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Fluxon-density waves in a modulated Josephson ring

A. Shnirman and Z. Hermon
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Te/-Aerie University, Ramat-Aerie 69978, Isme/

A. V. Ustinov'
Institute of Thin Films and Ion Technology, Research Center Jiihch, D 5242-5 Julich, Germany

B. A. Malomedt
Department of Applied Mathematics, School of Mathematical Sciences,

Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Avi-v University, Ramat Aviv-89978, Isruel

E. Ben-Jacob
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Te/-Avid University, Ramat-Aerie 69978, Isle/
(Received 18 May 1994)

Collective excitations in a Buxon chain placed in a periodically modulated Josephson junction
are studied analytically and numerically. In order to eliminate Buxon collisions with boundaries, we

consider a Josephson ring (annular Josephson junction). Due to the interaction of the Quxons with

periodically placed obstacles, we predict that linear deformation modes of the Buxon chain should
bring about resonances which can be observed experimentally. The linear analysis is compared with
numerical simulations, and good agreement is found in an appropriate parameter range. In the
"relativistic" limit, the numerical simulations reveal a dynamical mode which is characterized by a
strongly nonlinear interaction between the moving Buxons in the chain. A qualitative explanation
of this regime is suggested by an extrapolation of the linear behavior.

I. INTRODUCTION

Spatial inhomogeneities in nonlinear media may pro-
duce significant eKects on dynamics of propagating
solitons. When a single soliton interacts with a local-
ized obstacle, it can emit linear waves, get trapped by
the obstacle, etc. For a multisoliton lattice placed in the
spatially modulated media, one may expect the appear-
ance of linear or nonlinear collective modes.

In a long Josephson junction, solitons are supercon-
ducting vortices (magnetic flux quanta or fluxons) de-
scribed by the perturbed sine-Gordon equation. Since
the first theoretical work by Lebwohl and Stephen, 2 col-
lective excitations in a multifluxon chain have received
very limited study. The reason probably is that in a typ-
ical experiment with homogeneous Josephson junctions it
appears to be diKcult to excite any collective mode ex-
cept the progressive motion of a fluxon chain as a whole,
known as a Bux-flow regime or zero mode. The situation
changes if some spatial modulations are present in the
system.

Many efFects of the single-fIuxon interaction with in-
homogeneities have been studied theoretically ' ' and
some of them also experimentally. ' For the periodic
Buxon chain it is natural to consider a periodically mod-
ulated medi»m (e.g. , a long Josephson junction with a
periodic lattice of inhomogeneities). Linear efFects, like

coherent emission of linear waves by a chain of equidis-
tant Buxons, produce additional resonance structure on
the current-voltage (I V) character-istics of the Josephson
junction. Nonlinear collective excitations, called super-
solitons (i.e., solitary excitations propagating in a pinned
Huxon lattice), were found numerically and investigated
experimentallyo and analytically. Such excitations can
be viewed as waves of the Buxon density. Another sort of
nonlinear fluxon-density excitations was recently found
to exist in the fluxon lattice moving in the homoge-
neous junction with a strong external stimulation at its
boundary.

In this paper, we focus on collective excitations in a
Buxon chain trapped in a periodically modulated Joseph-
son junction. In order to eliminate collisions with bound-
aries, we consider a Josephson ring (annular Josephson
junction) with a periodic lattice of inhomogeneities (ob-
stacles) shown in Fig. 1. Such a structure has recently
been fabricated and studied in experiments. An ho-
mogeneous annular junction was studied theoretically
in Ref. 13. We predict that linear deformation modes
("phonons") in the fluxon chain excited by its interac-
tion with the lattice of obstacles should bring about reso-
nances that can be observed experimentally. We compare
the linear analysis with numerical simulations, and 6nd
good agreement in the appropriate parameter range. In
the "relativistic" limit, the numerical simulations reveal a

0163-1829/94/50(17)/12793(9)/$06. 00 50 0~1994 The American Physical Society



12 794 SHNIRMAN, HERMON, USTINOV, MALOMED, AND BEN-JACOB 50

Josephson junction. The multifluxon static solution of
this equation ls

1
sin —(4o —vr) = sn(z/k, k) .

