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Damping of spin waves for a doped antiferromagnet
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The spin-wave energy, the daxnping, and the staggered magnetization are calculated for a lightly
doped antiferromagnet in the framework of the t-J model. The Dyson equation for the dynamical
spin susceptibility is derived and studied at zero temperature. It is shown that the staggered
magnetization as well as the spin-wave velocity vanish for some critical hole concentration. The
damping of spin waves is computed and found to be very sensitive to the hole doping. The results
are in good agreement with experimental data of YBa&Cu&06+

I. INTRODUCTION

The understanding of the transition from the insulat-
ing phase to the metallic phase for high-T, supercon-
ductors is a problem of current interest. The undoped
parent compounds of high-T, materials are antiferromag-
netic (AFM) insulators. When a small quantity of holes
is introduced (a few percent), the long-wavelength spin-
wave modes are overdamped and consequently the AFM
order disappears.

The magnetic properties of the undoped high-T, ma-
terials are well described by the isotropic spin-& Heisen-

berg model on a square lattice. ' It is by now widely
accepted that when extra holes are introduced, a good
candidate for describing the physics of the Cu02 planes of
these high-T, oxides is the t-J model. It has been argued
that in the linear spin-wave approximation this model re-
duces to the so-called magnetic-polaron model, with
a Hamiltonian given by

H ) V(q Ic) fq~ fI, qcrq+ Hc—+) ~q,crq~nq (1)

where

V(q k) = uq&, q+ uqpI

1+ 1 —p2

vq = —sgn(yq)
2 1 —p2

cu = —zJ 1 —p
0 1 2

2

with pg = —P exp(ikq ), 7 running over the band direc-
tions and z is the coordination number of nearest neigh-
bors. N is the total number of sites. The lattice spacing
is taken as unity. uq and vq are the usual parameters of
the Bogoliubov u-v transformation

In the Hamiltonian Eq. (1), fi, and f&~ are canonical spin-

less fermion operators. aq and o.~ are canonical boson
operators.

The softening of spin waves due to the presence of holes
was already investigated by several authors~ within
the &amework of this model. Igarashi and Fulde have
studied the renormalization of spin waves for low dopant
concentration 8 on the basis of the self-consistent Born
approximation. They have calculated the Green's func-
tion for the holes to first order in 8 and found that the
incoherent part of the Green's function for holes gives the
main contributions to the renormalization of spin waves.

They have found that the spin-wave velocity is strongly
renormalized and the reduction rate increases with de-

creasing ratio J/t. The spin-wave velocity is found to
vanish for a density of holes of about 10%%uo. The exper-
imental value is about 2—5%%uo. Pimental and Orbach
have computed the spin self-energy in an approximation
where they take into account only the coherent part of the
hole Green's function, that is, they consider quasiholes as
weakly interacting Fermi gas described by a single-hole
dispersion relation. They have found that the spin-wave
velocity is renormalized by a factor 0.98 for a hole concen-
tration b = 0.01 at t/ J = 3. But the coherent part of the
hole Green's function leads to a small renormalization of
the AFM-order parameter, as was found by Becker and
Muschelknautz. Recently Khaliullin and Horsch have

calculated the spin-wave velocity and found that it van-

ishes for the critical hole concentration b' = 0.04 for

t/J = 4. They have also calculated the staggered mag-
netization using an interpolation formula for spin self-

energy based on the approximation of isotropic Fermi

gas, since they did not calculate the spin self-energy at
large momentum.

In this paper we calculate the spin-wave energy for any
momentum, the damping of spin waves, and the stag-
gered magnetization on the basis of double time Green's-
function formalism. Dyson's equation for dynamical spin
susceptibility is written and analyzed at zero tempera-
ture. We found that the spin-wave energy is strongly
renormalized due to the presence of holes, and the spin-
wave velocity goes to zero for some critical hole concen-
tration. The damping is also found to be very sensi-

tive to increasing hole concentration. At the critical hole
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concentration it becomes greater than the spin-wave en-

ergy for small momentum, which shows that the long-
wavelength spin waves are overdamped. The staggered
magnetization also vanishes at this hole concentration.

