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Calculations of the superconducting critical temperature with vertex corrections
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The calculations of the superconducting transition temperature, including the lowest-order vertex
corrections, are carried out for three models: the BCS-type instantaneous interaction, a retarded
isotropic interaction described by the Eliashberg spectral function a F(O) and a spin-Huctuation
interaction with four b-function peaks in the corners of a square Brillouin zone. In the isotropic
case the e6ect of higher-order self-energy diagrams is to suppress the critical temperature calculated
within the mean-field approximation when the characteristic energy of the boson responsible for the
pairing is not small compared to the Fermi energy. In the case of the model with sharp peaks in the
momentum space the vertex correction can lead to an increase of T, .

I. INTRODUCTION

In spite of the fact that the mechanism of high-
temperature superconductivity remains unclear, there
are several questions regarding the calculations of T, that
can be addressed, regardless of the symmetry of the or-
der parameter. Firstly, how large is a typical energy of
the bosons that mediate pairing compared to the T, .
Secondly, how are the other energy scales, such as the
Fermi energy E~, the bandwidth and the coupling con-
stants, related to the T,. Thirdly, how does the geometry
of the electronic spectra (and/or the anisotropy of the
electron-boson interaction) affect the relation between
the T, and the energy scale of the pairing bosons. In the
conventional electron-phonon superconductors the main
energy scales satisfy the inequalities T, ( ~~ (( E~,
where ~D is a typical phonon energy. The BCS theory,
which is quantitatively accurate when T, « cuD, gives
T, 1.14')De " + O(Au~/E~), where A is the cou-
pling constant, and therefore E~ drops out of the prob-
lem with a high accuracy. However, if urD/E~ is not
small, as has been suggested for fullerenes, the question
is what is precisely the sign and the magnitude of the
correction to the BCS formula for T, . The same prob-
lems remain in the strong-coupling regime T, /ur D10%,
in which case the Eliashberg equations ' predict the su-
perconducting transition temperature with the accuracy
O((uD/Ep).

For the nonphononic mechanism of superconductivity
in electron gas, a detailed numerical study by Rietschel
and Sham, who included the full momentum and &e-

quency dependence in the Eliashberg-type equations, in-
dicated that the vertex corrections must have an impor-
tant effect on T, . Subsequent calculations by Grabowski
and Sham indeed found that T, decreases drastically
when the vertex corrections are included in the calcula-
tions. On the other hand, the effect of vertex corrections
at a Van Hove singularity leads to modest changes of T, in
a k-averaging approximation for the Green's functions.

In recent calculations of the T for antiferromagnetic
spin-fIuctuation mediated pairing in copper-oxides,
Eliashberg-type equations, which take into account the

momentum dependence of the spin-Huctuation spectral
density and of the electronic dispersion over the entire
Brillouin zone, were used. These calculations showed
that taking into account the full momentum depen-
dence results in a T„which is substantially different
from the one obtained by keeping all electronic mo-
menta near the Fermi surface. ' The fuQ self-consistent
calculations, ' which take into account the eH'ect of
pairing correlations on spin-susceptibility calculated in
the random-phase approximation (RPA), show that the
pairing is strongly aH'ected below T, . The question
remains, how important are the vertex corrections in
the spin-fluctuation theories, in spite of the fact that
the spectral weight for the spin-susceptibility used in
Refs. 8—10 peaks at an energy that is much smaller than
the bandwidth (see Ref. 9 and the references therein).
Since the spectral function has a nonzero weight at ener-
gies that are not small compared to the bandwidth, the
sign and the magnitude of the contribution to the T, aris-
ing &om the vertex corrections has to be examined quan-
titatively. Recent quantum Monte Carlo simulations for
the two-dimensional Hubbard model~4 indicate that the
single spin-Buctuation exchange underestimates the ef-

fective particle-particle interaction, and that high-order
vertex corrections are required.

In the present paper we examine the effect of vertex
corrections for several models. In Sec. II the effect of
higher-order diagrams on the T, equation is studied for
the BCS-type interaction. It is found that T decreases
with increasing Au&~/E~ and above some critical value
of this parameter the solution of the T, equation does
not exist. In Sec. III the numerical calculations of T, us-

ing the strong-coupling equations with the lowest-order
vertex correction are carried out. In the isotropic case
the T decreases with increasing value of the ratio be-
tween the characteristic boson energy and E~, as in the
BCS case. However, for a highly anisotropic model of
spin-fIuctuation-induced pairing, which is analogous to
the models used previously for copper oxides, there is a
possibility of the enhancement of T by vertex corrections
in a certain range of values for the chemical potential p.
The last section gives a summary and conclusions.
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We consider first the Hamiltonian

II = ) Kpcp~cp~t

pcs

)
p1+pa =ps+p4

P1~~P2~ ~Ps~ ~P4~

et c'Vp, p, p, p, cp ~cp, ~~ w~' pi~ (l)

II. BCS-INSTANTANEOUS INTERACTION
AND T;EQUATION

gram generated in this way from the one in Fig. 1(b) is
not irreducible and must be left out. The diagrams in
Figs. 1(c) and 1(d) involve interaction between particles
with parallel spins and are not present for the interaction
given by Eq. (2). It is clear that this method could be
generalized to include the corrections to the irreducible
pairing self-energy near T &om diagrams with more than
two interaction lines, such as the crossed diagram in Fig.
1(e). Using the standard Gor'kov's form for the anoma-
lous Green's function (dashed line in Fig. 1) at T,

with the BCS-type interaction

P1PQ PSP4 e(~. —Iep. l). (2)