2
(2.3)

Josephson
llAg soliton (fluxon)

The solution is parametrized by k, the modulus of the
elliptic function, which is related to the length of the
junction by

L = 2nkK(k), (2.4)

(b)

where K(k) is the complete elliptic integral of the first
kind. Since the sine-Gordon equation is Lorentz invari-
ant, one can obtain a solution describing a moving chain
of Huxons by means of the Lorentz transformation &om
the static solution (2.3):

z = p(z —vt),
~ = p(t —vz),

(2 5)

(2.6)
FIG. l. A sketch of a Josephson ring (a) and its schematic

top view (b). The ring contains two trapped fiuxons and three
equidistantly placed obstacles (inhomogeneities).

dynamic mode which is characterized by a strongly non-
linear interaction between moving Huxons in the chain.
On average, we find in this regime one-half of the elemen-
tary topological charge (equal vr in the sine-Gordon sys-
tem) efFectively moving along the junction. We suggest
a qualitative explanation to this regime by an extrapola-
tion of the linear behavior.

II. LINEAR REGIME

A long Josephson junction is governed by the follow-

ing equation (known as the perturbed sine-Gordon equa-
tion) for the gauge-invariant phase difference across the
barrier, C:

Cqq —4 + sin4' = J —G4q

+n ) 8(z —Lm/N) sin C,

(2 1)

4(z+ L) = C (z) + 2n~, (2.2)

which means that there are n Buxons in the junction.
The left-hand side of Eq. (2.1) is the pure sine-Gordon

equation describing the propagation of electromagnetic
waves in a dissipationless, unbiased, homogeneous long

where J is the external current density, G is the damping
coeKcient, o. is the amplitude of the obstacles, N is the
number of obstacles, and I is the length of the junction.
I engths are measured in units of Ag, the Josephson pene-
tration depth, and time is measured in units of Ag/c (c is
the Swihart velocity). We assume the periodic boundary
condition

where p = 1/v 1 —v2. Under the action of this transfor-
mation the Huxon suffers a Lorentz contraction, but since
the length of the junction is fixed in the z, t frame (the
"laboratory frame" ), the solution (2.3) is "stretched" by
changing the modulus k. Using the boundary condition
(2.2), we get, instead of (2.4), the following relation:

pL = 2nkK(k); (2 7)

8pvE(k) 2vr J
k G

(2 8)

where E(k) is the complete elliptic integral of the second
kind. Eliminating the parameter k &om the system of
equations (2.7) and (2.8), one obtains v as a function
of J. The velocity v is related to the average voltage
V across the junction, since only moving Quxons induce
voltage. For a single Huxon v is directly proportional to
V. For a general multi8uxon solution, where each Buxon
is moving with its own velocity, the average voltage is
proportional to the sum of the individual velocities (with
regard to their signs). Therefore Eq. (2.8) is actually the
I-V characteristic of the junction with n Huxons. Such
characteristics for annular Josephson junctions have been
measured experimentally n varying &om 1 to 9.

Let us consider the pure sine-Gordon equation again.
Our purpose is to describe the small oscillations about
the static multisoliton solution (2.3). This problem was
solved by Lebwohl and Stephen for the infinite system.
Assuming the solution of the form

i.e. , k depends on the velocity v. We now take into
account the first two terms on the right-hand side of
Eq. (2.1), which means applying a bias current J and
assuming a finite dissipation G. The current accelerates
the fluxons until the dissipation becomes large enough
to maintain an energy balance. The balance condition
determines the steady state velocity of the Huxons. This
problem was first solved by McLaughlin and Scott for
the infinite junction. In the case of an annular junction,
the relation between the bias current and the Huxons ve-

locity was obtained by Marcus and Imry:
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(2.9)

+ c» 4O4 (2.io)

Since this equation is linear with a periodic potential, its
solutions can be represented in the Bloch (Floquet) form

@p(z, t) = u(z) exp(iqz) exp(kiurpt),

u(z + L/n) = u(z),
(2.ii)

H(z/k + P) . mz

e(z/k) kkK(k)) ' (2.12)

and keeping only the terms which are linear in 4, one
obtains the following Lame equation:

zone the parameter P changes in the interval [K(k) +
iK'(k), K(k)], and, consequently, Z(P)/i changes in the
interval [vr/2K(k), 0), we find that the number of energy
levels in this zone is 2 + 1, where [- . .