The paper is organized as follows: in Sec. II, we have
derived Dyson's equation for the double-time Green's
function following the method of Tserkovnikov. In
Sec. III, the spin-wave energy and the damping of spin
waves is computed. Section IV is devoted to the compu-
tation of the staggered magnetization. Finally, in Sec. V,
the comparison of our calculation with experimental data
is performed.

(d((Aq )
At)) = ( Aq (

At )+ ((Aq (
At))

x iAq At Aq At )
+(A, ~

At)ll, ( )), (6)

where the polarization operator is given by

The different spin-wave Green's functions are con-
tained in the matrix Green s function ((Aq ~ Aq)) . Using

the Tserkovnikov method~~ (see Appendix A), we obtain
the following equation of motion:

II. DYSONtS EQUATION FOR RETARDED
GREEN) S FUNCTION

In this section we derive the dynamical spin suscepti-
bility using the double-time retarded Green's functions
defined by Zubarev:

((e(~) = (A. I
A', ) ~((tAe I

—*"'.))- —((*A. I A.))-

x((Aq
~
At)) ((Aq ~

—iAt)) (Aq ~

At)~

~

((A(t) I
&(t'))) = -'~(t —t')([A(t) &(t')]) (3)

Its Fourier component with respect to time is

((A) B)) = f Ct((A(t)
~
B(tt))) exp (le +ie)t,

For the Hamiltonian under investigation Eq. (1) we
have

where ( ) means averaging over the grand-canonical en-
semble and 8(t) is the usual step function. Let us define
the following two-component operators:

and

( 0 i
Then Eq. (6) becomes

(5l

Clq Clq ~ Ckq Cl —q

A
q Aq ~ Cl

q
A

1

Dq((d)

( (d + (do+ II22(q, (d)

—II2g (q, (d)

—Ilg2(q, (d)

—((d —(d, —
Ilgwu(qt (d)) )

(10)

where

D ((d) = [(d + (d + II22(q, (d))[(d —(d —II~~(q, (d)] + II&2(q, (d)II2&(q, (d),

and IIq((d) is the self-energy matrix. To the lowest order in t, this matrix is given by

( ((bq I b,'))- ((bq I b-.))- )
ll, (~) =

I, ((b'-, I b,'))- ((b'-, I b-q))- I
with bq ——(zt/~N) g & V(q, k) f& fI, . The matrix elements of the self-energy Iiq((d) contain averages of four fermion
operators. To evaluate these quantities we decouple in the following way:

(fs, q(t) fs. (t)fs, q fs. ) = ~s.s. (f('., q(t) f». q)(f~. (t)fi'„)-~ (i3)
Straightforward algebraic calculations lead to-

Ilyy(q, (d) = ) ~v(q, k)
~

d(d$ d(d2[n((dg)n( —(d2) —n( —(dy)n((d2)]
(«) c-, (k —q)~-. (k)

N ((d + (dy —(d2 + Xe)
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1122(q (d ) —1111( q M)

Ilq2 (q, ur) = ) V(q, ) (
—q, —q) duq du2[n(uq) n( — 2) —n( —uq) n(u2)] ' ' (15)

(zt)' p, (k —q)p, (k)
(td + (dy —(d2 + ZE)

and 112'(q, u) = Iiq2(q, u), with n(tu) = 1/[1 + exp(Per)]; P being the inverse of the temperature and p (k)
——Im((fg ] f&~)) +;o+ is the spectral density of holes. The denominator in Eq. (10) can be written as

D, ( ) = '[1+A,( )]'-(,') [1-11,'( )][1-11;( )] (16)

where Aq(ui) = [II22(q, w) —II&z(q, ur)]/2ur and II+(ur) = [II&z(q, ur) +II22(q, ur) +211&2(q, u)]/2u . Using the expression
of uq and vq given in Eq. (1), we obtain

Aq (td): ) (p&+q p& ) d~g d(u2 n((ug)n( —u)2)
(zt)' p-, (k)p-. (k + q)

N (~ + ~2 —~1 + ~e) (—~ + ~2 —Ml —2e)
(17)

and

11,'(~) = zt 1 (ps+q + pg)—) d~, d(u2 n(u)g)n(-(u2)
+q —oo —oo

~ ~
~

1xp, (k)p, (k+ q) +~+ ~2 ~1+ Z6 —(d+(d2 (d1 —M
(18)

Note that knowing the spectral density p (k), one can
evaluate the renormalized spin-wave energy, the damp-

ing, and the staggered magnetization.

