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Properties of an electron bubble approaching the surface of liquid helium
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We have studied the T = 0 properties of the localized state of an. excess electron in liquid He
using a density-functional method. The binding energy, radius, and surface tension of the electron
bubble in bulk liquid He are calculated. The modi6cations of the bubble properties as the electron
approaches the He surface are investigated. The calculated energy barrier for thermal emission of
the electron from the surface into the vacuum is found to be in agreement with the experimental
value. We have calculated the escape rates for electron tunneling through the surface layer and
found the results in semiquantitative agreement with the experiments.

I. INTRODUCTION

Excess electrons produced in liquid 4He by a radioac-
tive source or by cathode injection localize in a bubble-
like cavity whose size is determined by a balance be-
tween the outward kinetic pressure of the electron wave
packet and the inward pressure due to the surface tension
and electrostriction. The electrov. -helium repulsion is so
large that a local Quid dilation leads to a stable state de-
spite the large increase in the electron kinetic energy due
to localization. Since the size of the bubble is intermedi-
ate between macroscopic and microscopic, the behavior
of excess electrons in liquid helium is particularly inter-
esting and has attracted the attention of experimentalists
and theorists in the last thirty years.

The localized states of electrons in bulk liquid He are
well understood. In the simplest model the electron is
confined in a spherical square well (SSW) of radius R
and depth Vo. The total energy of the electron-He system
can be written as2 s E = E, + 4/37rRsP + 47rR2cr —(e—
1)e2/2eR, where E, is the ground-state electronic energy
in the spherical well, the second term is the pressure-
volume work done in forming the cavity, the third term
is the surface energy of the bubble, and the last term is
the (small) polarization energy contribution. Vo is the
lowest energy a delocalized electron can have in the liq-
uid (conduction-band edge). Using the experimentally
known quantities o = 0.378 dyn/cm for the surface ten-
sion, ~ = 1.057 for the static dielectric constant of liquid
He, and Vo 1eV, and minimizing E with respect to B,
one gets a bubble equilibrium radius R 17 A at P = 0.
A precise value for the bubble effective mass has been
obtained in resonance experiments on excess electrons
trapped beneath the free surface of liquid He. These
measurements yielded a bubble radius B = 17.2 + 0.15
A.. Earlier theoretical calculationssi yielded R between
17 and 18 A..

Less clear is the theoretical interpretation of the ex-
perimental results where electrons produced inside the
liquid are driven to the surface and then collected out-
side. If an electric field F is used to accelerate an electron

bubble towards the &ee surface of the liquid, the electric
force acts against the image potential V;(z) = Qe /ez
which tends to keep the electron inside the liquid. Here
z is the coordinate of the bubble normal to the sur-
face (which is assumed to be planar and located at
z = 0), and Q = (e —1)/4(&+1) 7x10 s. As a
result of these competing forces, the excess electron is
trapped below the liquid surface in the net total poten-
tial V, (z) = Qe /ez+ eEz V, has .a shallow minimum
located several hundreds A. below the surface, depend-
ing on the value of F. When the electron, due to its
thermal motion, comes sufficiently close to the surface
the bubble bursts and the electron can escape into the
vapor phase. It has been found ' that the surface acts
as a small potential barrier to the extraction of the elec-
trons from the liquid to the vapor. The measured current
due to the emitted electrons decreases rapidly with de-
creasing T (below the A point) as e @~"~+, suggesting a
thermally activated difFusion mechanism for electron es-
cape. The barrier 4 depends on the value of the applied
electric field, ranging from 4/kgb 30 K to 4/ks 40
K at very low Geld values. The theoretical interpreta-
tion of these observations has been rather crude, ' at-
tributing this barrier to the image force acting on the
electron as the surface is approached &om inside the liq-
uid. The increasing polarization potential V;(z) reaches
a maximum 4 and then drops abruptly when the bub-
ble "touches" the surface layer. At this point the bubble
bursts, allowing the electron to escape outside. A quan-
titative determination of the barrier 4 requires, however,
the knowledge of the modifications of the electron po-
tential V, (z) due to the diffuseness of the surface density
profile and of the actual distance at which the hubble
becomes unstable and bursts. In the absence of this im-

portant information, only semiquantitative explanations
of the experimental results have been proposed so far. '

The trapping times of excess electrons in the potential
well V, (z) have been measured long ago. Character-
istic lifetimes of the order 1—100 s have been observed,
depending on the value of the temperature T and of the
electric field F. Whereas the T dependence of the oh-
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served lifetimes was reproduced correctly by assuming a
thermal difFusion over a barrier 4/k~ 44 K, the elec-
tric field dependence of the trapping time was only in
fair agreement with the data. Moreover, an anomalously
large curvature of the potential energy curve at the top
of the barrier had to be assumed in order to fit the exper-
imental data. Thus the possibility of electron tunneling
has been proposed as an alternative mechanism for the
observed electron emission, where the electron moves by
thermal motion towards the surface and then decays by
quantum tunneling into the vapor phase. The barrier
height experienced by the electron near the surface is
roughly Vo —E„where Vo is the conduction-band edge
and E, is the zero-point energy of the electron in the bub-
ble cavity. Within the tunneling model, the observed
trapping times can be related to the bubble parameters
(radius R and binding energy Es = Vo —E,), which could
thus be derived &om a fit to the experimental data. The
resulting R 25 A is, however, too large compared to the
experimental value R 17 A. . A more refined calculation
was performed later, is where the electron tunneling rates
were computed using the transfer Hamiltonian method of
Bardeen, rather than a semiclassical WKB method as
done in Ref. 12, but still a bubble radius 50% larger
than the experimental value had to be assumed in or-
der to give results in agreement with experiments. If the
physical bubble radius (R 17—18 A) is used instead,
lifetimes a few hundred times larger than the experimen-
tal values are obtained.

