2 i

=d
2 i /d,'„,

Si =SI /6f

d =(di o+d2 i)/2

(25)

where d,', is the averaged efFective thickness, and D;
and 5& are the effective thickness and coupling constant
normalized to d,'„, respectively.

The precise value of the capacitance is sensitive to fa-
brication technology. So we first use a good method of
comparison in which the cfFect of capacitance does not
appear explicitly. From Eq. (22), we have a relationship
between the velocities and the coupling constant:

U)
LU

U0
LU)

0
0.0

I I

0.5 1.0
I I

1.5 2.0 3.0x t 0

T and T (H )

FIG. 6. Experimental data for twofold stacks as c vs T
(squares) and c+ vs T+ (circles). A linear dependence is
theoretically predicted with equal proportionality factors for c
vs T and in e+ vs T+. The uncertainties of the measured data
(listed in Table I) are given by error bars.
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TABLE II. List of both the theoretical and experimental characteristic velocities for three-junction

stacks.

Sample No.

13
14
15

3.4
4.3
5.1

Theory
um

( X 10 m/s)

5.0
5.7
6.4

9.6
8.8
8.7

3.1+0.15
4.0+0. 1

5.1+0.1

Experiment
um

( X 10 m/s)

4.8+0.3
6.2+0.4
6.0+0.15

u+

11+0.4
8.8+0.2
9.7+0.3

c

'2
c+ 1 —S

1+S
(26)

estimations of the capacitance from the plot in this figure
are 6.9 and 11 pF/cm, respectively.

where no capacitance terms are included. Using the
values of the superconducting-layer thicknesses and the
obtained velocities in Table I, we get, in Fig. 5, experi-
mental relationship between the left- and right-hand sides
of Eq. (26), which is in very good agreement with the
theoretical dashed curve in the figure. Here we used no
fitting parameters except the well-known value of 90 nm
for the magnetic penetration length of A, , (i =0, 1,2) in all
the superconducting layers. Even the +10%%uo change of
this value does not afFect this good agreement. Note that,
in consequence, the asymmetric correction factor ~ is
very close to the unity (around the range from 1.002 to
1.04) for all samples in Table I.

Next we discuss the absolute values of the velocities.
Using the Fiske-step voltage relation and the experimen-
tal data in Table I we obtain experimental values for the
velocities. In the theoretical result [Eq. (22)], d', 0 in co
depends on the thickness of the samples. To eliminate
this geometric efFect from sample to sample, the
geometric and physical parameters of each sample are
gathered in T+ = [pod', 0(1+S')] '~, and we have

(27)

Figure 6 shows the plot data of the experimentally ob-
tained, c+ vs T+ (circles) and c vs T (squares). We
find that the results obey the theoretical prediction, i.e.,
the c+ -vs-T+ proportional relationship.

The proportional factor is only a function of the
specific junction capacitance that may be sensitive to the
fabrication technology. Thus the data spread in Fig. 6 is
partially due to this technological reason and partially
due to the uncertainty of the measurement that was
shown by error bars in the figure. The lowest and highest

B. The three-junction stack

I.et us discuss the result of sample 13. The thickness of
each superconducting layer is the following: to =100nm,

t, = t2 =35 nm, and t3 =300 nm. Using A, , =90 nm for all

i, the relative deviation between d, 0 and d 3

~d 3 2
—d', 0 ~

/d', 0, is only 3%%uo. The system may be re-

garded to have the mirror-symmetric configuration used
in Sec. II E. From Table I, the experimentally obtained
Fiske-step spacings are 21, 33, and 78 pV, and the corre-
sponding velocities are 3. 1 X 10, 4. 8 X 10, and 11.3 X 10
m/s. Let C,o be equal to 9 pF/cm, which is the average
of the specific capacitance of the two-junction stack data.
By using this value for u and putting t& =t2 =35 nm
and A, , =90 nm for all i, we obtain u =3.4X 106,

u =5.0X10, and u+ =9.6X10 m/s, which explain the
experimental values very consistently. For samples 14
and 15, the same analysis was made. The results are sum-
marized in Table II, where the agreement between the
theory and experiment is found to be good.

V. SUMMARY

Characteristic velocities governing the electromagnetic
wave propagation of various modes in vertically stacked
Josephson junctions are investigated here theoretically
and experimentally. An equation for these velocities is
derived, which indicates the existence of n velocities in an
n-junction stack. The velocities obtained from resonance
mode observations for two- and three-junction stacks of
Nb-Al-A10„-Nb systems are compared with the theory,
and good agreement is found.
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