] stands for the
integer part .For l = n, we obtain Z(P) = n.i/2K(k),
and ~o ——0. This is obviously the translational mode.
Therefore, we get only [2] nontrivial levels in the lower
zone. Recalling the twofold degeneracy, we find that the
number of modes is equal to the number of Huxons. (The
number of modes in the higher zone is infinite. ) In the
case of two fluxons in an annular Josephson junction,
which will be studied in detail below, only one nontrivial
level exists in the lower zone.

Until now we were dealing with small oscillations about
static fluxons. To obtain the oscillations about moving
fluxons, we Lorentz transform the solution @o given by
Eqs. (2.11) and (2.12). The periodicity condition (2.15)
changes to

(Z(P) +
2kK(k) I, (2.13) (2.17)

du'(&)
0 (2.i4)

4(z+L) = C(z) . (2.15)

Substituting Eqs. (2.11)—(2.14) and (2.7) (with p = 1)
into Eq. (2.15), one obtains

~i(2 —n)
2nK(k)

l= 0, +l, +2, ... (2.16)

This is a geometrical quantization condition, which de-
termines the discrete energy levels. Since in the lower

Here H, 0, and Z are the Jacobi's g, 8, and ( func-
tions, respectively. The signs 6 imply that for every ~o
there are two linearly independent solutions; i.e., all the
energy levels are twice degenerated. The solution Co
is parametrized by a complex parameter P which moves
along the contour K(k) + iK'(k) ~ K(k) m 0 ~ iK'(k)
on the complex plane as uo changes &om 0 to oo. In
the intervals [K(k) + iK'(k), K(k)] and [O, iK'(k)], the
function Z(P) is purely imaginary and consequently the
wave number q is real. In the interval [K(k), 0] the func-
tion Z(P) is real, and the wave number becomes com-
plex. Therefore, one obtains two zones of small oscilla-

tions, which in frequency terms are up ——[0, &,
"

] and

up ——[b, +oo]. Lebwohl and Stephen interpreted the
lower-zone modes as acoustic oscillations of the chain of
fluxons, and the higher-zone modes as Josephson plasma
oscillations. It is interesting to mention that the width
of the gap between these two zones does not depend on
k and is equal to the plasma frequency of the Josephson
junction without fluxons. When the density of Quxons
tends to zero (k m 1), the lower zone disappears and
only the plasma modes survive.

To apply these results to the annular junction, we
should use the periodic boundary condition (2.2). With
regard to Eq. (2.9), we obtain the condition

As we have previously seen, this transformation induces a
change of the parameter k according to Eq. (2.7). Since
the solution depends now also on ~, there is a change
in the parameter P as well, which can be obtained by
inserting Eqs. (2.11) —(2.14) into Eq. (2.17):

mi(2l —n)
Z(P) + iurpvk =

2nK k
t = 0, +1,+2, ...

(2.18)

This is the condition which determines the energy levels
of the system for the moving Huxon chain.

We are now ready to approach the full problem (2.1).
As was said above, under the action of the bias current J
and the dissipation G the fluxon acquires the steady state
velocity v given by Eq. (2.8). Therefore, every Huxon col-
lides with the obstacles at the frequency

(2.i9)

in the laboratory frame. This means that the obstacles
act on the chain of Huxons as a time-periodic force. If
the frequency of this force is close to one of the above-
mentioned eigenfrequencies uo, a resonance will occur
and the amplitude of this oscillatory xnode is expected
to be anoxnalously large. Consequently, this mode will

dissipate more energy, and additional current should be
applied to compensate for this additional loss. Near the
resonance points, nearby all the additional current will be
spent to compensate the additional dissipation; thus the
velocity of the fluxons, regarded as a function of the cur-
rent, is expected to be almost constant. Hence one should
observe steps in the I-V characteristic of the junction at
the resonance points.

In this section we treat the problem in the linear ap-
proxixnation. This means that we assume the solution to
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be of the form (2.9), where 4o is the moving multifluxon
solution with the velocity determined by Eqs. (2.8) and

(2.7), and the perturbation 4' to be small. Moreover, we

assume that o, is small and that G is large. To check the
validity of the linear approximation, we consider evolu-

tion of the collective momentum16

e~e = Po+ p, (2.20)

where Po stands for the collective momentum of the Bux-
ons, and p is the momentum of the small oscillations. The
equation of motion for P, which follows directly from
Eq. (2.1) is

dP . . p (Lm= 2+n J —GP —n ) '
sin@o

k qN
p (Lm-vt

I
co. —

Ik N
(2.21)

