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Numerical simulation of flux-pinning dynamics for a defect in a type-II superconductor
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We perform a computer simulation of the flux-pinning dynamics for a single defect under the presence
of both the applied current and the external magnetic field by directly solving the time-dependent
Ginzburg-Landau equation coupled with the Maxwell equation in a two-dimensional rectangular region.
With one vortex flow path and a single defect, we found two types of vortex motions around the defect,
which are one-flux and two-flux pinning, depending on the size of the defect. The criterion of the two-

flux pinning is studied by both numerical simulation and a simplified free-energy calculation. We also

present the effect of a single defect on the V-I characteristics.

Since the discovery of High-T, superconductors, many
efforts have been focused on trying to understand the rich
features in the mixed state' in order to obtain a
suSciently high superconducting critical current.

It is known that intrinsic and artificially introduced de-
fects in type-II superconductors give rise to the increase
of the superconducting critical current density due to the
flux pinning by these defects. ' Recently, in the High-T,
superconductors such as YBa2Cu307 & and
Bi2Sr2CaCu208, it is reported that columnar defects in-
troduced by heavy-ion irradiation strongly enhance the
critical current density.

In theoretical studies about flux pinning, the stability
of a pinning state is estimated by calculating the decrease
of the free energy due to the entrance of the flux into the
pinning center, and the critical current density is evalu-
ated from the competition between the pinning and the
driving forces such as Lorentz and thermal force. Thus,
the flux-pinning state is assumed to be quasistable in the
free-energy potential. On the other hand, thermal fluc-
tuations and interactions with other moving flux lines
give rise to the flux depinning. Since the theoretical
study on these phenomena is limited to calculations using
the static thermodynamical free energy or the simplified
phenomenological equation of motion of flux, the detailed
dynamics of the flux pinning and depinning is not well
known.

In this paper, a computer simulation is made to study
the dynamics of flux-pinning processes by directly solving
the time-dependent Ginzburg-Landau equation (TDGL)
coupled with the Maxwell equation in a two-dimensional
rectangular region where a single disk defect is intro-
duced in the center of the computational region. In this
simulation the defect is defined as the circular region
whose critical transition temperature is decreased in con-
trast to the surrounding region, and the size is scaled
with the coherence length at zero temperature. Both
equations are rescaled as in Ref. 9 and discretized as in
Ref. 8. In order to study the flux dynamics in the pres-
ence of both the applied magnetic field and the constant
transport current, the boundary conditions for the
TDGL and the Maxwell equation are strictly scrutinized
in Ref. 9. The TDGL and Maxwell equations require the
gauge-covariant first derivatives to be zero in all boun-
daries and the local magnetic field to be the sum of the

applied magnetic field and the current-induced magnetic
field from Ampere's law.

With this method, we can study how the superconduct-
ing current carrying state is sustained in the presence of a
pinning center. It is noted that a direct simulation of the
TDGL equation with the Maxwell equation has not been
reported to study flux-pinning dynamics in the presence
of the constant applied transport current and applied
magnetic field. In this study, the mesoscopic scale sys-
tem, in which one vortex train appears, is used and im-
portant effects of both the surface boundary and a de-
fect' " are investigated by calculating the time develop-
ment of the distribution of the order parameter and the
current.

Figure 1 shows the snapshot of the absolute value of
the order parameter ~f~ in the defect-free computational
region in the presence of a constant current. In this case
the computational region is divided into 160X80 meshes.
The width of the square mesh is taken as the half of the
coherence length at zero teinperature g(0). The super-
conducting critical temperature and the material temper-
ature are taken as 20 K and 10 K, respectively. The ap-
plied magnetic field is assumed to be 0.2H, z(T=10 K)
and the applied transport current to be 0.035 in the non-
dimensional scale. The following results are shown in
nondimensional scales. The time step is taken as 0.01 to
ensure stable time development. The applied magnetic
field and the transport current are gradually increased by
100 steps during the first 1X10 steps from the initial
state. Figure 1 is the snapshot at the time step of 3 X 10,
which is already in a steady flux flow state. In the central
part of the computational region, the flux flow, in which
vortices are formed in a triangular lattice pattern, is
clearly observed. Thus, with the above numerical tech-
nique, it is confirmed that the flux flow with the forma-
tion of a triangular vortex lattice is simulated by solving
the TDGL equation coupled with the Maxwell equation
in the two-dimensional region. It is found that vortices
penetrate into the same place of the boundary and follow
the same path due to the formation of the flux triangular
lattice.