III. DAMPING OF SPIN WAVES
AT ZERO TEMPERATURE

The spectrum of the spin waves corresponds to the
poles of the matrix Green's function {(Aq ~

At)), that is,
to the zeros of Dq(ur). Since Dq( ~) = Dq(u),—if ~q is a
pole, —uq is also a pole. At zero hole concentration the
poles reduce to ku . Then, since we are studying the
effect of a small hole density (b' « 1) on spin waves, we

shall look for poles of the form urq = u (1+bKq). More-

over, Aq and IIq+ are proportional to b. Then, keeping
only the first-order correction with respect to b, Dq(a)
becomes

holes p (k). The motion of a single hole in an AFM-spin
background has been studied by several authors using
the model under investigation. ' ' It is by now widely
accepted that the motion of a hole perturbs the mag-
netic background, but quantum spin fluctuations restore
it, leading to a coherent motion of the hole. Then it
is natural to take for the spectral hole density p (k) a
b function in the range of energy where the motion is
supposed to be coherent, which corresponds to a quasi-
particlelike behavior and to take the constant density of
states approximation for the broad incoherent part of the
motion. This picture was found to be quite valid by re-
cent numerical calculation for 6nite hole concentration
on clusters. Then we write

p-(k) = p: "(k) + p'.""'(k)

with

D ( ) [1+A,(,')]'-(,')'[I-il,+(,')][1-II;(,')].
(19)

I et us denote by uq+ il'q the zeros of Eq. (19). urq will
be the spin-wave energy and I'q will be the damping of
the spin waves. To the lowest order in b, one gets

p' "(k) = Zpb(cu —Es),

p'"' "(k) = 8((u —J)0(2W —~),
1

2W

(22)

and

1 —ReIIq cu —ReIIq cu 1 + ReAq

(20)

1 21mAq(ur ) + ImII ((u ) + Imll+((u )
1 —ReIIq (ur ) —ReIIq ((u )

(21)
To evaluate Aq and II+ we shall use the result of the

one hole problem as an ansatz for the spectral density of

where 2' is the bandwidth and E~ is the energy of
the quasihole. E~ reaches its minimum at momenta
(+m/2, +vr/2). Moreover, we suppose that near the min-

imum Eg is isotropic and can be written as Ey —k /2m,
where m is the effective mass of the quasihole. ~ is mea-
sured Rom the minimum of the quasihole energy. The
residue of the quasihole Zo is determined by the sum rule

f (hap (k) = 1, which gives Zo ——J/2W. To introduce
the chemical potential p in Eq. (22) one has simply to
make the following change u —+ u + p. At zero tem-
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perature and for small hole density p will lie near the
bottom of the spectrum, that is, in the coherent band.
The chemical potential is adjusted in such a way as to
give the correct density of holes b. We have

For T = 0, n(u) = e(—ur), and therefore one gets for p

xR'
mJ

It was already noticed by Igarashi and Fulde that the
magnon softening is due to the existence of the incoherent
background; that is, the incoherent part of the Green's

function gives rise to the main renormalization. The cal-
culation performed by Khaliullin and Horsch is an indi-
cation that the contribution coming &om purely coher-
ent motion is negligible in comparison to that one due to
the incoherent background. In what follows we will ne-

glect this purely coherent contribution and will take into
account only the coherent-incoherent contribution. The
incoherent-incoherent part is strictly zero in our approx-
imation, since we suppose that p ( J. This assumption
is compatible with Eq. (23), taking m = 2J and b is a
few percent. This value of the effective mass of the quasi-
hole is suggested by the estimation made by Kane, Lee,
and Read. This is a discrepancy between our calculation
and that one performed by Khaliullin and Horsch, since
they have an incoherent-incoherent contribution for the
renormalization of the spin waves. In this approximation
we obtain to first order in b for the spin-wave energy and
the damping the following expressions:

1 —+2q
uq 1 —2 2I& ~qJW 1 —p2

q

t2

JR' (24)

and

r,/~, = ~6
t 0 1 1

1 —~2
—

7q

t2 1—
JtV 1-q2

(25)

where Io(uo), Ii(ufo), and T(uo) are given in Appendix
B.

