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Biharmonic-driven long Josephson junctions are studied within the framework of a perturbative

approach for the motion of Buxons in the junctions. A thorough study of phase-locking states is

carried out giving a generalization of the phase-locking conditions valid for any type of periodic ex-

ternal drive. These conditions give rise to a classi6cation of phase-locked steps on the current-voltage

characteristics of the junction. Enhancement of dynamical phase-locked regions and stabilization

in connection with the phenomenon of chaos suppression are two interesting characteristics of bi-

harmonic phase-locking states. Numerical simulations show that the theoretical predictions are, in

general, well reproduced.

I. INTRODUCTION

The driven Josephson junction is an interesting device
both for practical applications as a voltage standard or a
local oscillator or for theoretical investigations in non-
linear dynamics. Its basic feature is that it makes pos-
sible a current-controlled tunable oscillator in the GHz
range. Under certain conditions, oscillations can phase
lock to the external drive;s' in the phase-locked (PL)
state the period of the nonlinear oscillation has a ratio-
nal relationship with the period of the external drive.
The phase between the two oscillations can adapt to a
change in the bias current so that the period of the non-

linear oscillator can become independent of the bias cur-
rent; this gives, via the standard Josephson relations, a
current singularity, i.e., a constant voltage-current step
on the I-V current-voltage characteristic of the junction.
Such dynamical regions are commonly observed in exper-
iments, and are often referred to as phase-locked steps.
PL states can be reproduced in the analytical model and
numerical simulations of Josephson junctions, by assum-

ing that the external signal is an harmonic signal of type
rl(t) = go sinut;4 s this is sufficient in many cases to pro-
duce an excellent agreement with the experimental data
(for example see Ref. 6).

Progress in the development of practical devices is
related to the possibility of obtaining large and stable
phase-locked steps in order to maximize the eKect of mu-

tual locking between junctions. In the case of small junc-
tions the analysis of Monaco shows that a biharmonie
signal, i.e. ,

rI(t) = rjo sin(ut) + rtq sin(ant + g),

can, in some cases, give an enhancement of dynamical
regions of phase locking (PL). Monaco's results can be

summarized as follows: (i) A larger dynamical region and
a larger stability can be obtained using biharmonic sig-

nals; (ii) experiments performed with o = 2 and g = vr/4

[see Eq. (1)j are in good agreement with the theory; (iii)
experimentally it was noted that chaos, arising in the
system for some values of parameters, was partially sup-
pressed.

More recently theoretical work in connection with
chaos suppression due to the presence of biharmonic sig-
nals has been developed. Chaos in Josephson systems
is a well-known phenomenon in both small and long
junctions. In the latter case chaos can affect the system
either as turbulence~4 ~s (space and temporal chaos) or
as temporal chaos (chaotic propagation of localized non-

linear oscillations in the junction). Temporal chaos
might destroy the PL state with features that are very
reminiscent of small junction chaotic behavior. A natu-
ral problem is therefore how to eliminate such undesir-

able effects due to chaos. In the context of Josephson de-

vices the so-called Ott-Grebogi- Yorke (OGY) methods, 2~

which require a knowledge of the time-dependent dy-

namics and fast control of a tunable parameter, are
not applicable. Alternatively, the use of a weak peri-
odic signal to control the chaotic dynamics is of simpler
application; it was also proved to be effective for short
Josephson junctions by direct numerical simulations.
The same authors have shown, with a simple model of
the Poincare map, that small and periodic signa1s are
expected to decrease the maximum Liapunov exponent.

For a simplified model of the driven long Josephson
junction (LJJ), Salerno has analytically proved that the
first bifurcation of the Feigenbaum cascade can be shifted
upwards by introducing a second subharmonic, leading to
the disappearance of chaos. Moreover, Filatrella et al.
have performed extensive simulations on the same system
and have shown that (i) chaos can be suppressed also
in the full model (the so-called perturbed sine-Gordon
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equation) and the results are in good agreement with
the simpler analysis; (ii) there exists a rich behavior de-
pending on the choice of the subharmonic order; (iii) in
some cases the second term is ineffective in suppressing
chaos. There is therefore a first problexn left unsolved:
Is it possible to predict the effectiveness of the second
term, depending both on the subharmonic order and the
amplitude, in suppressing chaos?

Monaco has suggested that other signals, such as pulse
train, can be used to obtain PL states, and so a second
question then arises: Is it possible to obtain, also in the
LJJ case, phase-locked solutions which drive the system
with difFerent wave forms? This question is relevant also
because pulse trains play a role in the reciprocal phase
locking of LJJ (Ref. 7) since they simulate the signal
emitted by the junctions.

