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Phase locking of Fiske modes in sine-Gordon systems
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We investigate the dynamics of the sine-Gordon system when the length of the spatial interval is
relatively small. In our analysis ac and dc forces are applied through the boundaries and a dc force
is uniformly distributed over the entire spatial interval. Phase locking of Fiske modes to the external
ac boundary signal is observed and analytical perturbation results are in excellent agreement with
numerical experiments.

Phase locking of soliton oscillations in ac-driven sine-
Gordon systems has been studied extensively over the
past decade. Both nuxnerically and analytically the
mechanisms for and the ranges of phase locking are rea-
sonably well understood in the &amework of the adia-
batic perturbation technique. These studies have strong
impact on possible future applications of Josephson junc-
tions as local oscillators in superconducting electron-
ics, since the sine-Gordon equation is a well established
model for long Josephson junctions. For long Joseph-
son junctions, oscillations of magnetic flux quanta [which
manifest themselves as zero-field steps (ZFS) in the
current-voltage (IV) characteristics) correspond to soli-
ton oscillations in the sine-Gordon system. However, long
Josephson junctions exhibit other resonant modes, which
are just as important for technical applications as the
ZFS's. Particularly, the Fiske modes in long Josephson
junctions5 have proven experimentally to be more stable
than the ZFS's and therefore potentially very interesting
for technical applications. This xnode appears when the
junction is embedded in an external dc magnetic field.
Theoretically, the Fiske mode proves diKcult to handle.
Unlike the soliton oscillation mode, Fiske modes can only
exist as a balance between external forces and dissipa-
tion in the system, and we do not have exact solutions
for this particular mode. Two models have been pro-
posed to explain Fiske steps in the IV characteristics of
Josephson junctions. Pne xnodel is the "Kulik theory"
which is valid for relatively short systems, and the other
is a combined soliton and plasmon xnodel vahd for longer
junctions.

In this paper we investigate the Fiske modes when an
external ac force is applied through the boundaries of the
systexn. The parameter ranges of phase locking are found
analytically and confirmed numerically. Experimentally,
this corresponds to a situation where the junction is em-
bedded in an external magnetic field, giving rise to the
Fiske mode, and with a small ac component to which the
mode can phase lock.

The model under investigation is

4'~~ —At —»n 4' = o'g4 —'g,

where P describes the phase difference between the quan-
tum mechanical wave functions of the two superconduc-
tors defining the Josephson junction. Space x is normal-
ized to the characteristic Josephson length Ag, and time
t is normalized to the inverse of the plasma &equency,

Tunneling of quasiparticles through the junction
is represented by the dissipative parameter a, and g de-
notes a uniformly distributed dc bias current normalized
to the maximum Josephson current of the junction. The
boundary conditions for the finite size system are given
by

P (0) = P (L) = I'+ e sin At,

P = u)t + I'z + g(z, t),

where @ is represented by the fundamental frequency
only,

Q = ) [A„cos~t + B„sinut] cos k„z
n=O

= ) QA2 + B2 sin(~t + 8„)cos k„x,
n=O

(4)

where

k =, tan8 =A /B

where I' is a normalized magnetic dc field embedding
the junction, and e is the normalized amplitude of an ac
magnetic field, 0 being its normalized &equency. The
normalized length of the system is denoted L.

For e = 0 we can follow Ref. 6, writing the field in the
form
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This function satisfies the boundary condition Eq. (2)
for e = 0. Using this expression for g, inserting Eq. (3)
into Eq. (1), and assuming that @ is a small amplitude
function we find the constants An and B„to be

2FL
&+ ~,o

[1 —(-1)"cos I'L] ((u~ —k„) + a(u( —1)"sin I'L
[(I'L)' —(~&)'] [(~' —&')'+ (a~)')

2FL
1+b„p

(—1)"(~ —k~) sin I'L —mu [1 —(—1)"cos I'L)

[(PL)2 (~z.)2) [(~2 I 2 )2 + (a~) 2]

(6)

where b 0 ——1 for n = 0 and zero otherwise. Clearly
the system exhibits resonances for ~ k„and the dc
component of Eq. (1) yields the following expression:

g = a(u + J((u),

(5) where

2am(I'L) [1 —
(
—1)"cosI'L]