At small momenta, we deduce the spin-wave velocity
v from Eq. (24). We have

energy in agreement with the results of Rossat-Mignod et
al. ' Our result difFers &om that one of Ko, since he
had studied the disruption of the spin excitations due to
finite-hole doping by considering only the effect of static
holes in the t-J model and found that the spin-wave en-

v = veal —b/b (26)

where vo ——i/2J is the unrenormalized spin-wave ve-
locity, and b, is the critical hole density at which the
spin-wave velocity goes to zero. It is given by 0.8

(JW/2zt')
ln (2W/ J)

67q 2J

0.6

We notice that at 6rst order in b, the spin-wave velocity
is independent of the eAective mass of the quasihole. For
the bandwidth 2W = 2zt and t/J = 5 we have b, =
0.027, which is very close to the experimental value for
the YBa2Cu306+ material.

From Eq. (24), we have plotted in Fig. I the momen-
tum dependence of the spin-wave energy for diferent val-
ues of the hole density. We see clearly that a small num-
ber of holes strongly renormalize the spin-wave excitation
spectrum. We emphasize here that we have obtained a
wave-vector-dependent renormalization of the spin-wave

0.4

0.2

(o,o) (v/B, m/8)

FIG. 1. Spin-wave energy along g = (q, q) for difFerent hale
densities.
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J/t=0. 2
where Mo is the staggered magnetization at zero hole
density. It is given by

8=0.08 1 1
Mp ——1 — )2N

Yq

(29)

0.5—
8=0.015

The quantities (o.tas) and (u sas) are related to the
imaginary part of the Green's functions ((as~at)) and
((as ] a s)), respectively, by the fiuctuation-dissipation
theorem. From Eq. (10), we have

0 e ~

0 0.5

5=0.01
5=0.005

1 1.5 and

((~. I ~,'))- = ~ + u) p + II22 (q, ~)
Dq 4)

(30)

FIG. 2. Ratio of the spin-wave damping to the spin-wave

energy I's)j'(ds along q = (q, q) for difFerent hole densities.

ergy collapses for some critical 8 about 0.1. This shows
that the hole motion produces the main disruption to the
spin excitations.

The momentum dependence of the damping I'q for dif-
ferent values of the hole density is represented in Fig. 2.
It shows that the doping leads to a heavy damping of
the long-wavelength spin waves due to their decay into
particle-hole pairs. The damping of the spin waves occurs
when the spin-wave spectrum crosses the pair excitation
continuum, defined as the region where ImII(q, ~) g 0.
For a very small hole concentration such that the spin-
wave velocity e is still larger than the Fermi velocity n~,
long-wavelength spin waves remain well de6ned, because
they cannot decay into particle-hole pairs while the short
wavelength spin waves are damped, which is shown in
Fig. 2 for b' = 0.01. When the hole density increases the
spin-wave velocity decreases and becomes smaller than
the Fermi velocity and therefore the spin-wave spectrum
lies entirely in the pair excitation continuum and even
the long-wavelength spin waves are overdamped.

1--lm((~,
I ~,')).+;p. = (d + (uo + ReII22 (q, (uo)

2ur~ 1+ 2ReAs(coo)

x [8((u —sr~) —b(~ + (us)] (32)

and

1 ReIIi2(q, ur )

2, 1+2R.X,(;)
x [b(~ —(u~) —b((u+ (u~)].