In view of such interesting features the possibility of a
biharmonic drive in the LJJ is investigated in the follow-

ing under very general assumptions about the PL state:
A generalized PL condition is stated and its consequence
for the fluxon dynamics is explored in some typical cases.

We will show that PL exists in a class of situations
which show both a periodic doubling route and chaotic
motions of Suxons and/or multi-time-of-Sight solutions
(nTOF). We have explored also the possibility of using
difFerent wave forms in order to obtain PL solutions and
have tried to find an answer also to the question con-
cerning the prerequisites for obtaining chaos suppression
in the LJJ simplified model. PL states, introduced with
both biharmonic drive and general wave forms, can have
in some cases very complicated dynamical features, for
example, coexistence of more fixed points with a chaotic
basin of attraction and chaotic behavior at all values of
amplitude. A consequence of the first point would be
that if the system is xnoved apart &om the phase-locked
condition (due to noise entering into the system) it is
driven into an unstable or chaotic orbit.

The paper is organized as follows: In Sec. II we briefiy
describe the mathematical model of a LJJ; in Sec. III we
state the general phase-locking conditions for arbitrary
systems driven by periodic signals; in Sec. IV we study
the existence of the periodic solutions for the LJJ system
and their signature on the I-V characteristic; in Sec. V
the stability of these solutions is analyzed and compared
with numerical results; some conclusions are collected in
Sec. VI.

II. MGDEL

We model the LJJ fluxon oscillator as an in-line geom-
etry junction, where external signals and the bias current
enter only through the boundaries. The perturbed sine-
Gordon equation describing the in-line geometry junction
is (subscripts denote partial derivatives as usual):

(3b)

Distances are normalized to Ag (the Josephson pene-
tration length), and times to ~& ——Ag/c, the inverse
plasma &equency, where c is the speed of light in the
junction; a and P are loss parameters, and y is the nor-
xnalized bias current supplied to the junction. In Eqs.
(3) rl(t) is the time-dependent term of the boundary con-
ditions, i.e., the normalized external signal at the edges
of the junction. This signal can be due to the external
ac magnetic field or to an ac current flowing in a narrow
region close to the edges. In the first case the sign of
the magnetic field is the same at both edges (magnetic
coupling), whereas in the latter case it reverses (electric
coupling) .

It is well known that Eqs. (2) and (3) can sustain
the motion of localized solutions that carry a magnetic
Sux quantum (and are therefore often referred to as Sux-
ons). The motion of such solutions can be phase locked to
the external signal ' yielding the phenomena of phase-
locking steps on the I-V characteristic of the junction.
For relatively large values of the amplitude of the ex-
ternal signal the PL state can be destroyed by chaos
which affects the system as (generally speaking) temporal
chaos: The motion of Sux quanta in the junction becomes
chaotic without loss of the spatial coherency. 0

Our main purpose is to study a LJJ driven by the
time-dependent signal Eq. (1) for arbitrary values of 0.
We first assume that g~ ( qo and define as subharmonic
a signal with o. & 1, and otherwise as superharmonic
a signal with 0 ) 1. Next we choose g = 0. This
choice is diHerent both &om the Monaco small junctions
case and Salerno: We prefer such a choice because
for Q = 0 the signal is symmetric and the comparison
with previous literature on temporal chaos in a LJJ is
straightforward

We will consider also some other functional forms for
(7(t): square wave, triangular wave, and some kinds of
pulse train; actually, only a pulse train appears to be a
feasible experixnental wave form.

To investigate the properties of phase-locking states
we utilize the perturbative approach used in Ref. 4 to
describe the dynamics of fluxons in a LJJ. Such an ap-
proach is based on the McLaughlin-Scott perturbation
scheme: In this scheme the fluxon is described only by
its position and velocity in the junction. For this reason
the method is often referred to as the collective coor-
dinate approach. This approach leads to the following
map in terms of the variables t„(the time variable of the
Suxon after the pth refiection at a boundary) and yz (the
energy at the pth boundary):

(4a)

—4'u —»n4' = ~4~ —P4* ~,

with time-dependent boundary conditions

(2)

(1 —A) (cap —s)~ + i —(1 —A)a'

l1 —(1 —A) u2 —A(Cu„—8)2

+
2
h+ (—1) ~(t~+i)l (4b)
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where uz is the velocity of the fluxon at the pth reflec-
tion:

circle). Equations (6) are identities in the electric and
n-even magnetic coupling cases if

(4c)
(7a)

In Eqs. (4) a = a + P/3, A = (P/3)/(n + P/3),
C = cosh(algl —A), and S = sinh(alv 1 —A)/gl —A.