We have neglected all the terms containing products of n and 4. The momentum Po satisfies Eq. (2.21) with n = 0,
and so we obtain the following equation for p:

dp 4pn p (Lm ) p (Lm ) p (Lm—+Gp= ) sn —
/

—vt
/

cn —
/

—vt
/

dn —
/

—vt
/

) k(N )
(2.22)

The right-hand side of this equation is a periodic function
of t and may be represented by its Fourier expansion. For
our purposes, we will keep the first harmonic only. Thus
Eq. (2.22) becomes

for this system is the moving spatial coordinate z and the
laboratory time t. In these variables Eq. (2.26) is

4qq —4'» —2pv@,q + cos Oe(z) + G4'q —Gpv@',

dp 4pac—+ Gp = exp(iOt),
dt

(2.23)

4pat"

k/G'+ 0' (2.24)

The linear approximation demands that the ratio
must be much smaller than 1. This yields

4 E(k) G2 + 4m~N~n~v~
(2.25)

A simple analysis of the left-hand side of this inequality
shows that, in both limits v -+ 0 and v ~ 1, it diverges,
and consequently the linear approximation does not hold.
But for intermediate values of v this ratio can be small
if &„((1. Thus our assumptions are self-consistent.

We now consider the linearized equation for the phase
perturbation 4' following from Eqs. (2.1) and (2.9):

+ cos 404 + G4'q

where 0 = &" is the fundamental &equency, and c
is some constant of the order of one. Without the force
exerted by the obstacles, the solution for p is a decaying
one. The amplitude of the steady state solution of Eq.
(2.23) is

Fz Lm)) b
~

—+ vt —
I

sin Cp(z) . (2.27)N)

The boundary condition becomes

@(z+pL, t) = 4(z, t) . (2.28)

The right-hand side of Eq. (2.27) is a periodic function
of time, and so we can expand it into the Fourier series.
In this work, we keep only two first terms of this expan-
sion. For the b-like obstacles, this seems problematic,
since in this case all the coeKcients of the expansion are
equal. But in realistic junctions obstacles should be de-
scribed by smoothed functions of a finite width, and so
the coefBcients in front of the higher harmonics of the
Fourier expansion are expected to decay. Moreover, if
the fluxon density is not very large, namely, if k is not
much smaller than 1, the width of the gap is much larger
than the width of the lower zone. In the case of two
Buxons in the ring, we have only one nontrivial level in
the lower zone, so that the next few harmonics belong
to the gap and are unexcitable. Low Buxon density can
be achieved either by trapping just a few Buxons in the
junction, or by working with a very long junction. In the
linear approximation, we therefore obtain the following
expression for the right-hand side of Eq. (2.27):

~

sin Oo . (2.26)

N2
n sin C o(z) 1 + 2 cos

L
2 N

The equation is now written in the laboratory frame and
the multi8uxon solution 40 is supposed to be moving.
It would be natural to transform this equation in order
to obtain a static potential. But, using the full Lorentz
transformation, one gets a very inconvenient boundary
condition (2.17). The most suitable choice of coordinates

NWe see that the perturbing force is proportional to
and so this parameter must be small in order that the
linear approximation will be valid. This means that the
number of obstacles must not be large (in our numerical
calculations we consider the case of N = 3). Since the
left-hand side of Eq. (2.27) is linear, we look for a solu-
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( .(up &
4'p ——u(z) exp(iq'z) exp

~

+i—t
~

& )
(2.30)

tion of the form @q(z)+@2(z, t), where 4q is produced by
the constant part of the expression (2.29), and 4'2 is the
oscillating solution produced by the second term of Eq.
(2.29). @q is a solution of the ordinary differential equa-
tion with periodic boundary conditions. It is uniquely
determined, and can be interpreted as a small static per-
turbation of the multifluxon solution, 40, caused by the
obstacles. We do not find 4q explicitly. Finding the so-
lution 42 is much more interesting since it can resonate
with the perturbing force. First of all, we determine the
velocity of Quxons for which the resonance occurs. It
is given by equating the perturbing &equency and the
eigen&equency of the mode @0. Let us write the expres-
sion for 40 in terms of the variables z and t:

(do
(2.32)

With regard to Eqs. (2.14) and (2.19), this leads to the
equation

dn(P) 2vrv N

pk
(2.33)

This equation, together with Eqs. (2.7) and (2.18), con-
stitutes a system of three equations for the three un-
known quantities v, k, and P. Solving this system, one
can find their values at the resonance point.

