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Time-dependent equations for phase differences and a collective mode
in Josephson-coupled layered superconductors
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A time-dependent equation for the interlayer phase differences is derived for Josephson-coupled
layered superconductors. It generalizes the sine-Gordon equation for the phase in a standard Joseph-
son junction to the case of multilayer systems. Vhth the help of this equation, the dispersion of a
collective mode is found at low temperatures. In highly anisotropic systems the gap in the spec-
trum of this mode lies below the superconducting gap and is suppressed strongly by a magnetic
Geld parallel to the layers. The effect of this mode on the dielectric function and speci6c heat is
calculated.

For a Josephson junction formed by two bulk super-
conductors the time-dependent phase difFerence satisfies
the well-known sine-Gordon equation, 2 which describes
the full dynamics of the junction. The corresponding
equation for multilayer systems of Josephson-coupled
layerss of atomic thickness (high-T, superconductors, or-
ganic layered superconductors, artificial superlattices of
YBazCus07 5/PrBa2Cus07 5 type) has only been de-
rived for the static limit. As pointed out by Doniach
and Inui, ~ the problem here is to account properly for the
screened Coulomb repulsion which determines the kinetic
energy of the phase variables.

In the following, using Maxwell's equations and the
Josephson relation, we derive the equation for the time-
dependent phase differences for Josephson-coupled mul-
tilayer systems. We then calculate the dispersion of
the collective mode corresponding to coupled phase and
charge variations at low temperatures T. This plasma
mode lies well below the superconducting gap in highly
anisotropic materials and affects low-energy properties of
high-T superconductors. We study the behavior of this
mode in a magnetic field parallel to the layers and de-
rive its contributions to the dielectric function and the
specific heat at low T for the Meissner and the high-field
regimes.

We consider a multilayer system within the Lawrence-
Doniach model. The z axis is chosen perpendicular to
the layers (along the c axis). Let us denote by P„(r,t)
the phase of the superconducting order parameter at po-
sition r = (2:,y) in layer n and at time t. The mag-
netic field B(r, z, t) = curlA(r, z, t) is oriented along
the layers, and the electric field is given by E(r, z, t) =

—(I/c)BA(r, z, t)/Bt, where we have chosen the gauge
with zero scalar potential. The Maxwell equations read

epV E(r, z, t) = 4mp(r, z, t),

c rluB(r, z, t) = — ' ' + —j(r, z, t),
ep BE(r, z, t) 4n'.

c Bt c
where ep is the high-frequency dielectric constant and
p(r, z) is the three-dimensional (3D) charge density. To
proceed, we need constitutive equations relating the cur-
rent density to the superconducting order parameter. We
assume that the frequencies u of phase variations are well
below the superconducting gap b, /h, so that the modu-
lus of the order parameter is constant in space and time.
Then the current density component parallel to the lay-
ers in layer n, averaged over the periodicity length s, is
given by

s(n+1/2)
J„(r)=- dzj(r, z)

a(n —1/2)

VP„(r) + A„(r)

where A /, is the penetration length for currents along
layers, A„(r) = A(r, z = ns), and V = B/Br. Under the
same condition, hu (( 6, the Josephson current density
between layers n and n + 1 is Jp sin[@ „+i(r, t)j, where

(n+1)8

pn. ,n+1 Pea Pn+1 dzA, (4)
ns

is the gauge-invariant phase difFerence between layers n
and n+ 1. Here Jp ——cep/87r2sA2&pz is the Josephson
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critical current, and p is the anisotropy parameter. In
the absence of pancake vortices we can choose the gauge
P„=0. Then Eq. (4) provides the Josephson relation

{n+1)~
E, „„+,(r, t) =-

n8
dzE, (r, z, t)

6 Otp„„+i(r, t)
2es Bt (5)

Here E, ,„„+i(r,t) is the average z component of elec-
tric field between layers n and n + 1. In the context of
the resistivity shunted junction model, s the total current
density between layers n and n + 1 is the sum of the
Josephson and the quasiparticle currents:

J,.„,~+1 ——Jp Sln Pn, ,~+1 + P Es;n, n+1 ~

In general, p, differs from the resistivity of the junction in
the normal state. Since we assume the interlayer voltage
to be much less than 6/e, p, arises due to thermally
excited quasiparticles. Then 1/p, -+ 0 at T +0. -

Our goal is to find the equation for the time and space
variations of p„„+i. Following Ref. 10 we integrate
A(r, z) along the contour C shown in Fig. 1 and a sim-
ilar contour C„parallel to the y axis with Ay instead of
Az. Using Eqs. (3) and (4), in the limit Az, Ay ~ 0 we
obtain

4' A2b C P
&o x Bn,n+1 = (Jn+1 Jn) V pn, n+»

CS 2' s

where B„„+iis the averaged magnetic field between lay-
ers n and n+ 1 and zo is the unit vector along the z axis.
Inserting Eq. (7) into the Maxwell equation (2) projected
onto the z axis we find

FIC. 1. The contour C is shown by solid lines. Dashed
lines represent superconducting layers.

where p„ is the averaged charge density in layer n,

{ +1/2)
p-(r) =

—, dzp(r, z).
{n—1/2)

(10)

We then use Eq. (1) to express p„ in terms the differ-
ence E, ,n n+i and E, ni „T.he fie.ld components E
and E„can be neglected with accuracy (uA i,/c) (( l.
This argument has already been used in the case of a
conventional Josephson junction. ii Finally E, ,„„+iand
E, ,„ i „are again expressed in terms of phase difFerences
using Eq. (5), and we arrive at

4~A~
b 4PV' (J„+i—J„)— V' y„,„+i

CS 2' s

EO Mz;n, n+1 4K J ( )s;n, n+1 ~

C 84 C

Now we express J,-„„+1and E,.„„+1in terms of y„„+1
using Eqs. (6) and (5), respectively. To express V J„
via phase differences we use the continuity equation

~pn
V J Jz nn+~1 ~z ~n1n

0+ +

1 (82 4vr 0) f s
+ ~ ~ ~

+ &2
~

Ipn, n+i &pn+i, n+2 pn —i,n
) 4 "ob)

1 . . t' s2 )= V pnn+i +
&~

sinyn+i n+z+ sincpn i „—
~

2+
&2 ~

sinyn n+i . (11)
J ab

h~p
pn(r) =,—[pn, n+1(r) pn —1, ( )n] .r

8xes2 Ot
(12)

These are coupled directly to phonons and thus phase

Here co ——a &s plays the role of the Swihart velocity,
(d s = c/A g~6p is the plasma frequency for E parallel to
the layers, and Ap ——ps is the Josephson length.

The terms on the left-hand side of Eq. (11) propor-
tional to 1/p, describe dissipation via quasiparticle tun-
neling in the cores of Josephson vortices. This dissipa-
tion is analogous to the Bardeen-Stephen mechanism for
Abrikosov vortices. There is an additional dissipation
due to phonons. According to Eqs. (1) and (5), the time
variation of phase difFerences produces the charge varia-
tion

I

variations in time and space (along z) can relax by
phonon emission. In the following we include this mech-
anism within the parameter p, .

Our main result, Eq. (11), generalizes the time-
dependent sine-Gordon equation for a standard Joseph-
son junction to the case of a multilayer system. We notice
that, as a consequence of the peculiar nature of screening
in quasi-2D systems, time derivatives and spatial difFer-
ences are intertwined in the equation for phases &p„„+1.
In the case of a two-layer system, y„„+1——y for n = 0,
and p„„+i ——0 otherwise; Eq. (11) is thus reduced to
the standard sine-Gordon equation because terms with
s /A &

are small and may be omitted.
At equilibrium, and low fields, 0,1

I~
(( B (( 00,

Eq. (11) predicts the anisotropic triangular lattice of
Josephson vortices similar to that of Abrikosov vortices;
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see Ref. 12. Here Ho ——40/ps and H~i
~~