We present here the results of calculations, performed
within a density-functional approach, where the behavior
of the electron bubble as it approaches the free surface of
liquid 4He is investigated. A value R = 17.9 A is found
for the bubble radius in the bulk liquid, in agreement
with previous theoretical and experimental determina-
tions. We find that up to an electron-surface distance
of do 23 A. the bubble is stable, while at lower dis-
tances it becomes unstable and bursts, allowing the elec-
tron to escape into the vapor. A potential energy barrier
4/k~ 38 K for the thermal emission of electrons is ob-
tained from our results, whose value compares favorably
with the experimental results quoted above.

The electron, however, can still escape into the va-

por by quantum tunneling even when the electron-surface
distance d is larger than do, i.e., &om the region where
the bubble is "mechanically" stable. We have calculated
the decay times v. of the electron current &om a direct
solution of the bubble diffusion equation including a loss
term to allow for electron tunneling.

Two major ingredients enter the definition of the de-
cay rate P = ~, i.e., the tunneling matrix elements

p(z), which depend exponentially on the electron-surface
distance z, and the bubble distribution function n(z),
which determines the probability of a bubble being at
a distance z &om the surface. We find that the inter-
face structure and difFuseness have a very small efFect
on p(z), whose calculated values are very close to those
obtained in a simplified model where both the bubble-
liquid and liquid-vacuum interfaces are sharp. We find,
however, at variance with previous theoretical calcula-
tions where a Boltzmann-like distribution function n ~

was assumed, i2' that n(z) deviates largely from the
equilibrium form n, q in the region close to the surface
layer where tunneling is most effective in destroying bub-
bles. As a consequence, our calculated lifetimes w are
much smaller than those obtained under the hypothesis
n ~ neq and in semi-quantitative agreement with the
experimental values.

In Section II we describe the method, based on a
density-functional approach, that we use to calculate the
static properties of the electron bubble and its energy as
a function of the distance &om the surface. In Sec. III we
present our results for the electron in bulk liquid He while
in Sec. IV the effects of the liquid He surface on the bub-
ble properties are investigated. Section V contains the
results of calculations, based on the results of Sec. IV,
where the tunneling decay rates of the liquid-to-vacuum
electron current are computed &om a direct solution of
the bubble diffusion equation. A few concluding remarks
are provided in Sec. VI.

II. COMPUTATIONAL METHOD

A phenomenological density-functional (DF) approach
to study the properties of the 4He liquid. -vapor interface
has been proposed recently, which gives a good descrip-
tion of the T = 0 bulk liquid equation of state and of
the properties of the &ee surface, once the few parame-
ters entering the functional definition are fixed to repro-
duce some experimental values. The surface density pro-
file of the liquid has been obtained from the functional
of Ref. 15 and found to be in good agreement with x-
ray diffraction measurements and with ab initio Monte
Carlo cluster calculations. ~

This functional, which is based on a zero-range
Skyrme-type interaction, has been recently extended to
include the effect of the finite-range He-He interaction.
The resulting DF reproduces also the behavior of the
static density-density response function of the bulk liq-
uid, the static polarizability and the actual surface energy
at T = Q. This energy functional has the form

h ,
2

2M
5'p"'(r) 1'«

drdr 'p(r) p(r ') Vi(~r r'~)—
2

+— p f' p~ lT)

where p is the liquid density and M is the He atomic
mass. The first term is the quantum kinetic energy term,
the second term contains a two-body He-He pair poten-
tial Vj(r) screened at distances shorter than a character-
istic length h, while the last term, which contains the
average p„of the density over a sphere of radius h and
which is always positive, accounts for the internal kinetic
energy and for the increasing contribution of the hard-
core He-He repulsion when the density is increased. The
three &ee parameters h, c,p are adjusted in order to re-
produce the experimental values of the energy per atom
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h2
E.[p, 4 j = i%'4 (r)i'dr

+ pr 4 r to r —r drdr (2)

for liquid He, the compressibility of bulk liquid at the
saturation density, and the surface tension o. The surface
structure of the liquid has been obtained in Ref. 18 by
minimizing the energy functional in Eq. (1) with respect
to p, with the constraint of fixed number of He atoms,

f p(r)dr = N, and by imposing the boundary condition
p(r) = po far from the surface.

We have used the above functional to study the behav-
ior of an excess electron in liquid He. If u)(r) represents
the electron-helium two-body interaction potential, then
the functional

@(r) = g - C~'le'+ ", 4'(r) = g& C&e' '", and similarly

for p and p, . The G's are the supercell wave vectors,
G = vr(n/L, m/L&, p/L, ), with n, m, p = 0, +I, k2, ...
and I»I„,I, are the sides of the supercell. A kinetic
energy cutofF is used to make the computations feasi-
ble, such that the maximum wave vector G „ in the
Pourier expansions satisfies G2 /2 ( E,„i. We choose
E,„t ——1.5 Ry. We checked that by further increasing
this cutofF, the total energy and the structural parame-
ters of the electron bubble do not change significantly.