The variable m is set to 0 in the case of electric cou-

pling, and to 1 in the case of magnetic coupling. 4 Here

1/aln[u„/(Cu~ —S)] is the time of Bight (TOF) of a
Buxon defined as Tz+i ——t~+i —t~, i.e., the time em-

ployed by the Buxon to propagate between the ends of
the LJJ for a given initial velocity uz. The first term of
the right-hand side (RHS) of Eq. (4b) represents the final
(reduced) energy of the Buxon after crossing the junction;
the second term is the energy furnished by the external
bias and field.

The agreement between this simplified approach and
the full partial derivative equation (PDE) model is also
satisfactory in the case of a biharmonic drive.

III. GENERAL PHASE-LOCKING CONDITIONS

Let us assume that fluxons propagate in the junction
with a succession of (in principle) different TOF. Each
PL state must satisfy the condition that after n TOF the
energy input from the external signal and the initial ve-

locity of the Buxon will repeat, no matter what the details
of the dynamics governing the propagation of the Quxon
through the junction are. Therefore phase locking can
be realized with external signals if after a sequence of
nTOF the signal has the same phase; this gives to the
oscillator exactly the same energy and thus starts an-
other cycle of nTOF. To find explicitly this condition we
fix the average TOF to be T, i.e. , nT = P& i TI„where
the Tg's are the TOF of nTOF solutions (so the voltage
on the I-V current-voltage characteristic of the junction
will be V = 2vr/T). In terms of a generic signal g(t) this
condition reads simply

q(nT+ t) = (—1)-"q(t).

This relation for the biharmonic signal [Eq. (1)] gives the
conditions for u and cr that can realize a PL state. These
are, for electric and magnetic coupling cases, respectively,

gp sin(urnT + 8) + gi sin(aurnT + a 0)

2' k
o. =k ~o. = —,

(unT l
'

and for n-odd magnetic coupling cases if

~ = (2l + 1)nT
2l+ 1

2
(8a)

2k+ 1
a = (2k+ 1)

(unT 2l + 1
(8b)

Only certain rational values of o are allowed in the
magnetic case with an odd number of TOF. Conversely,
if we fix the &equency of the two biases, only solutions
for certain values of n are allowed.

For example, in the case of Ref. 23 with u = 3V/2 and
a = 1/2 (magnetic coupling), we obtain V/au = 4/3;
thus n = 4 is the lowest number allowed, and in fact this
is also the lowest number of TOF observed in both PDE
and map simulations. In particular the 1TOF solutions
rules are the following:

(i) Electric coupling case: the frequency has to be an
integer harmonic of the voltage (ur = tV), and a = k/l

(ii) Magnetic coupling case: u = V(2l + 1)/2, and a =
(2k+ 1)/(2l + 1), only odd steps exhibit 1TOF solutions
in the magnetic coupling case. In particular we note that
in the case a = 1/2 the 1TOF cannot be realized.

If phase locking is realized with different wave forms,
the mechanism of PL will be exactly the same; in deriving
Eqs. (7) (8) we have not made use of the fact that the
actual form is sinusoidal, only its periodicity.

Finally we note that the details of the dynamics can-
not inauence the phase-locking conditions. It is clear that
such conditions must be fulfilled in order that the system
restarts another cycle after a certain number of oscilla-
tions, but not sufBcient, because the details of the range
of existence and/or the stability of the PL solutions de-

pend evidently on the actual form of the system for any
oscillator phase locked to a biharmonic signal. In Ref.
8 the system was a small Josephson junction driven by
a biharmonic signal which in our notation is described
by simply taking o = j, k = j, l = 1, n = 1, m = 0,
j = 2 for the experimental data. On the other hand,
the enhancement of PI. ranges found by Monaco clearly
depends on the small junction dynamical behavior.