We now look for the amplitude and phase of the os-
cillation mode at the resonance point. We suppose that
in a vicinity of this point the spatial form of @2 differs
only slightly &om the form of 40. Thus we can project
the equation of motion onto the function @p(z, t). We
assume that

(Z(p) vr
+ ~ + 2'-(I,)„I

~ (2.31) 4'2(z, t) = a(t) 4p(z, t), (2.34)

We see that the frequency in these variables is ~, and
so the resonance condition is

and substitute Eq. (2.34) into Eq. (2.27). Next, we
multiply the resultant by @0, and integrate it in z over
the complete period to obtain

d2a (.2A(up ) da . (A~pG ~p&
A + ~i —2iBpv+AG

~

——i
~

+BGpv ~a=Cexp i~~ ——~tdt2 ) dt ) . & &)
(2.35)

The coeKcients A, B, and C stand for the following integrals:

pL
A = C0%0dz,

0
pL

B = —i @oz@'odz
0

2N n ~ . )2niNz)
sine'p exp 4pdz .&&L)

(2.36)

(2.37)

(2.38)

Looking for a(t) in the form a(t) = b exp[i(u —~)t], we finally obtain

, t'
—2A —

l ~ ——+ 2Bpv cu ——+iAG u ———iAG ——iBGpv
~) & ~) & ~)

(2.39)

At the resonance point, b becomes

C
AG~ + BGpv

(2.40)

Since the integrals A and B are both real, we see that
there is a phase shift of m/2 between the oscillatory mode
and the perturbing force. This is the well-known prop-
erty of an osci1lator driven by an external resonant force.
This means that when the driving force is minimal, the
displacement of the oscillator is maximal, and vice versa.
In our system, the force is maximal when one of the flux-
ons is exactly at the position of the obstacle. So, when
the perturbation of the phase is maximal, one of the ob-
stacles is exactly in the middle between two fiuxons (here
we consider the case n = 2).

Finally, we can find the height of the step in the
I-V characteristic corresponding to this resonance, i.e.,
the additional amount of current needed to compensate
the dissipation caused by the resonantly excited acoustic
mode. Starting with the energy balance equation used
by McLaughlin and Scott,

dE
(—G4', + J4g) dx,

dt 0
(2.41)

we expand 4 as in Eq. (2.9), and we look for the full
current J as J = Jo+ AJ, where Jo is the current cor-
responded to the resonant value of the velocity in the
homogeneous system according to Eq. (2.8). The lin-
ear order vanishes, and at second order we obtain the
following expression for l3 J:
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pL
AJ =— dz(4i —yves, )

2A7l V jt' p

~~b...~' t'~02—A —pvD i,
r4nmvp

where A is defined by (2.36), and

pLD:— @p.C p'. dz .
0

(2.42)

(2.43)

0.12

0.10-,0

0.08-
I obstacles

0.0

0.06-

III. NUMERICAL SIMULATIONS
0.04-

In order to verify the theoretical predictions of the pre-
vious section, the I-V characteristics for various values of
the Josephson-junction length L were obtained by direct
numerical simulations of the model (2.1) with the peri-
odic boundary conditions (2.2). As was mentioned in
Sec. II, the I-V characteristic is given by the dependence
of the average fluxon velocity v on the applied external
current density J. Due to the small dissipation, a typi-
cal I-V characteristic displays several hysteretic branches
(steps); i.e. , for a single value of J several stable states
with difr'erent v exist. The actual state of the system
depends on the history of the bias current J.

While varying L in the range Rom 3 to 12, we fo-
cused on the case of N = 3 inhomogeneities (i.e. , of 3
periods of spatial modulation inside the ring) with two
trapped fluxons (n = 2). This particular case is il-

lustrated by Fig. 1. In the simulations the coefficient

g(x) = 1 —a P i h(x —Lm/N) [see Eq. (2.1)j was ap-
proximated by a smooth hyperbolic function as shown
in the inset of Fig. 2. The spatial discretization step in
the simulations was Ax = 0.025. Each I-V characteristic
was calculated first up (increasing J) and then down (de-
creasing J). In every point of the I Vcurve, th-e integra-
tion was performed until a stationary dynamic state was
attained. After that, the bias current density J was in-
creased (or decreased, depending on the actual branch of
the hysteretic I Vcurve), an-d the numerical integration
was continued using the Anal conditions of the previous
point. In the I-V characteristics shown below instead
of the averaged voltage V we plot the average velocity
v = V/n per Huxon. The typical relative accuracy of the
dc voltage averaging was 10