Consider the gradients of the total energy BE/BCG
and BE/BCU, where

BE/BCB—:(1/()) f (bE/bO)exp( e'G P)—de

2

V + m r —r pr dr 4r

=e'er

2m

h2

2M
+ V,fr(r) 4 (r) = eH, 4b(r) (3b)

gives the energy of the electron in the liquid.
If the electron wave function iI/(r) varies slowly over

distances of the order of the mean interatomic separa-
tion, p /3, the condition of minimum of the total en-

ergy E = E~+E, with respect to p and '0, subject to the
constraints jp(r)dr = N and f ~@(r)~ dr = 1, yields the
two equations

and similarly for BE/BC ' (0 is the volume of the super-
G

cell). A variety of algorithms exist that allow one to use
the gradients in order to reach the minimum of energy
functionals, and which can be competitive with the usual
self-consistent matrix diagonalization of the one-particle
Hamiltonians.

Let {C&}and (C ' }denote the two sets of coefficients

of the Fourier decomposition of a given initial 4 and
4). The simplest choice is to move iteratively the {CG}
and {C~'l} in the direction opposite to the gradients,

Q
following a steepest descent (SD) path, where BE/BCG
and BE/BC~'l play the role of forces driving the system

G
to the minimum energy configuration. This approach is
equivalent to solving the first-order equations of motion
(the dot means time derivative)

p, C~-' = BE/BCU—, (6)In the second equation 4 (r) = pi/2(r) is the helium to-
tal wave function. The above equations self-consistently
determine the extremal wave function 4' and the density
profile p. Equation (Sb) follows from the usual condition
of local equilibrium for a Quid in the slowly varying "ex-
ternal" potential f w(~r r'~)~4'(r'))(2d—r"'.is The helium
effective potential Va = bE/b4 (r) is given explicitly by

pC~ —— BE/BCG—,

with the additional constraints I p(r)dr = N and

f ~)I/(r)~ dr = 1. Here y, and p, are arbitrary pararne-
ters ("masses"), which control the inertia of the coeffi-

cients C~,CG during their time evolution. The above
equations can be solved in practice by time discretiza-
tion: C~(t + At) - C~(t) + (At/p)( BE/BCG), w—ith
an appropriate choice of the time step At. The simple
algorithm embodied in Eq. (6), although very easy to
implement, is usually not very efBcient, since it requires
a number of steps of the order of thousands to converge
to the minimum of the total energy E. We improved the
efFiciency of this algorithm by alternating SD moves with
a second-order dynamics scheme, where the Fourier ex-
pansion coefBcients of 4' and 4 are updated according to
a fictitious Newton dynamics:

(4)

where IIh (r) = 3/(4vrh ) when r ( h and II/, = 0 other-
wise.

Our calculations have been performed using a peri-
odically repeated supercell containing one electron and
N helium atoms. To model the electron-helium inter-
action id/(r) we used the pseudopotential described in
Ref. 20, which has been used in several theoretical cal-
culations and which reproduces the experimental data
for low-energy electron-helium elastic scattering. We ex-
pand the electron and He wave functions 4,4 and the
associated densities p, = ~iI/~ and p in plane waves:

p,CU = —BE/BC~', (7)pC~ = BE/BC~, -
subject to the same constraints on the electron wave-

function normalization and on the conservation of the
number of He atoms. The above constrained equations
have the same form as those used in the usual molec-
ular dynamics (MD) algorithm. We define a "work"

per unit time W = Re{C~( BE/BC~) }, W—~'~

p.e(e) = f p(e')p~(l" e'l)«'+ —,(p )"'—

+-(1+~) dr 'p(r ')(p. )'H~(l(r r'I)—
2

+ dr'to r —r' 4 r'
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Re(C~i')( —BE/BC~)) j. If W (Wi')) is & 0, we update
the wave function 4 (4) according to the second-order
MD equations Eq. (7), otherwise we make a SD move
with Eq. (6). The MD moves, when permitted, allow
the electron-He system to roll down the energy surface
increasing the kinetic energy of the previous time step, as
in conventional MD calculations. If, on the other hand,
the powers O', W&'~ are negative, then a downhill move-
ment with zero initial velocities is performed according
to a SD algorithm. The second-order equations Eq. (7)
are integrated in practice using a simple Verlet algorithm
at discrete time steps.

The mixed MD-SD scheme outlined above, which
has been used previously in ab initio total energy
calculations, 22 is found to greatly reduce the computer
time required to attain the minimum of the total energy,
compared with a pure SD algorithm. In Fig. 1 we show
an example of the reduction that can be achieved with
this scheme. We plot here the logarithm of the devia-
tion of the total energy E from the ground-state energy
Eo of the electron-He system vs the number of integra-
tion steps during a minimization cycle. It appears that a
much faster convergence rate can be achieved with the
MD-SD scheme compared to SD, at least in the first
stage of the minimization procedure. Eventually, the
MD-SD dynamics results in a slower convergence rate
than pure SD. After a number of steps of the order of
100—200 with the MD-SD algorithm, it is thus convenient
to switch to SD to converge with optimum efficiency to-
wards the minimum. In spite of its simplicity, the MD-SD
scheme improves substantially the rate of convergence of
the wave functions to the ground state and makes it com-
parable with that provided by other, more sophisticated,
schemes used in total energy DF calculations, such as the
conjugate-gradient m.ethod described in Ref. 23.

A step of minimization with the above scheme re-
quires the calculations of the various terms in the gra-
dients BE/BC& and BE/BC-') and in the total energy
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E = E~ + E,. Each term is calculated in the most con-
venient space (real or Fourier). The transformations be-
tween real and reciprocal space are done efficiently by
using standard fast Fourier routines.