= gp sin(8) + gi sin(a 0), (6a)

(—1) gp sin(unT + 0) + (—1) gi sin(aunT + a&)

IV. RANGE OF EXISTENCE OF nTOF
SOLU TIONS

= gp sin(8) + gi sin(a8). (6b)

Here 0 is the phase relation between the signal and the
Buxon oscillator (the use of 8 rather than t avoids the
continuous increase of the latter variable, mapping the
essential information, i.e. , the phase relation 0, onto a

So far we have studied the conditions of periodicity
of the external drive; we will now derive the range of
existence of the PL states in the map, i.e. , Eqs. (4). The
signature of PL states for this system is current steps on
the I Vcharacteristic that appea-r at voltage V = 2m/T.
We report some typical cases in Table I. u is chosen in
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order that all the steps appear at the same voltage V.
In the following we will refer to the difFerent phase-

locking steps with the symbols used in the first column
of this table. To simplify the problexn we start with the
1TOF solution. In this case the PL state exists if there
exists a value of 8 such that a stationary bias level can
be reached; i.e., after each Bight across the junction the
Buxon recovers the same energy &om the stationary bias
current plus the external signal (cf. previous section):

ing the condition t~+i —t„= T and inverting the first
equation of the map in order to find y; then the other
variable 8 can be found by inverting Eq. (9). In Fig. 1
we report some typical ranges of existence of the single
and multiple TOF solutions obtained simulating Eqs. (4)
for the cases of Table I.

For 2TOF solutions we have to find the values of y
such that the following equations can be satisfied (for
the electric coupling):

g + 'gp sin(8) + 'gi sill(o'8) = gp (9)
gp sin(8) + qi sin(o'8) = A(y, 2T —Ti), (10a)

(here, 0 & 8 & 2n'l, and yp is the dc bias at the center
of the step, i.e., where the &ee-running shuttling period
coincides with the period of the PL solution). The ex-
tension of the step is then given by the maximum value
that the sum of the two sine terms can achieve.

The fixed points can also be found explicitly by impos-

rip sin(~Ti + 8) + gi sin(o (~Ti + 8)) = A(y, Ti), (10b)

for 0 & 8 & 2z.l, and T/2 & Ti & 2T —L; A(y, t) is the
function derived from Eq. (4b) as

A(»t) = — y(t)—
vr

( —A) [C ( ) —S]' + —( —A) ( )
' '

1 —(1 —A) u(t) 2 —A[Cu(t) —S]2

A(y, t) represents the energy that has to be furnished
by the external signal to achieve a certain value of the
time of fiight [in this formula y(t) and u(t) represent the
energy and the velocity of the Buxon at a time t after
the reflection, respectively]. The zeros of these equations
give the two t coordinates of the two fixed points (8 and
the first time Ti), and the y coordinates can be found by
inverting Eq. (4a). For the magnetic case the procedure
is exactly the same, but the LHS of Eq. (4a) has the
sign reversed. This procedure is similar to that used by
Chang or Salerno et al. for a single drive term, or by
Levring et al. for asymmetric dc fields.

In Table I we also report soxne typical 2TOF cases: The
map results are shown in Fig. 2, where they are compared
with the analytical prediction. The agreement with the
analytical prediction is satisfactory. Enhancement of the
step sizes occurs only in the electric coupling case with
cr = 2 at the fundamental &equency on the fundamental
electric [FE; cf. Fig. 2(a)] step; this case corresponds to
the small junction case of Monaco.

The analogous situation on the fundaxnental magnetic
(FM) step is totally difFerent [cf. Fig. 2(b), crosses]; the
axnplitude gain is very small, the step becomes asyxn-
xnetric, and becomes chaotic much earlier with respect
to the single drive case [this is not shown in Fig. 2(b),
but chaos is readily developed at the center of the steps].
We suggest that superharmonics of even order are not
suitable for the biharmonic driving of a LJJ in the mag-
netic coupling case. On the other hand the behavior of
a subharmonics step, i.e., (1/2)M step [cf. Fig. 2(b), tri-
angles], shows that, as expected (cf. previous section),
this step is a 2TOF step also for q~

——0 with a very
small amplitude. By pumping at a subharmonic of order
1/2, i.e., at the fundamental frequency, it can be strongly
enhanced [cf. Fig. 2(b), stars].

In the general case of nTOF it is necessary to write n

equations of n variables (8, Ti, T2, ..., T„ i) and to find
the zeros of this system. Though it is possible to find the
nTOF solutions, here we do not follow this method but
rather prefer to iterate the map. Ranges of the existence
of typical steps with lowest order n = 4 are reported in
Table I and shown in Fig. 3 (crosses denote the case of
Ref. 23). From the figure it is clear that the steps, be-
cause of the biharmonic signal, lose in the range of PL
symmetry and stability. Also in this case the biharmonic
drive does not introduce a definitive enhancement.