Next, a defect is introduced in the center of the compu-
tational region to simulate the flux-pinning process. The
configuration of the computational regions is shown in
Fig. 2. Here, the size of the computational region is
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FIG. 1. The snapshot of the

spatial distribution of
~ P~ for

T=10 K (T, =20 K),
H, =0.2H, 2(10 K), j,=0.035,
and 300000 steps. The blue
color in the figure represents the
equilibrium value, while the or-
der parameter is nearly zero in

the red color region.
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FIG. 2. The computational region in which the superconduc-
tor is sandwiched between normal conductors.

160X 80, in which a mimimum square mesh is
0.25/(0) X0.25((0), and the time step is taken as 0.0025
in the nondimensional scale. For the purpose of obtain-
ing an elementary flux-pinning process by a single defect,
the size of this system is chosen in such a way that only
one vortex path is formed in the x direction. As shown in

Fig. 2, the transport current is in the y direction and a
disk defect, whose radius varies as 1.0, 1.5, and 2.0 times

g(0), is introduced at the center of the computational re-
gion where its superconducting critical temperature is 6
K. The T, is assumed to be 20 K and the simulation is
performed at 10 K. In the present simulation, the ap-
plied magnetic field and the Ginzburg-Landau (GL) pa-
rameter Ir are fixed as 02H, z(T=10 K) and 2.0, respec-
tively. Thermal fluctuations are neglected so that flux
creep phenomena do not occur.

Figure 3(a) shows the distribution of ~f~ at the time

step of 1.2X10 . Here, the transport current is assumed
to be 0.025 in the nondimensional scale. The following
results are shown in nondimensional scales. In this case
the radius of the defect is chosen as g(0). This corre-
sponds to a defect whose size is smaller than g(10). It is
observed that a flux penetrates from one side of the
boundary and moves to the other side as time progresses.
The speed of the flux motion and the distance between
fluxes are dependent on the strength of the applied trans-
port current. Figure 3(b) shows the situation at the time
step of 3 X 10 . It is seen that the trapped flux is pushed
out of the defect into the surrounding superconducting
region by the continuous inflow of fluxes into the defect.

Figure 3(c) is the distribution of the normal current
which corresponds to the situation in Fig. 3(b}. It shows
that the electric field, such as a dipole moment field, is
generated by the flux motion. ' ' It is noted that the
trapped flux does not generate the electric field, while
that pushed out of the defect does generate the electric
field.

Figure 4 shows the results for the distribution of the
supercurrent at the time step of 1.6X10 where a single
defect with the radius of 1.5((0}, which is larger than
g(10), is present. Under the applied current, it is found
that the two-flux quanta are trapped at the same defect
region. The range of circulating supercurrent around the
defect is about two times larger than that of the one-flux
quantum trapping. The magnetic field doubles in this
two-flux quanta trapping, and so does the screening
current. This state is stable and the system does not de-
velop as time increases. This stability maintains without
thermal fluctuations or increasing transport current.

These depinning and two-flux quanta pinning processes
as shown in Figs. 3 and 4 are explained qualitatively by
the following simplified free-energy calculation. The free
energies F& and F2, which correspond to two different
flux states, are written as'
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where Po is the flux quantum ( =Wc/e), R is the radius
of a defect, A, is the penetration depth, and Ko is the
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FIG. 4. The snapshot of the spatial distribution of super-

current for T= 10 K ( T, =20 K), H, =0.2H, 2 (10 K), j,=0.025,
and 1600000 steps. The cross in the figure represents the loca-
tion of the center of the defect.
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modified Bessel function of the second kind. Here, the
free energy F, describes a state where one flux is trapping
into the defect and the other is depinning from the defect,
while I'2 corresponds to the two-flux quanta pinning
state. The first terms in both equations are the flux core
energy, the second and the third terms in Eq. (1) and the
last term in Eq. (2) are the superconducting current ener-
gies, and the last term in Eq. (1) is the interaction energy
between vortices, which are placed at the opposite ends
of the disk defect. From the comparison of I', and F2,
the two-flux pinning threshold is evaluated as F2 &F&.
When R is larger than 1.88((0), the two-flux quanta pin-
ning state is stable in comparison with the depinning
state, while when R is smaller than 1.88((0), a vortex de-
pinning occurs. However, in the present simulations, the
two-flux quanta pinning state is observed when the radius
of the defect is 1.5((0). Although there is a slight
difference in the pinning threshold, the results of the stat-
ic free-energy calculation are in qualitative agreement
with the simulation results in the presence of the applied
transport current.