III. THE ELECTRON BUBBLE IN BULK LIQUID
4HE

We have studied the bulk liquid case first, where an
excess electron is present in liquid He, at the saturation
density po

——2.184 x 10 2A. s. We used a periodically
repeated cubic cell of side 68k.. In the initial configura-
tion the He fills the cell except at the center of it, where
a sharp spherical hole is cut, containing a Gaussian elec-
tron wave function of width much smaller than the hole
diameter. The system is then allowed to relax to the con-
figuration of minimum total energy via MD-SD dynam-
ics. Due to the periodic boundary conditions, some care
must be used to chose the correct number of He atoms
in the supercell, in such a way that the final state where
the bubble is fully relaxed shows the correct asymptotic
value of the density p(r) = pQ close to the cell boundaries.

We show in Fig. 2 the final electron and helium density
profiles in a plane passing through the center of the cell
(where the maximum of the electron charge density is lo-
cated). The He density shows a rather steep profile at the
bubble interface, with a tqo QQ width of the interface layer
of 4.4A, i.e., smaller than the value tgQ —9Q —5.9 A. for
the 4He free surface. ~s If we de/me the bubble radius as
the radius of the spherical surface where p(r) = pQ/2,
we find B = 17.9A, in agreement with the experimental
value B = 17.2 A. .

In Fig. 3 we show the self-consistent electron poten-
tial f m( r —ri~)p(r')dr' It appe. ars that far from the
electron center the potential approaches a constant value
VQ

——1.48 eV. This value represents the potential energy
of a delocalized electron in a homogeneous liquid of den-
sity pQ, VQ ——pQ f m(r)dr, i.e., is the definition of the
conduction-band edge in our continuum model for the
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FIG. 1. Natural logarithm of the deviation of the total en-
ergy E &om the ground-state energy Es (in atomic units)
vs the number of integration steps. Dashed line: steepest
descent algorithm. solid line: molecular dynamics —steepest
descent algorithm.
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FIG. 2. Density pro6les for an electron bubble in bulk liq-
uid He. Solid line: helium density. Dashed line: electron
charge density.
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FIG. 3. Electron self-consistent potential pro6le in a plane
passing through the maximum of the electron charge density.
The dashed line shows the electron energy level 8, .

liquid. Experimental determinations of Vo at the satura-
tion density pp range from 0.95 eV (Ref. 24) to 1.3+ 0.4
eV. If we take as representative of Vo the accurate re-
sult of Ref. 26, Vo ——1.1 6 0.1 eV, we see that our cal-
culated conduction band edge is 30'%% larger than the
experimental value. The reason for this discrepancy is
the following. Our definition for Vo is just the energy of
a quasi-free-electron state with wave vector k = 0 in the
unperturbed homogeneous fluid of density po as given by
first-order perturbation theory. At low electron-He dis-
tances the repulsive part of the interaction potential m is
too large for the perturbation theory to be applicable and
this leads to an overestimate of the interaction energy. A
more accurate calculation of Vo, including many-body
polarization effects and using the same pseudopoten-
tial used here to model the electron-He interaction, gives
values of the conduction-band edge in good agreement
with experiments.

Our overestimate of Vo is thus not related to a poor rep-
resentation of the electron-helium interaction potential,
but is rather an inescapable consequence of our contin-
uum model description of the host liquid. This overesti-
mate is expected to have little consequence on the static
properties of the electron bubble described in this section
and in Sec. IV, since a change in Vo results in tiny varia-
tions of the exponential tail of the electron wave function
in the liquid side. For instance, within the SSW model
mentioned in the Introduction, a decrease of Vo from our
calculated value Vo = 1.48 eV to the experimental value
Vp 1 eV results in a 1.7% decrease of the bubble radius,
while the electron bubble energy E, decreases by 2.5%.

However, variations in VD are expected to have a large
effect on the electron tunneling matrix elements calcu-
lated in Sec. V, where small changes in the potential bar-
rier height (Vp E) can alter subst—antially the calculated
escape rates, due to the exponential dependence of these
rates on (Vp —E ) For this reason in t. he evaluation of
the tunneling probabilities we must correct our results in
order to incorporate the experimental value of Vo, as will
be discussed in Sec. V.

Our calculated electron energy E, = Ek;„+E, H, ——

0.092 —0.013 = 0.079 eV, shown with a dashed line in
Fig. 3, is smaller than the ground-state E, = 0.12 eV
calculated with the simple spherical square well model
which is often used to describe the bubble state in bulk
liquid, and comparable with the result E, = 0.07 eV
obtained in the variational calculations reported in Ref.
6. A value for the bubble binding energy Eg = Vo —E, =
1.02 eV is obtained if we use the experimental value Vo ——

1 1eV 26

We have calculated the bubble surface energy ob
(Ei —Nep)/4+R&, where Ei is the helium total energy,
ep/kB = 7.18 K is the energy per 4He atom in the
uniform bulk liquid, and N is the total number of He
atoms in the supercell (in the present case N = 6500).
Rg is the radius of the Gibbs dividing surface Rg ——

(pp f r [dp(r)/dr]dr)i~s = 18.7 A. We find os = 0.360
dyn/cm, i.e. , 5%%up smaller than the value we find for
the free surface, cr = 0.381 dyn/cm, showing that the
curvature contribution to the surface tension is rather
small and. negative in sign. This result agrees with the
phenomenological DF calculations of Ref. 28.