An example of the complete I-V curve is shown in
Fig. 2. The parameters are L = 5, G = 0.02, o. = 0.2,
i.e. , weak damping and rather strong modulation. This
characteristic displays three very pronounced resonances
at v just below 1.0, 0.5, and at about 0.25. The dynamic
states corresponding to these three regimes are illustrated
by Fig. 3, showing the evolution of the spatial derivative
of the phase difference 4 (x, t) Physically, . 4 corre-
sponds to a local magnetic field which has a maximum in
the center of each fIuxon. In Fig. 3 the field 4 is shown
as a function of x and t in a grey scale, with white parts
corresponding to the highest values of the field. Thus,
two white domains in Fig. 3(a) moving from right to left
with increasing t correspond to two fluxons moving with

0.02-

0.00:
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. The numerically calculated I-V curve for the
Josephson ring shown in Fig. 1 with the parameters L = 5,
G = 0.02, a. = 0.2. Under the inSuence of the bias current
density J, the Huxons move with an average velocity e. At
the top (bottom) of each resonant step, the system switches
to a different branch, as indicated by the arrows. The inset
shows the spatial modulation produced by the obstacles.

velocity close to the maximal velocity (v = 1). In con-
trast, the state shown in Fig. 3(b) indicates a solitary
excitation moving in the opposite direction. This regime
coincides with the so-called supersoliton mode. In this
mode, one may regard the two-fluxon state as a superpo-
sition of three static fluxons pinned by the three obstacles
and a single antiBuxon associated with the darkest area
in Fig. 3(b) moving to the right.

The most essential regime for the present work is the
third one shown in Fig. 3(c). It looks somewhat surpris-
ing by its clear indication of a well-localized single light
domain moving with almost the maximal velocity to the
left. If one assumes that this domain is the only localized
kink which contributes to the dc voltage, this must be a
vr kink, and not the usual 2' kink of the sine-Gordon
system (note that the voltage at this point is 0.5). We
will address this issue in more detail in the next section.

Figure 4 presents the most interesting parts of the I-V
characteristics calculated for the stronger damped case
(G = 0.1), using different lengths L of the ring and
o, = 0.1. In Fig. 5 we show a comparison of the the-
oretical prediction of the previous section with the nu-
merical data for the resonance region positions (shown
by arrows in Fig. 4). Since the system of Eqs. (2.7),
(2.33), and (2.18) is very complicated, we solved it nu-

merically. From this solution we get the velocity at the
resonance point as a function of the junction's length,
v = v(L), which is, actually, the position of the step on
the I Vcharacteristic. We-see that the function v(L) (the
solid line in Fig. 5) has a maximum at about L = 5.5.
Comparing the theoretical and numerical values of the
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0.14-
«.

)
I~ r

,.cP

A

/

.r II

C~

St

0.12-

0.10-

0.08-

0.06-

o
O ] 2 3

0.04-

0.02-

0.00
0.1 0.2 0.3

V

FIG. 4. The I-V characteristics in the moderately damped
regime (G = 0.1), calculated for different lengths L of the
Josephson junction. The arrows show positions of the reso-
nance related to the excitations of the Buxon-density waves.
The modulation amplitude is a = 0.1.

y

f'

$A

Ct

FIG. 3. The spatiotemporal evolution of 4' (x, t) corre-
sponding to the different points of the I-V characteristic
shown in Fig. 2: (a) the point A, (b) the point B, (c) the
point C.

10) the resonance splits in two: The lower one is very
close to the prediction of the linear analysis (see Fig. 5),
and the higher resonance remains close to the "golden
value" of 0.25. In order to discriminate between these
two regimes (the points D and E in Fig. 6), we display
in Fig. 7 two-dimensional graphs of the magnetic field
4 as a function of z and t. Both pictures show one
localized region of high density moving to the left with
the maximal (Swihart) velocity. One can also detect a

voltage, we see a good accord for L ) 5, i.e., for the
region where the analytical method produces v to be a
decreasing function of L. For L & 5, the direct simu-
lations show that v tends to saturate to the value 0.25
as L goes to zero. The failure of the analytical method
in this region is not surprising, since the linear approxi-
mation is valid for suIBciently long junctions only, as we
have shown above. We will discuss this case in the next
section, considering a strongly nonlinear behavior.