is the lower

critical field parallel to the layers. Josephson vortices
form a triangular lattice with periods a = (p40/B~3) l
approximately in the ab direction and l = a~3/7 ap-
proximately along z. A Josephson vortex does not have
a normal core, u~&ike an Abrikosov vortex, but it has
a central core with size of the order AJ along the layers
and 8 along the c axis, within which the nonlinear charac-
ter of Eq. (11) is important. Outside this region Eq. (11)
can be linearized, and here the current and 6eld distribu-
tions are nearly identical to those of an Abrikosov vortex.
As the field increases above Ho [in Bi2Sr2CaCu20b (Bi-
2:2:1:2),Ho (1—3) T], the central cores overlap, and the
vortex lattice transforms into the high-6eld con6guration
for B » Hp. ' In this structure vortices are arranged
periodically along layers with period a = 40/sB « Ag.
They still form a triangular lattice, and centers of vor-
tices are shifted by a/2 in neighboring interlayer regions.
For a given interlayer spacing this structure is similar to
that in a long Josephson junction.

If a current is applied along the z axis, Josephson vor-
tices start to move. Equation (11) describes this motion
and provides the basis for studying Buctuations of vortex
structure, current-voltage characteristics in the presence
of a magnetic field parallel to the layers, and other non-
stationary Josephson phenomena.

On the basis of the equation of motion (11), we can
derive the spectrum of the collective mode at low tem-
peratures T « T, in the presence of a magnetic field
parallel to the layers. Previously this mode in the ab-
sence of applied field was discussed in the &amework of
a microscopic theory, for isotropic superconductors by
Anderson, '4 for highly anisotropic layered systems by
Fertig and Das Sarma, is and recently by Artemenko and
Kobel'kov. s Our treatment is more general, as it does
not depend on microscopic details, and it is valid for any
system with Josephson coupling of layers.

In isotropic superconductors the collective mode at low
temperatures is the plasma oscillation mode with very
high frequency, u„= c/Al, (0)~co.i4 In fact, the &e-

quency of the plasma mode is not affected by the su-
perconducting transition, as was shown by a sum rule. i~

In view of the very high energy of plasma oscillations as
compared to the relevant energy scales for superconduc-
tivity, the collective mode can be neglected in the theory
of isotropic and weakly anisotropic superconductors.

The situation is different in highly anisotropic layered
superconductors. If the transfer of electrons between lay-
ers is strongly suppressed, we have to consider systems
with 3D Coulomb interaction of electrons but almost 2D
electron motion along the layers. Due to anisotropic
screening, the plasmon spectrum in the normal phase
is also anisotropic with low frequencies for wave vectors
close to the c axis: charge oscillations of this type do not
produce electric 6elds at large distances. Plasma oscilla-
tions are gapless for a strictly 2D band structure and have
a very small gap in highly anisotropic layered systems.

In Josephson-coupled superconductors the &equency
of the collective mode at low temperatures may be found
using (11) and expanding in small variations of y„„+i

~2(0, q) eo ]. 4&(+„,), , ( )

The same result was obtained by Tachiki et al.s for the
transverse dielectric function. They have used it to ex-
plain the infrared refiectivity spectra of Lai Sr Cu04
for E

~~
c obtained by Tamasaku et al.

In highly anisotropic materials, the plasmon gap h =
her i,/p, is very small compared to b, . For Bi-2:2:1:2,

1eV, Ai, = 2000k. , s = 15.6A, andy
300—1000, so that b 10—30 K, well below 6 300
K. In Lai s4Sro isCu04, the gap b = 80 K at T = 8 K
was found.