We have also calculated the bubble parameters R, o,
and Es in bulk liquid at a higher density p = 0.0231 A
i.e. , the experimental He density at a pressure P = 5 atm
and T = 2.2 K. We find o = 0.544 dyn/cm, R = 14.5
A, and Eb = 1.03 eV, respectively. The binding energy
Eg ——Vo —E, does not change appreciably at the higher
density because the increase in the electron ground-state
energy E, due to the smaller bubble radius is balanced
by the increase in the conduction-band edge Vp (which
scales roughly linearly with the liquid density).

IV. THE ELECTRON BUBBLE APPROACHING
THE SURFACE OF LIQUID He

Having obtained reliable results for the electron bubble
parameters in bulk liquid, we include in our calculations
the presence of a kee surface. Our repeated supercell now
contains a thin slab of liquid He delimited by two planar
surfaces. The cell length is 64 A. along the x, y directions
and 120 k along the z direction. The surfaces delimiting
the He slab are parallel to the x-y plane. The slab thick-
ness is 94 A and a vacuum region 26 A wide is used
to decouple the slab &om its repeated images along the z

direction. The thickness of the slab is found sufBcient to
decouple the two surfaces delimiting the film, i.e., in the
absence of the extra electron the correct density profile
for the two free surfaces is obtained. The lateral size of
the cell is the minimum one that gives converged results
for the bubble radius and formation energy, when the
excess electron is present.

In our initial configuration a sharp spherical cavity is
cut at the center of the slab, where a Gaussian electron
wave function is placed. We then proceed with the si-
multaneous minimization of the total energy E with re-
spect to @ and 4. We made a number of calculations
where the electron is placed at different distances from
the upper surface of the He film. We find that up to
rather small electron-surface distances the final state is
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stable, i.e., the bubble does not burst. The minimIIin en-

ergy electron and He densities for three difFerent electron
positions are shown in Fig. 4 by means of contour lines.
The electron-surface distances in the three cases shown in
Fig. 4 are d = 46, 26, and 23 A. , respectively: d is defined
as the distance separating the maximum of the electron
density from the surface plane where p(r) = pII/2. At
the distance of closest approach [panel (c)] the thickness
of the surface layer separating the electron &om the vac-
uum side is only 6 A. , i.e. , of the order of two atomic
layers. It also appears from panel (c) in Fig. 4 that the
thin liquid layer separating the electron from the vacuum
side has a somewhat lower density than the bulk value

Po.
In Fig. 5 we show the electron self-consistent potential

profiles for the same configurations as in Fig. 4. Only the
part of the slab close to the upper surface is shown. The
decrease in the liquid density in front of the bubble as the

electron approaches the surface results in the lowering
of the potential barrier which keeps the electron inside
the liquid. This lowering, as will be shown in the next
section, a8ects to some extent the calculated escape rates
when the electron is allowed to Bow outside the bubble
cavity by quantum t»nneling.

The dotted lines in Fig. 5 show the electron energy
Ee = Ekin + Ee-He. Although on the scale of Fig. 5
the electron energy seems to be fairly constant for the
three con6gurations shown, there are, however, minute
variations of E, as the electron-surface distance varies.
These small changes are important because they deter-
mine the potential energy barrier for thermal emission of
the electron &om the liquid into the vacuum side. Before
evaluating this quantity, however, we must correct our
calculated values for E, to take into account the long-
range tail of the electron-helium polarization potential
which is truncated at the lower surface of the He slab
in our calculations. If we treat the electron as a point
charge, we must add to E, a term —Qe2/d, where d is
the distance of the electron center &om the lower surface
of the slab, and again Q = (e —1)/4(e+ 1).

The variations in the calculated electron energ E
kin + e-Hey with the long-range correction included,

are shown as a function of the electron-surface distance
in ig. 6(a) (squares). The zero of the energy scale in
Fig. 6(a) is taken at the value of the electron energy in
an infinitely extended bulk liquid E' E' —2~ 'L
where E; is the calculated energy of an electron in the
middle of the slab [see panel (a) in Fig. 4], and I i~2 ——

L, /2 is the slab half-thickness.
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maximum af the electron charge density. (a}ElectrIIn-surface
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FIG. 5. Electron potential pro6le for the three con6gura-
tions shown in Fig. 4. The dotted lines show the electron
energy level E .
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The variation in the helium total energy E~ —E&' with
the bubble-surface distance is shown in Fig. 6(b). The
zero of the energy scale is taken at the value of E~ when
the bubble is in the middle of the slab, well below the
surface ("bulk" value Ef) The energy difFerence shown
in Fig. 6(b) is approximately constant when the bubble is
far Rom the surface, whereas it becomes lower by 15 K
than its bulk value as the bubble approaches the surface.
This energy gain with respect to the bulk value can be
understood by recalling that the surface tension depends
strongly on the density, cr oc p4. In the configurations
where the electron is close to the surface the decrease in
the He density at the surface layer results in a decrease
of the bubble surface energy.

The dots in panel (a) of Fig. 6 show the overall (elec-
tron+helium) bubble energy variation. From this curve
one can immediately extract a value for the potential bar-
rier 40 that an electron has to overcome to be thermally
emitted &om the surface, 40 38 K, which is in good
agreement with the value CIo 40 K (extrapolated to
zero electric field) provided by experiments. s

For electron-surface distances lower than do 23 A. the
localized bubble state appears to be unstable and the
electron-He system invariably evolves during the total
energy minimization towards a state of minimum energy
where the electron is outside the surface (and completely
delocalized in the x-y plane) while the empty bubble cav-
ity has disappeared, restoring a Hat liquid surface.