[(I'L) —(n7t) ] [((u —k ) + (a(u) ] (1+b~ s)
(8)

Hdx =0
2mlA L

w —LgO = -o. P,'dzdt0

+me ) cos(8z„+i —8)
n=0

2n+1 + 2n+1, (12)

where 8 is a phase between the ac field and the Fiske
mode. Note that only the odd spatial harmonics con-
tribute to phase locking. From this expression it is now
clear that a variation in g = go+Ay, Ag being small, can
be compensated by an adjustment in 8. If we are con-
sidering phase locking at the mth Fiske step, i.e., when
0 & k, we find that only the term originating &om A
and B contributes significantly; for k q ( 0 ( k
we can therefore write

2~6,g ~

& bg =2—gA' +B'
L

for odd m, and

Q[Q2 k2 ]2 + (aQ)2[(PL)2 ~2~2]

(i3)

The normalized energy of the system is defined by

H=
2 + 2 ~+1 —cos dz. 9

Taking the time derivative of this expression and insert-
ing Eqs. (1) and (2) we obtain

L
H = rift, —nP, de+ (I'+ esinOt)gq~':o . (10)

0

Inserting the solution of Eqs. (3)-(6) into Eq. (10), as-
suming that ur = 0, the following energy balance is ob-
tained for the ac-driven phase-locked Fiske mode:

The total size of the locking range in dc bias for the
mth Fiske step is denoted hg . From this expression we
see that phase locking appears as first order steps in the
IV characteristics, symmetrically positioned around the
IV curve of the Fiske step with no ac drive applied.

It is important here to discuss the limitations of the
validity of this expression. The coeKcients A„and B„
are derived under the assnmption that g is a small ampli-
tude function, oscillating with the fundamental f'requency
only. This means that as long as these coeKcients are
relatively small we can be confident that the range of
phase locking given above represents a good approxima-
tion. The range of phase locking is therefore a much bet-
ter prediction than the predicted height [Eq. (8)] of the
Fiske steps, since Eq. (8) is given for the largest possible
amplitude of g.

The fact that all even Fiske steps show vanishing lock-
ing ranges is not surprising, since the even Fiske modes
contain the symmetric spatial modes as their dominant
contribution. The external ac magnetic field contributes
with an asymmetric spatial oscillation and the power ex-
change between the external ac field and the even Fiske
modes is therefore small. The odd Fiske modes are
mainly generated by asymmetric spatial components and
the coupling to the external asymmetric field is therefore
possible.

In the limit of relatively small F the above theory fails
due to the presence of higher harmonics in the dynamics.
In this limit we can use the soliton picture ' 0 and assume
that a Fiske mode is a soliton generated at one bound-
ary, traveling through the system, and then annihilated
at the other boundary. Phase locking of this mode can
be described analogously to the phase-locked, shuttling
soliton mode described in Ref. 4. The resulting size of
phase-locking range is given by4

cosh L 1 —LO m cos 2LO ~ —1

2]bq
i

& bg --0, (i4) cosh —gl —(LO/m) z
2L

for even m.
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(e = 0). The height of the Fiske step has its minima for
I'L = 3z/2+27rl (L integer) as given by Eq. (8). The error
margin for the numerical data is 10, and therefore
much smaller than the size of the markers. When e g 0
and 0 & m/L, we may phase lock the normalized volt-
age V—:cu to the external &equency O. For a particular
choice, e = 0.05 and 0 = 1.5 + m/L, .we show the re-
sulting range in bias current for which the system phase
locks. This range is displayed as vertical lines in Fig. 1.
Clearly the size of the locking range follows the interfer-
ence pattern of the size of the I'iske step, as predicted in
Eq. (13). The linear dependence of the step size upon the
ac amplitude is demonstrated in Fig. 2. Here we show
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—0 10

FIG. 1. Maximum dc bias rl (+) for the first Fiske step
as a function of dc magnetic Beld F. Parameters for the nu-
merical simulations are L = 2, o. = 0.1, e = 0. For e = 0.05
and 0 = 1.5 the range of phase locking is shown as markers
connected by solid lines.

for FL & 2m. Note that this expression is valid only for
the first Fiske step.