The dispersion of the collective mode can be changed
by applying a magnetic field parallel to the layers. At
B ) H, i ~~,

in the vortex state, the collective mode be-
comes gapless due to the translational synUnetry of the
vortex lattice with respect to the underlying crystal lat-
tice. As in the standard Josephson junction, the weight
of oscillations with hu & 8 increases with B. We cal-
culate now the dispersion of the collective mode at high
fields B » Hp. %ith a 6eld oriented along the y axis
the equilibrium solution up to terms of order HO2/B2

is y2„2„+i ——2mz/a, &p2„+i 2„+2
——2xz/a + m'. The(p) (p)

plasmon spectrum is obtained by solving the eigenvalue

problem for small distortions u„= p„„+q—p„„+z. The(p)

equation to be solved is the Mathieu equation

2

2 v~+~ + v~ y
— 2+

Cp A q)

X cos

s'
+ ~~ +~+ —~+ ~ 2+

)
(15)

At given q the lowest frequency of collective mode is

Ho cos (q/2) + s /4A i,

y n B~2 [4 sin (q/2) + s2/A2 ] ~
(16)

around equilibrium values y„„+i. We get the plasmon

dispersion in the Meissner state [p„„+i——0]:

(1 k'
u)~(k, q) = (u (13)Q2+A ~ )

Here k is the wave vector in the ab plane, Q = 2(1—
cosq)/a, and q is the dimensionless momentum along
z, —m & q & m. At q = 0 the spectrum coincides with
that of the Josephson junction. The relaxation rate of the
collective mode is 2n /p, eo. Equation (13) is in agreement
with that obtained in Ref. 16. It difFers &om that of
Ref. 15 where Meissner screening was omitted and thus
Eq. (13) with I/A2i, ——0, was obtained [in calculation of
the vortex matrix, Eq. (5) of Ref. 15, the only short range
attractive potential was accounted for but the Coulomb
repulsion was omitted].

The spectrum (13) for the collective mode corresponds
to the longitudinal dielectric function
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8kgyT ( 1 T 5 f blC„=
~

—+ exp
ssh~vaa q3p h~ 5) q T)

At high fields B )& Hp the result is

16((3)k~ T2

8 ab

(18)

(19)

Here we have neglected relaxation. Our approach is
valid if T )) 4xh/p„otherwise the specific heat comes
mainly &om overdamped quantum oscillators, with C
8k~T/hu bs p, . Comparing Eqs. (18) and (19), we see
that Josephson vortices enhance the specific heat by de-
creasing the plasmon &equencies.

Although the collective modes penetrate into the quasi-
particle gap, they acct the thermodynamics of the su-
perconductor weakly because of their strong dispersion
(high Swihart velocity). In fact, the collective mode fre-

It reaches a minimum at q = vr. Around q = 7r and
for w (( b, with accuracy JIo/B the spectrum of the
collective mode has 2D character because the Joseph-
son coupling is suppressed by a strong parallel magnetic
field. ~g

cpk
(dp k, g

2 sin(q/2)

Now Eq. (14) holds with ~~(0, tI) given by Eq. (16). Thus
parallel magnetic fields of the order Hp acct strongly the
low-&equency collective mode and longitudinal dielectric
function for large momentum along the c axis.

Next, we calculate the plasmon contribution to the spe-
cific heat. At B = 0 and T &( b we obtain

quencies are below the superconducting gap for orienta-
tions of the 3D momentum close to the c axis, within
an angle of b, /hu i, ( 0.03 in Bi-2:2:1:2). Thus their
contribution to the &ee energy is much smaller than that
of phonons and quasiparticles near and even well below

T, . For Bi-2:2:1:2C„ofEq. (19) is 10 s erg/Kcms at
T = 1 K, while the phonon contribution is several orders
of magnitude larger. The low-temperature specific heat
due to perpendicular vortices in highly anisotropic lay-
ered superconductors was estimated to be much larger,

100 erg/Kcms (see Ref. 20).
In summary, we have derived equations for the dynam-

ics of Josephson-coupled layered superconductors when
only Josephson vortices are present. We showed that in
highly anisotropic systems the plasmon mode has a very
small gap, which is further reduced when a magnetic field
parallel to the layers is applied. At low temperatures the
contribution of this mode to the dielectric function and
to the specific heat depends rather sensitively on the field
value.
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