Some configurations of the electron-helium system dur-
ing a steepest descent minimization are shown in Fig.
7. In the initial configuration the electron is at d =

22 A from the surface, i.e., just below the edge of sta-
bility do. The time step used is At = 0.02 ps and the
pictures are taken every 500 time steps. The total dura-
tion of the process shown in Fig. 7 is thus 60 ps. Initially,
a spherical bubble state develops, similar to the stable
configuration shown in panel (c) of Fig. 4. As the min-
imization proceeds, the density of the surface layer sep-
arating the electron &om the vacuum starts to decrease
and the electron begins to spill outside by quantum tun-
neling, until the potential energy barrier confining the
electron in the bubble cavity becomes comparable with
the electron energy E,. At this point the bubble bursts
and the electron Bows outside, becoming completely de-
localized in the x-y plane parallel to the surface. The
hole in the liquid widens and the cavity distorts. In the
final configuration (not shown) the liquid restores a Bat,
homogeneous surface and the cavity has disappeared.

We remark that the SD fictitious dynamics which de-
termines the sequence in Fig. 7 has little to do with the
true time evolution of the e-He system, the only rele-
vant configuration being the final one, where minimum
energy is achieved. In particular, the time scale of the
process shown is completely arbitrary, being determined
by the fictitious masses p and p,, used in the first-order
equations (6). However, during the SD simultaneous op-
timization of the electron and He wave functions, we

observe that the "fake" kinetic energy associated with
the fictitious dynamics of the electron, Ef = p, f IVIIII dr,
remains at each time step always ~ 10 4—10 times
smaller than the electron energy E„ i.e. , the electron
states shown in the figure are very close to the Born-
Oppenheimer surface relative to the instantaneous he-
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FIG. 6. Electron and helium total energy variations as a
function of the electron-surface distance. The lines are only
a guide to the eyes. (a) The squares show the electron en-

ergy variations. Dots: sum of the electron + helium energy
variations. (b) Helium total energy variation.

FIG. 7. Contour plots showing a sequence of elec-
tron-helium configurations during a SD minimization. From
left to right and from top to bottom, in order of increasing
time. The pictures are taken every 500 time steps. The solid
lines show the helium density, the dotted line the electron
charge density. For clarity, only the electron charge density
values lower than 0.03p „are shown, p „being the electron
charge density at the center of the bubble cavity.
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liam configuration. The sequence of Fig. 7 should thus
represent a physical path in the electron-He phase space,
although not necessarily that followed during the actual
escape process.

Two de'erent time scales are expected to control the
escape of electrons &om the surface of liquid He. The first
is the "transit time" ~, of the electron &om the bubble to
the vacuum side and the second is the time ~~ required for
the density readjustments when the liquid tries to restore
a flat surface. If we assume that the main mechanism of
electron emission is tunneling, then the electron transit
time can be estimated by means of the "traversal time"
'r ma//bc, e = /2m(Ve —E,)/5 being the imaginary
momentum under the barrier. If we take a 6 A for the
width of the He barrier (see Fig. 5), then v, 10 is s.
The time v~ is of the order of 2R/u, 10 ii s, where
v, 240 m/sec is the sound velocity in 4He and R is
the bubble radius. Even such a rough argument suggests
a picture where (just as in Fig. 7) the electron tunnels
out rapidly leaving an empty bubble behind, while the
He relaxes with a much longer time scale.

V. ESCAPE RATES OF ELECTRONS FROM THE
SURFACE OF LIQUID 4HE

As discussed in Sec. I, an alternative explanation to
thermal diffusion over the image potential barrier has
been proposed to interpret the experimental results for
electron emission &om the surface of liquid He, which is
based on the possibility of quantum tunneling &om the
bubble to vacuum. iz i In Refs. 12 and 13 the rate P
which governs the decay of the electron current from the
surface to the vapor was calculated as

fo p(z)n, ~(z)dz

fo n,~(z)dz

where p(z) is the electron tunneling probability per unit
time &om bubbles at a distance z &om the surface and
n,q(z) = Ae &+~'& is the assumed bubble distribution
when the electron source in the liquid is turned off, V(z)
being the total potential energy of the bubble electron
(i.e., tunneling is neglected in the determination of n,~).

Since the resulting characteristic decay times r = P
computed using the physical bubble radius R 17—18
A are 200—300 larger than the experimental onesiz is and
can be reconciled with the experimental data only by as-
suming a bubble radius 50%%up larger than that found
experimentally, we have reexamined both ingredients en-
tering Eq. (8), i.e., the tunneling probability per unit
time p(z) and the bubble distribution.
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tunneling matrix element and py = mL/2n'h k is the
one-dimensional density of final states with wave vec-
tor k = (2mE ) ~ /5 (we assume that the electron wave
functions are normalized in a box of length L). zs is an
arbitrary point located in the barrier region. 4';„repre-
sents the electron wave function of a stable bubble state
with energy E, while 4 „& refers to a state in the con-
tinu»m, with the same energy E„where the electron is
outside the He surface.