We have performed numerical simulations and com-
pared the results to the above predictions. Due to the
large parameter space we have limited simulations to the
first Fiske step (m = 1), normalized length I = 2, and
damping parameter o. = 0.1. In Fig. 1 we show the max-
imum dc bias value for the first Fiske step as markers

(+) as a function of the external dc magnetic field I'
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FIG. 2. Extrema of locking ranges as a function of the ac
amplitude e. Parameters are L = 2, n = 0.1, I' = 5. Markers
represent results of numerical simulations, 0 = 1.4 (0) and
0 = 1.5 (&), and solid lines represent the analytical result
Eq. (13).

FIG. 3. Total size of the locking range in dc bias as a
function of normalized dc magnetic Beld I'. Parameters are
L = 2, n = 0.1, e = 0.01 (+), and e = 0.05 (x). Markers
represent results of numerical simulations, 0 = 1.4 (a) and
0 = 1.5 (b), and solid lines represent the analytical result Eq.
(13). Horizontal dashed line represents the soliton result Eq.
(15).
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the extrema of the phase-locked steps for I' = 5 as a
function of the ac amplitude for two different driving fre-
quencies, 0 = 1.4 (0) and 0 = 1.5 (CI). These markers
represent the results of numerical simulations. It is worth
noting that the linear dependence of the current ampli-
tude of phase-locked steps (on Fiske singularities) on the
external rf-drive amplitude was found in measurements
on long Josephson junctions.

The results presented in Figs. 2 and 3 are obtained by
initiating the system in a phase-locked state and allowing
a transient time of 4000 normalized time units before
measuring the average &equency over 1000 normalized
units. Then the normalized bias was changed by 2 x
10 and the procedure was repeated until the edge of
the step was detected. The uncertainty of the displayed
markers is therefore of the order of 4 x 10 in dc bias.
For small ac amplitudes we find a linear and symmetric
phase-locked step for both frequencies. The solid lines in

Fig. 2 represent the predicted edges of the phase-locked
step as given by Eq. (13). The agreement between the
simulations and the analytical results is excellent. For
increasing ac amplitudes the 0 = 1.5 data deviate from
the predicted curve. This is quite understandable since
the maximum bias for the Fiske step for I' = 5 is about

g = 0.18. This is approximately the bias value at which
the upper bound of the locking range levels for larger ~

values for 0 = 1.5. The fact that the lower bound of
the step is found to follow the predicted slope almost
perfectly also indicates that the deviation of the upper
bound is caused by the upper limit of the Fiske step.

Figure 3 shows comparisons between numerical sim-
ulations (markers) and analytical predictions, Eq. (13)
(solid curves) of the total size of the locking range as a
function of the normalized dc magnetic field I'. Simula-
tions were carried out for e = 0.01 (+) and e = 0.05 (x)
[Fig. 3(b) only]. For high I' the agreement is found to

be very good for both 0 = 1.4 [Fig. 3(a)] and 0 = 1.5
[Fig. 3(b)]. However, we find large deviations for rela-
tively small values of I'. The reason for this is that the
linear mode analysis of Eqs. (3)—(6) only holds for large
I'. When nonlinearity enters the spatial variation of P we

may use the soliton picture of Refs. 7 and 10 for I'L & 2m,

as stated above. We have shown the analytical predic-
tion from the soliton model Eq. (15) as horizontal dashed
lines and we find very close agreement with the numerical
simulation in the expected region of small I'.

We have demonstrated that Fiske modes can be phase
locked to external ac signals and that the locking range
in dc bias gives rise to a symmetric step, whose ampli-
tude increases linearly with the ac field. Combining a
linear mode description of the Fiske mode with an en-

ergy balance approach has enabled us to predict the lock-

ing ranges for relatively large values of the normalized dc
magnetic field I'. In the limit of small I', where the linear
mode theory for the Fiske mode is known to be invalid,
we have applied a soliton description of the Fiske mode
and used a known expression for phase locking to external
ac signals. Also in this parameter range we have found

good agreement between numerical simulations and the
analytical predictions.

In conclusion, we note that it is relatively easy to de-

sign and fabricate junctions presenting low-order Fiske
modes in frequency ranges (X band, for example) where
room temperature microwave equipment is available and
it; should, therefore, not be difBcult to validate the model
presented in this paper.
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