(»)
At zero temperature, we have

—u), + (uo + ReII,2(q, (uo)
(~,'~.) =

2urs 1+ 2ReAs(ufo)

and

—ReIIi2(q, ~ )
Cl qO!q

2u), 1+2 Re%, (ufo)

the self-energies Re022 and ReIIq2 being given by

IIi2(q, (u)
Ckq Cl q

Dq ~(d)

For a small hole concentration b, we can neglect the
damping and get to first order in b

IV. STAGGERED MAGNETIZATION Rell22(q, ~, ) = —b —(1 —p2, )
p

Khaliullin and Horsch in Ref. 6, calculated the self-
energy of spin excitations for a small wave-vector only.
Then they estimated the staggered magnetization by
making an interpolation formula for the self-energy,
based on the approximation of two-dimensional (2D)
isotropic Fermi gas. In our calculation we get the self-
energy at any momentum and therefore can compute,
without further assumption, the staggered magnetization
for di8'erent values of the hole concentration.

In the model under investigation the magnetization is
given by

X
1 p2

I,(~s) + Ip(u's)

and

t2 1—
eIRI, (q,e')e=6— ' qeI, (w')

~e

For b in the neighborhood of b, and for small q, I'q )) ~q
so that we neglect ~q in front of I'q. We obtain then

(28)
- (~,'~.) ~.(~ q~.)—-M=M—

1 —
7q

~'+ «11»(q, ~,')
(~,'~.) =

2~s [1+2 Re%~(ufo)]
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0.8
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0.4

0.2

0 I I I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 i

FIG. 3. Data of the normalized staggered magnetization
M/Ma as a function of the normalized hole density b/8, : The-
ory for J/t = 0.2 and m = 2J (solid curve); measurement of
ordered moment for YBa2CusOs~ (solid triangles) (Ref. 18).

and

—Rellgz{q, ~ )

2us 1+2ReAq(uo)

Having the quantities {atua) and (o; sns), we integrate
numerically over q in Eq. (28) for different values of
hole density to obtain the staggered magnetization. The
dependence of the reduced magnetization on hole den-
sity M(b)/Mo is plotted in Fig. 3 for the physical ratio
t/J = 5 and m = 2J ~. We see that the staggered mag-
netization goes to zero for the critical hole concentration

V. CONCLUSION

but also the long-wavelength spin waves are overdamped
due to their decay into electron-hole pairs. The damping
of the spin waves leads to the disappearance of the AFM
order. Figure 3 shows the dependence of the staggered
magnetization on the hole density. The available exper-
imental data for YBa2Cu306+ gives the dependence of
the AFM order on the oxygen content x, but there is no
trivial linear relationship between x and the hole con-
centration h. Then to make the comparison between our
result and the experimental data for YBa2Cu306+, we
have used the relation between b and 2: given by Uimin
and Rossat-Mignod. According to their results, we see
in Fig. 3 that our theory is in good quantitative agree-
ment with experimental data for YBa2Cu306+

Our calculation is based on the polaron model for
which an antiferromagnetic background is assumed.
However, it has been noticed by Shraiman and Siggia
that an AFM state is always unstable against a spiral
state as soon as the density of holes is nonzero. Accord-
ing to Igarashi and Fulde, 24 the corresponding Hamilto-
nian can be decomposed into the polaron Hamiltonian,
Eq. (1), and an extra term containing only charge op-
erators. So the equation of motion for the susceptibil-
ity remain the same. The spectral hole density p (k)
will change. If we assume, however, that the picture of
a small coherent spectrum and a large incoherent one,
is not modified, the main efFect will be contained only
in a renormalized effective mass, the inverse of which is
shifted by a term proportional to b. But we have noticed
in Appendix B that the critical hole density is indepen-
dent of the effective mass in our lowest order calculation.
Therefore, we expect that the spiral state will manifest
itself only when computing second-order corrections.

In conclusion we have shown that the motion of holes
strongly modifies the spin dynamics: the low-energy part
of the spectrum is strongly renormalized and the damp-
ing of spin waves becomes very important, and conse-
quently the long-range magnetic order is destroyed.