An electron above (outside) the liquid surface of helium
is subject to the image potential —Qe /z. Here z = 0
is the position of the liquid-vacuum interface, which is
assumed to be planar and infinitely sharp. In the sim-
plest model, the surface is treated as a barrier of infinite
height, forcing the electron wave function to be zero at
the liquid-vacuum interface. In a more realistic model,
at short distances the electron experiences a repulsive
barrier of height Vo, the conduction-band minimum,
which inhibits penetration into the liquid. Moreover, the
surface density profile is not infinitely sharp In. order
to take into account the diffuseness of the liquid-vacuum
interface, one must solve the one-dimensional problem
where both the electron wave function and the liquid
density profile p are allowed to adjust self-consistently.
However, due to the weak binding of an external electron,
we can make the reasonable assumption that the density
profile of the He surface in the presence of the external
electron is essentially that of the &ee surface. To deter-
mine @ „q we thus solve numerically the one-dimensional
Schrodinger equation for an electron of energy E, in the
external potential V „q ——f py(r)m(~r r'~), py(—rQ being
the density profile of the free He surface. The calculated
potential profile V „~ is shown in Fig. 8 with a solid line,
together with its limiting expression for large distances
(dashed line), where it tends to the polarization limit
V.„, -+ —qe'/z. "

From the knowledge of 4';„and 4 „t we can calculate
the tunneling times ri(z) = p(z) by using Bardeen's
formula. Our results are shown in Fig. 9 (with dots)
as a function of the electron-surface distance. For com-

A. Tunneling probabilities
0

I i I I I I /I I i I I I I I i

To evaluate the tunneling rates p(z) we used the
transfer Hamiltonian theory of Ref. 14. In this the-
ory, the probability per unit time for the transition
(4'; ) m (4 „t) is given by p(z) = (2m/h) ~M( py, where
M = —5 /2m[%' „~d@; /dz —4,". d4' „t/dzj[„ is the

—20 —10 0 10
z (L)

20

FIG. 8. Potential energy curve for an electron outside the
helium surface. The dashed line shows" the ideal image poten-
tial V; = —qe /z.



12 828 FRANCESCO ANCILOTTO AND FLAVIO TOIGO 50

100 m t 1 l I I I l I I

10 I-

1 g

O. i I
0.01 I-

0.001 L

0.0001 I-
N 10-6
t- 10'I

10 I-
10-e =

10-'

1p-11 I'

1p-13
20 30 40

electron-surface distance (A)

50

FIG. 9. Calculated electron tunneling times p(z) ' as a
function of the electron-surface distance z. Dots: our calcu-
lated values, with Vo ——1.48 eV. Dashed line: calculated as
in Ref. 13, with R = 17.9 A and Vc ——1.48 eV. Dotted line:
same as in Ref. 13, with R = 17.9 A and Vc ——1 eV. Solid line:
same as in Ref. 13, with R = 17.9 A, Vj&

——1 eV, and taking
into account the reduction of the potential barrier height as
the electron approaches the surface.

parison, we show with a dashed line the tunneling times
calculated as in Ref. 13, i.e., with Bardeen's theory but
using the SSW model for the bubble and a sharp liquid-
vacuum boundary. Apart from slight difFerences at the
smaller distances, the two calculations give almost coin-
cident results, showing that the tunneling times are not
affected in a significant way by the diffuseness of the bub-
ble surface and of the liquid-vacuum interface. We may
then assume that the analytic results obtained in Ref. 13
are a very good approximation also in the case of diffuse
interfaces.

For the purpose of comparison with the experimental
results, we must correct our results for p(z) to take into
account our overestimate of the conduction-band edge
value Vo (see Sec. III). To this end, we insert the experi-
mental value Vo 1 eV in Eq. (25) of Ref. 13 to get the
curve shown with a dotted line in Fig. 9. Moreover, if we
also take into account the reduction in the potential bar-
rier height Vo with the electron-surface distance (see Fig.
5 and the related discussion), we obtain the results re-
ported with the solid line in Fig. 9. Since the calculated
values of p(z) are basically the same as those calculated
by Cole and Klein, the discrepancy between theory and
experiment for the electron current decay time must be
due to the other ingredient entering the evaluation of P,
i.e. , the bubble distribution function.

B. Electron bubble distribution function

As mentioned above, in Refs. 12 and 13 it was assumed
that the bubble distribution entering the determination
of the current decay rate P was the equilibrium distri-
bution n,q(z) = Ae i v~ l. The total bubble potential

is V(z) = V;(z) + eFz, F being the applied electric field
and V, the bubble potential energy due to the presence
of the surface. In the ideal case of a sharp liquid-vacuum
interface and neglecting both the bubble and the surface
deformations when the bubble approaches the surface,
one has V; = fez/ez. In Refs. 12 and 13 this ideal image
potential form for V; was assumed up to the surface.

This approach suffers &om at least two main oversim-
plifications. First, as our results show, the electron po-
tential V;(z) deviates greatly from the ideal image po-
tential as the electron bubble comes sufEciently close to
the surface layers, thus modifying the bubble distribution
function where the tunneling rate is appreciable.

Moreover, we expect that n neq only deep inside the
liquid, where the bubble lifetime [rq(z) = p(z) ] is much
larger than the collision time and therefore a Maxwell-
Boltzmann distribution is a good approximation to the
actual stationary distribution function. However, this
may not be the case close to the surface where p(z) can
be quite large and the resulting distribution function may
be different &om the equilibrium one. In order to include
both these efFects, we must solve the full equation for the
diffusion of bubbles under the actual potential V;(z) and
with the tunneling process efFective.