0.28

0.24-

0.20-

0.16-

~ i ~
/

~
/

~
$

~

0.12—

IV. NONLINEAR REGIME 0.08-

When the parameter & becomes large, or the length of
the junction is small, the linear approximation fails. Typ-
ical numerical results for this range are shown in Fig. 6.
This 6gure presents &agments of the I-V characteris-
tic in the underdamped regime (G = 0.02), calculated
for difFerent lengths of the ring and for a rather strong
modulation strength o, = 0.2. The resonance velocity v
proves to be an almost constant function of I with values
close to 0.25. Furthermore, for large rings (L = 7.5 and

0.04-

0.00 ~ t 4
/

~
/

~
$

v i

0 2 4 6 8 10 12 14

FIG. 5. Comparison of the numerical data (the points)
with the aualytica1 result (the continuous line) obtained from
Eqs. (2.7), (2.33), aud (2.18).
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0.05, I l I

0.04-
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0.02—
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0.00
0.14 0.16 0.18 0.20 0.22 0.24 0.26

PIG. 6. F agments of the I-V characteristics in the under-
damped regime (G = 0.02), calculated for difFerent len th L

ing. he arrows show the switching directions. The
n eng s

modulation amplitude is o. = 0.2.

second region of high density, somewhat less localized,
moving to the right with about half of the Swihart ve-

collidin eriod'
locity. e interpret these two regio t 6
co i ing periodically. Calculating the average lt

thus U = V/n = 0.25, which is the golden value shown in
the I-V characteristics. In contrast to the rather smooth
osci lations of the fluxon position in Fig. 7(a), Fi . 7(b)
indicates a strongly relativistic dynamics with hard col-
isions of the well-localized Quxons.

Qualitativel y, we explain the nonlinear regime by an
extrapolation of the linear beha A
in ec. II, there is a phase shift of xj2 between the vibra-
tion of the fiuxo e uxons and the driving force produced b the
obstacles. Th. Thus, when the two Buxons are closest to each

uce y e

other, one obstacle is located just between them. In the
nonlinear regime, where the amplitude of the vibration

due to the phase shift the collision will take place exactly
at t e ocation of one of the obstacles. The next colli-
sion should also occur at an obstacle. Since we have two

uxons and three obstacles (placed at x = 1.67 5.0 a d
8.33 ln Fl . 7)g. ~&, this can only happen if one of the Buxons
will reach the nearest obstacle, which is at the distance 3

o stacle moving in the opposite direction, thus coverin
a istance twice as large, —.Since in th t le s rong y non-
inear regime the velocity of any Huxon is limited by the

Swihart velocity, we conclude that th f 8
wit almost the Swihart velocity, while the slower one

as to have, on average, half of this velocity. The veloci-
ies are exchanged after each collision [see Fig. 7(b)] just

4 g, )I g~iI[.jes

FIG. 7. Thehe spatiotemporal evolution of C', (z, t) corre-
e - characteristicssponding to the difFerent points of th I-V

s own in Fig. 6: (a) the point D, (b) the point E

as with two identical massive particles.
Instead of this

fort
picture of two Huxons going back d

rth between the collisions, one may think of two Quxons
moving through each other without changing their veloc-
ities (this qualitative picture is somewhat less physical,
as two Quxons repel each other). Since the ideal Huxons
are solitonic solutions of the completely integrable sine-

or on equation, the collisions are totally elastic, their
sole e6'ect being spatial shifts, which can be positive or
negative. In our case the velocities of the colliding fluxons
are opposite; therefore both spatial sh'fts i s are posj.tive.

ese spatial shifts produce a contribution to the mean
velocities, which renders them 1 them arger t an t e real ve-

een co isions . e have seenlocities (the velocities between coll' ' . W h
t is e ect in the two-dimensional plots. Recall that the
mean velocity of the fast Buxon seems to be the Swihart
velocity. %e are not sure if this l 'tv

'
is ve oci y is simply close

to its limit va ue, or there is some mech
' fec anism en orcing

to be exactly equal to the Swihart velocity
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