Figure 5 shows the time development of the generating
voltage which is defined as V= Ioe(y')dy', where e(y) is

(I/W) j~(—dA/dt)dx. Here, L and W are the length

of the superconducting sample in parallel and perpendic-
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FIG. 3. (a) The snapshot of the spatial distribution of I/i for
T=IO K (T =20 K) H =0 2Hc2 (10 K) jr=0.025, and
120000 steps. The cross in the figure represents the location of
the center of the defect. (b) The snapshot of the spatial distribu-
tion of i/i for T=10 K (T, =20 K), H, =0.2H, 2 (10 K),
j,=0.025, and 300000 steps. The cross in the figure represents
the location of the center of the defect. (c) The snapshot of the
spatial distribution of the normal current. The numerical con-
dition is the same as that in (b). The cross in the figure
represents the location of the center of the defect.
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FIG. 5. The time development of the measured voltage for
the case with and without a defect. The radius of the defect is
assumed to be 1.5/10).
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FIG. 6. The snapshot of the spatial distribution of ~P~ for
T= 10 K ( T, =20 K), H, =0.2H, z(10 K), j,=0.030, and 800000
steps. The cross in the Sgure represents the location of the
center of the defect.

0.02 0.03

FIG. 7. The V-I characteristics for the case vvith and without
a defect. The radius of the defect is assumed to be 1.Sg(0).

ular to the applied current direction, respectively. The
dashed line in the figure shows the defect free case, while
the solid line corresponds to the case with a defect whose
radius scale is 1.5$(0). In the defect free case, several
peaks which appear in the first half of the simulation time
are attributed to dissipation by the flux penetration at the
boundary of the sample and the strong peaks at the time
of 4.3 X10s result from the flux annihilation at the other
boundary. Taking the interaction with mirror vortices
into consideration, these strong peaks in voltage are well
understood by the enhancement of the vortex speed. s'"

In the case where a defect is present, the second peak
in Fig. 5, which is stronger than the corresponding peak
in the defect free case, results from the sum of the phe-
nomena of the enhancement of the vortex speed near the
defect and the penetration of the other vortex from the
sample boundary. The vortex is attracted to a defect due
to the gain in free energy by the flux trapping, and the
difference in peaks is explained by this pinning force.
The last peak, which is the weakest, is due to the second
flux trapping at the same defect. This two-flux trapping
prohibits the trapped vortex from escaping from the de-
fect and the incoming vortex from penetrating into the
defect, which leads to a nondissipative stable state. The
strong magnetic repulsion by this two-flux trapping
prevents other fluxes from approaching the defect region.
Here, the electric field except for the surface contact with
nortnal conductors does not exist and the nondissipative
superconducting current is sustained as shown in Fig. 5.

.Figure 6 shows the distribution of ~f~ at the time step
of 8X10, when the appbed current is increased up to
j=0.03. The speed of a vortex motion increases and

many vortices penetrate the superconducting region from
various places in the boundary. It is observed that, when
the number of trapped flux quanta in the defect region in-
creases by more than 2, a vortex is pushed out of the de-
fect by the incoming vortices.

The V-I characteristics of the sample with a single de-
fect are shown in Fig. 7. Each point of this plot is ob-
tained by the long time average of the voltage in a steady
state. Squares and circles in the figure represent the cases
with and without a defect, respectively. In the presence
of a defect with the radius of 1.5$(0), a plateau of voltage
is seen from approximately j=0.022 due to the two-flux
pinning and an abrupt change in voltage is observed at
j=0.025 due to the flux depinning. The following linear-

ly increasing region of voltage in both cases indicates the
vortex motion with the increased speed. The dil'erence
in voltage between the cases with and without a defect re-
sults from the trapped flux.

In conclusion, we have performed the numerical exper-
iment of the pinning and depinning process with a single
defect by using the TDGI. and the Maxwell equations in
the presence of the external transport current and the ap-
plied magnetic field. We have found the transition from
one-flux pinning to two-flux pinning by changing the size
of the defect and the two-flux quanta pinning state, which
plays the role of a strong stopper for the vortex flow. The
direct numerical simulation technique we have developed
in this paper can be applicable to the simulation of the
flux-pinning dynamics in the mesoscopic scale sample for
the conventional superconductor and for high-T, super-
conductors involving arbitrary pinning centers with any
shape.
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