The distribution function n(z, t) of the electron bub-
bles in the total potential V(z) = V;(z) + eFz is deter-
mined by the diffusion equation

Bn(z, t) BJ,(z, t)
Bt |9z

where

dV(z) Bn(z, t)
dz Bz

is the bubble current density in the direction perpendic-
ular to the surface. The loss term —p(z)n(z, t) accounts
for the bubbles disappearing due to electron tunneling
&om the liquid to the vapor. p and D are the bubble
mobility and diffusion coeKcient, respectively, and they
are related by Einstein's relation p = PD (P = 1/It:gyT).
The experimental dependence of the mobility upon the
temperature is given by p = 8.62 x 10 4es.4s~+ cmz/Vs,
where T is the He temperature. 33

To take into account the diffuseness of the liquid-
vacuum interface and the full bubble structure, the ideal
image potential V; in V must, be replaced by the total
(i.e. , electron + helium) potential energy variation as
the electron bubble approaches the surface. Our calcu-
lated values for V; are shown with dots in Fig. 6(a). For
the purpose of integrating Eq. (9), we have fitted these
points with a continuous curve, shown in Fig. 10, which
has the correct asymptotic behavior at large z. Note that
close to the surface the potential energy deviates dramat-
ically &om its ideal value. These variations, as we will
show in the following, greatly affect the magnitude of
the calculated decay rates of the electron current. The
curve shown goes to zero at z R, i.e., when the bubble
"touches" the surface. The details of the curve close to
this point are, however, quite irrelevant since only stable
bubble positions will be considered in the following, i.e.,
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FIG. 10. Bubble potential energy curve. The squares show
the calculated values, the solid line is a numerical 6t to these
points. The dashed line shows the ideal image potential
V; = Qe /ez.

z ) dp, dp 23k. being the distance of closest approach
corresponding to the leftmost point in Fig. 10.

Let us now consider a stationary solution of Eq. (9),
nq(z). If we define y(z):— e~v~2no(z), then J,

De ~+~2 (—PV'y/2+y') (primes indicate derivatives with
respect to z) and Eq. (9) becomes

D[y" + (PV"/2 —P'V" /4)yj = -p(z)y(z)

We solve the above equation with the boundary condi-
tions J,(do) = 0 and J,(L) = —J, with J a positive
constant. I is an arbitrary point located suKciently far
from the surface, where p(z) = 0. J, (L) is negative,
corresponding to a Bow of bubbles from inside the liq-
uid towards the surface. This should represent the initial
(stationary) state where the bubbles are injected into the
bulk liquid by the electron source.

C. Current decay rates

Having obtained this particular solution, on the ba-
sis of' the experimental observations we assume that
when the electron source. in the liquid is switched oE
the total number of bubbles, N(t) = f n(z, t)dz, de-
cays exponentially, i.e., dN(t)/dt = N(t)/r. The decay—
rate P = w is then immediately obtained by integrat-
ing over z both sides of Eq. (9) with J,(L) = 0 and
J,(do) = 0:

daf~ p(z)no(z)dz

f& no(z)dz
(12)

The lifetimes 7 = P ~ calculated according to Eq. (12)
are much smaller than those provided by the theory of
Refs. 12 and 13, but still from five to ten times larger
than in the experiments, depending on the strength of
the applied electric Geld.

p i i I i i i i I

t as 30
cID z (JL)

FIG. 11. Normalized bubble density distribution n(z) cor-
responding to the potential of Fig. 10. Dashed line:

n, ~ = Ae; full line: no, stationary distribution, solution
of Eq. (9) with boundary conditions as explained in text.

We wish to stress the difference between our Eq. (12)
and Eq. (8) used in Refs. 12 and 13. In our case
the stationary, no, and not the equilibrium solution,
Aeq Ae ~, appears in the evaluation of the electron
current decay rate. The two distributions are almost in-
distinguishable in the region near the surface if one uses
the ideal image potential V, = Qez/ez as in Refs. 12 and
13, but, as shown in Fig. 11, they are quite different
when they are determined by the more realistic potential
of Fig. 10. In this last case, on approaching the sur-
face the potential decreases sharply when z ( 33 A, and
correspondingly n, q increases exponentially. In the same
region, however, the tunneling process, whose rate also
increases exponentially on approaching the surface, be-
comes very efFective in destroying bubbles, and their sta-
tionary distribution no is thus much smaller than the
equilibrium one.

VI. CONCLUSIONS

We have studied the properties of an electron bubble
close to the surface of liquid He, by using a density-
functional approach. We find that up to an electron-
surface distance do 23 A the bubble is stable, while at
lower distances it becomes unstable and bursts. A poten-
tial energy barrier O/k~ 38 K for the thermal emis-
sion of electrons is obtained from our results, in agree-
ment with experiments. Even when the electron-surface
distance is larger than do, however, tunneling through
the surface layer dominates the electron escape proba-
bility. Large deviations of the electron potential energy
&om its ideal value are found close to the surface. These
deviations have a profound eKect on the calculated cur-
rent decay lifetimes, which are much smaller than those
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obtained previously and in semiquantitative agreement
with experiments.

%e see two possible reasons for the remaining discrep-
ancy between theory and experiment. Our use of a con-
tinuum model for describing the liquid, even when the
bubble is only two He layers &om the surface, is an ap-
proximation which could affect both our estimate of the
tunneling rates and of the electron-bubble energy in the
very region where these two quantities are crucial for the
evaluation of the current decay rate.

A second question to be investigated deals with the
assumption at the basis of Eq. (12), namely of a single
decay time for the current. As a matter of fact, Eq. (12)
describes only the initial decay rate, just after the injec-
tion of electrons is switched off. One should investigate

whether this is the dominant decay time or whether other
decay times determine the experimental measurement.

Both these problems are currently under study.
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