Finally, we study numerically for the map the range of
existence of other typical wave form signals. We consider
triangular and square waves and two type of pulse trains:
square and sawtooth (each with a pulse length which is
25/o of the period). For all the signals the &equency was
chosen to be the fundamental and the amplitudes of typ-
ical steps for sawtooth pulses are reported in Fig. 4. The
ranges of PL steps are linear and identical both for square
wave and triangular wave (electric or magnetic). For the
pulse train the behavior is more complex: Positive pulses
speed up the Buxon resulting in asyxnmetric steps that
develop under the unperturbed curve, whereas negative
pulses slow down the Buxon resulting in asymmetric steps
above the unperturbed curve.

V. STABILITY ANALYSIS OF FIXED POINTS

Stability analysis for the 1TOF solutions with a single
drive was carried out by Salerno et a/. 4 for a biharmonic
drive and with o = 1/2, @ = s/4 by Salerno. Here
we extend the analysis to the same system driven by a
generic biharmonic (or wave form) drive. To determine
the stability of the fixed points we follow the method
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used in the standard stability analysis, i.e. , to find the
eigenvalues of the Jacobian evaluated in a fixed point
and to impose the condition that the absolute values of
the eigenvalues be less than 1. We find the following
condition:

E step

(1/2)Z 1/2

FE 1/2

1/4

(b)

M step

FM

(1/3)M 1/3 (3/2) V

(1/3)M 5/3 (3/2) V

V/2

(1/2) M 1/2

i(1/3)M (3/2) V

TABLE I. Step type and relative parameters for electric
coupling (a) and for magnetic coupling (b); l' aud k' are equal
to the original l and k in the n-even magnetic case and are
equal to 2l + 1 and 2k+ 1 for the n-odd magnetic case. Step
types are identified as E and M for the electric and magnetic
cases, respectively [cf. Eqs. (7) and (8)]. A prefix indicates the
order of subharmonic for the step with the simple harmonic
signal (gi ——0); I" indicates the step at the fundamental fre-
quency.

(a)

0 ( cos(8) + 0 —cos(o'8) (gi 2(1+B)
(urlp]F„i

' (12)

where R is the product of two eigenvalues for go ——gi ——0
and I"„is the derivative with respect to u of the first equa-
tion of the map [Eq. (4a)]. We note that there exists a
negative slope part that is always unstable and a posi-
tive slope that becomes unstable above a certain value
of the time derivative of the external signal. To visual-
ize the modification of both the signal and its derivative
we have plotted them in Fig. 5. For a given bias point,
equivalent through Eq. (9) to a given amplitude of the
signal, the corresponding stable points are those included
in the region satisfying the inequality (12). For a given
point of the step (i.e. , a given bias value y) there exist,
depending on 0. and gi, several values of the phase that
satisfy the condition (9). For some values of the phase
the time derivatives of the two signals are added, and for
some values they have opposite sign. In the latter case,
for sufficiently high values of the subharmonic signal, a
2TOF state can be reduced to a 1TOF state. Generally
speaking it is difficult to predict if the system will be
stabilized or destabilized by the second term.

Since extremal points are always stable (the derivative
of the signal vanishes), biharmonic signals having four
extremal values instead of two will have four regions of
stability instead of two (cf. Fig. 5). A global (see below)
stabilization is realized if the images of the four stability
regions on the 8 axis, via the function i1(8), overlap.

Examples of stability regions in the parameter g-gi
plane for the typical cases of Table I are shown in Fig. 1
where we report also the results of numerical simulations
with the map. The agreement is rather good, but there
are several points (especially in the magnetic case) where
the analysis predicts the existence and the stability of the
fixed point, whereas the map exhibits annihilation of the
fluxon (see Ref. 20 for a discussion of the meaning of
fluxon annihilation in the map context), bifurcation, or
chaos. We believe this is due to a shrinking of the 1TOF
basin of attraction that coexists with a larger basin of
attraction of the 2TOF or of the chaotic solutions. For
instance, we have focused our attention on Fig. 1(c),
for gi ——0.05 and y 0.43. Figure 6 shows the basins
of attraction of the single TOF surrounded by the basin
of attraction of the 2TOF. Indeed a very tiny basin of
attraction of the 1TOF solution lies within the 2TOF
basin but is so narrow (the width is less than 10 4) that
it cannot be shown on this scale. This phenomenon has
not been observed for a single harmonic drive.