The aim of this work was to study the magnetic prop-
erties of the t-J model, and especially the transition &om
the insulating phase to the metallic phase. We have pre-
sented the results of calculations of the spin-wave energy,
the damping of spin waves and the staggered magnetiza-
tion to first order in b. Let us notice that the actual
expansion parameter appears to be t~b/gJW [see, for
example, Eqs. (24) and (25)], which is very small for the
range of b we considered. In fact t~h/gJW & 0.16 for
t/J = 5 and W = zt. These results may be compared to
the experimental data for high-T superconductors. We
have found that the spin-wave energy is strongly renor-
malized by a small hole doping (Fig. 1). The spin-wave
velocity has a square-root concentration dependence and
vanishes for the critical hole concentration h, = 2.7%
(for t/J = 5). The value of 8, depends only on the ratio
t/J. This value is very close to the experimental value

( 2%) for YBazCusOs+~. ' We have also computed
the damping of the spin waves and found that it is very
sensitive to the hole doping (Fig. 2). For the critical hole
concentration not only the short-wavelength spin waves
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and (Aq I
At) = ([Aq, At]). The operator iAq(t) can be

separated into a linear part proportional to Aq(t) and the
remaining orthogonal part, that is

([Bq, At]) = 0

the matrix Cq being given by

(A4)

iA, (t) = C,A, (t) + B,(t), (A3) Cq = (iAq I
At)(Aq

I
At) (A5)

where the irreducible part Bq(t) is defined to be orthog-
onal to Aq(t), that is

Taking into account Eqs. (A3) and (A5), the equation
of motion (Al) becomes

~((Aq I A,"))- = (Aq I A,') + (iAq
I A,')(Aq

I A,') ((Aq I A,'))-+ ((Bq I A,'))-.

De6ning the polarization operator by

(A6)

Equation (A6) becomes

II ( )=(A IA) ((B IA)) ((A IA)) (A7)

((Aq ~

AI)) (Aq
~

AI) + ((Aq
~

AI)) ((iAq ~

AI)(Aq
~

AI) + (Aq
~
AI)iiq(qq)) (AS)

Now we shall write explicitly the polarization operator IIq(ur) in terms of the following Green s functions:

((iAq I
At)), ((Aq I

—iAt)), and ((iAq
I

—iAt)) . To do this we write the equation of motion for ((Aq I
At)) by

deriving with respect to the right time argument

which is written as

~((A. I A,'))- = (A. I A,') + ((A. I
-iA,'))-

((A,
~

AI)) = (tq —((A, (A&)) ((A,
~

—iAI)) ) (A,
~

AI)

(A9)

(A10)

We also write the equation of motion of ((iAq I
At))

~((iAq I
A&)). = (iAq I

At)+ ((iA,
I
-iA&))..

Using Eqs. (A7), (A10), (All), and (A3) we can write the polarization operator as

(A11)

11q(~) = (Aq I A,') (((iAq I

—iA', )). —((iAq I A,')).((A, I A,'))- ((Aq I

—iA,'))-k(Aq I A,') (A12)

To see that Eq. (AS) can be written as the usual Dyson's equation, G = G + G IIG, we define the "zero-order"
Green's function by

~((Aq I
A )) = (Aq I

At) + (&Aq I
A )(Aq I

At) ((Aq I
A ))

((A IA )) =((A IA ))(l+((A IA ))()II ( )((A IA )) (A14)
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APPENDIX B:THE RENORMALIZED PARAMETERS

12 903

To first order in b, straightforward algebraic calculation leads to

g2

1 QQ

(Bl)

JW
e

with

t2 1—
JW 1+pq

J+td f J —(dq) J —(de
1 — Iln 1—

u ~ u )

(J+~'I
+ ln e (B2)

Iq(uz) = 2 1+ in &")
J+~ l J+(u f J —

(aqua1 — 1 1 — — 1 — l 1—
)

and

(J+~') f J+~e't
e

&~)
(J —~'l J —~'

ln (83)

( J -~'l ( J- ~'l
&(~,') =8(~, —J)+ 1 — ~ ~8 1 — ~ 8(J —(oe).

)
For q -+ 0, Io(tdo) m 0 and

(B4)

i2W~ p, J p,
Iq(ur ) ~ 2 1+in —ln 1 ——+ —ln 1 —— (B5)

and for p/J (( 1 we obtain

(2WI pIg(~ m 0) 2ln
)

(B6)

Since the renormalized parameters are proportional to b, the term p/J should be dropped. As a consequence, we
see that, up to fn..st order in b, the spin-wave velocity and the critical hole concentration b are independent of the
efFective mass of the quasiparticle.
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