As we expected, the system is not always stabilized:
In fact the second term can simply destroy the fluxon
dynamics or, for certain values of the parameters, induce
rather than suppress chaos. However, there are several
examples of a global stabilization of the system [see Figs.
1(b) and 1(d)]; i.e. , the chaotic regions on the step dis-

appear. This occurs for values of gi that are about 20%
or 30% of gp'. These are sufficiently large to stabilize the
whole step, but yet not large enough to induce the break-
ing of the step in isolated stability regions surrounded
by chaotic or annihilation regions. So, even though the
added harmonic signal cannot give a great increase of
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Reader can refer to Table I to identify other parameters of
the steps. Parameters of the junction are L = 10, o; = 0.1,
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the cascade of bifurcations from chaos, where the chaos
suppression occurs. The center of the step is again par-
ticularly illustrative of this mechanism. In this case, the
required amplitude of the external drive being just zero,
if one can choose a signal whose frequency allows the
simple period 1 [1TOF solutions; see Eqs. (7) and (8)]
and whose derivatives are subtracted, it is possible to ob-
tain the full reverse Feigenbaum cascade, as observed in
Ref. 23. Note that this phenomenon happens in all cases
studied here [cf. Figs. 1(a), (b), (c), (d)] and the ampli-
tude gq is not, in general, small with respect to go. Since
an exact analysis of first bifurcation can be carried out
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o = 2 (x), and (1/2)M both with single drive (A) and bihar-
monic drive (*). Readers can refer to Table I to identify other
parameters of these steps. The dotted line refers to the range
predicted by Eqs. (10) and (11). Parameters of the junction
are L = 10, cx = 0.1, P = 0.
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itive amplitude; D indicates a negative amplitude). Parame-
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FIG. 5. Biharmonic signal (solid line) and its derivative

(dotted line) for I}I/I}0 = 0.2. D indicates the points where

the derivative of the signal is below the threshold of Eq. (12)
denoted by the solid horizontal line at b y = 0.5. Ey = y —yo,
where yo is the bias current at the center of the step.

in particular for the center of the step, one can predict
if chaos suppression at the center of the step is achieved
for large or small values of Ih/IIO.

VI. CONCLUSION

The case of two sinusoidal excitations in a LJJ is an
important example of a system driven by two periodic
signals because it allows an analytical treatment of at
least the first bifurcation. We note that most of the con-
siderations done for such a case are of general relevance.
In particular, the prescriptions for the frequencies are
valid also in the case of a short junction, and can be ap-
plied in principle to any nonlinear oscillator (a Van der
Pol oscillator, for example).

For this system we have found that the use of a second
harmonic might improve the stability and enhance the
amplitude of the phase locked states if (i) the frequency
of the second harmonic is appropriate; (ii) the sum of the
derivatives of the two signals is less than the derivative of
the single harmonic signal for a given bias point. In con-
trast with the spirit of the OGY method (stabilization
of unstable orbits) we have shown that the use of a sec-
ond periodic signal drastically changes the structure and
the number of the fixed points. Moreover, they induce a
drastic change in the form of the basin of attraction even
for very small values of the amplitude of the second har-
monic. The method will be successful only if an appropri-
ate choice of both the external frequency and amplitude

FIG. 6. Basins of attraction of the solution for y = 0.43,
I}0 = 0.15, I}I ——0.05, I = 10, a = 0.1, p = 0. + corresponds
to the 1TOF solution, x corresponds to 2TOF solutions, 0
to multiple TOF and chaotic solutions. A blank refers to
annihilation. Fixed point with the tiny 1TOF attraction basis
is within the large 2TOF basin.

is made. The stability results can be applied to systems
described by any parametric two-dimensional map which
describe systems that show phase-locked states, but for
continuous systems (such as the small Josephson junc-
tions or the Van der Pol oscillator), even if a Poincare
map can be imagined, the use of the prescriptions is more
complicated: In this case the oscillating term acts con-
tinuously on the system and conditions as those stated in
Eq. (9) and Eq. (12) are not easily translated for such sys-
tems. We nevertheless believe that the basic mechanism
(two signals that sum to the same effective amplitude but
with a different stability region) is obviously the same,
as is intuitively clear from Ref. 24. The conditions here
derived may serve as a starting point, and it has to be
demonstrated to what extent they can be applied to con-
tinuous systems. Surprisingly, the full PDE system, in
principle more complicated, is for its peculiar form well
described by this approach.
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