In Eq. (2) V is the interaction constant, e is the step
function, w, is the half width of the energy shell around
the Fermi surface in which the interaction is nonzero,
and ep is the electron energy. The diagrams with one
and two interaction lines in the particle-particle channel
for a general two-body (or a boson mediated) interac-
tion are shown in Fig. 1. One can easily obtain &om
these diagrams the diagrams for the irreducible pairing
self-energy near T, by joining together the two incoming
lines, as indicated by a dashed line in Fig. 1, and by in-

terpreting the resulting line as the anomalous Gor'kov's
Green's function. Clearly, the pairing self-energy dia-

6(i~-)
E(ep, Xld~) = u„+e

where Pp is the pairing self-energy and in„=is.T(2n —1)
is a fermion Matsubara &equency, one obtains in this way
the equation for Pp near T, which includes the efFect of
vertex corrections

P (i~„)= T) -) V„„(0)+ bV"'", ", " . (4)
~l pl

Here

vp, p (o) = -ve(~. —Iepl)e(~. —Ie. I)

I

and the correction term bV"„'", is due to diagrams with
ptp

two and more crossed interaction lines. As usual, one can
introduce the order parameter

r-
I

l

f
I )

c)

+ J ~ ~

~„=-T»-- v, „,(o) ~,'(' -,'),
~l pl

which does not depend on Matsubara &equency iu„.
Equations (4) and (6) imply the following equation for

~„=-T»--v (') z„
Vp p~(0)bV", „'"„

u ( n'+ ')( ra"+ p")

+o(lbv„",," I') (7)

e)

FIG. 1. The lowest-order diagrams for a general BCS type
interaction. A dashed line indicates how to generate the cor-
responding graph for the anomalous self-energy. In the text
we explain which of the diagrams (a)—(d) contribute for the
interaction given by Eq. (2). The diagram (e) is of the order
of A cu, /Ep in three-dimensional case and is omitted in our
consideration (see Ref. 15).

bv„",", = -'v,„.(o)') e(~. —Ie„,l)e(~. —Ie,;I)

tanh(ep, j2T) —tanh(epi /2T)
XV~+~& + CP1

—E'P&
(8)

The usual BCS equation for T, is obtained by retaining
only the first term in Eq. (7). In the following we assume
that A = N(0) V, where N(0) is the electronic density of

I

states at the Fermi level, is less than 1 so that bv"'",
pp'

is small and could be approximated by the contri'hu-
tion from two crossed interaction lines. s Then the term
O(lbV"'",

I ) in Eq. (7) could be ignored, and using the
bare careen's functions for the normal propagators in the
second diagram in Fig. 1(a), G(ep, iu„)= (iu„—e„)
one gets
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where p+p' = pi+p'i andiv„= ivrT2n is a boson Mat-
subara frequency. It is easy to see that Eqs. (4), (7), and
(8) imply Ez ——48(oi, —

~ ez ~), and upon carrying the sums
A)Ain the second term in (7) one finds that only RebV„

I
A) TL ~

contributes. It is important to note that RebV„"„',is al-

ways positive and therefore the second term in q.F (73
I'g YL i VXhas the sign opposite to the first term. As a result, bV„„,

will cause a reduction of T,. The equation for the criti-
cal temperature can be written in the following form (see
Appendix A)

1.0

0.6 ]ca

~ 0.4-

where

0.0
.00 25

~(T) ~/E,
50 , 75

A(T) = A —tanh
p

and e(T) is a universal function of ur, /xT defined in the
BCSAppendix A. K(T) as a function of T/T, , where T,BCS

is the solution of the BCS equation A(TB s) = 1 is shown
F 2 for several values of A. The interesting featurein ig. or s

BCSof lc(T) is a very slow change near T, and a rapid
variation in the vicinity of T = 0. From Eq. (9) it is
clear that for a fixed A the critical temperature is a de-
creasing function of u, /EF. This is illustrated in Fig. 3
for various values of A. At small ~,/E~ the rate of de-
crease in T

&
T does not depend much on P. Howevei. ,

T TBCSwhen ur, /E~ is not very small compared to 1, T,/T,
decreases more rapidly with increasing A. The equation
for Tc, Eq. (9), is quadratic in A(Tc) and it is easy to see
that for a fixed A the solution exists only for values of
~,/E~ smaller than some critical value (ur, /E~), . More-
over, there are two solutions (the lower ones are given by
the dashed lines in Fig. 3), which approach each other as

u, /Ez is increased and eventually coincide at (ur, /Ez), .

1.5

FIG. 3. The superconducting critical temperatures calcu-
lated from Eq. (9) for difFerent values of A. Curve (1) is for
A = 0.1, curve (2) is for A = 0.2, curve (3) is for A = 0.3,
curve (4) is for A = 0.5. The dashed lines give the lower of
the two solutions of Eq. (9). The dot-dashed line gives the
analytic limit of the critical temperature when A —+ 0.

The larger of the two solutions is the physical T,. It
is necessary to emphasize that although the correction
to the BCS term, A(T, ), in Eq. (9) is of the order of
Au, /E~, the correction to T, is much larger due to expo-
nential dependence of T, on the correction term, whic
is implied by Eqs. (9) and (10).

One could argue that the effect of vertex corrections
on the superconducting transition temperature mig t not
be qualitatively correct within the BCS treatment, since
the changes in the normal (i.e., diagonal) self-energy
due to vertex corrections with a retarded interaction

( duction in the renormalization functionis) could
have an important effect. In the BCS treatment on y t e
modifications of the pairing self-energy are present. In
the next section we address the problem of modifying the
usual Eliashberg theory of superconducting T, (Ref. 3) to
include the effect of vertex corrections.

1.0— III. ELIASHBERG EQUATIONS FOR T,
AND HIGHER-ORDER ELECTRON

SELF-ENERGY DIAGRAMS

0.0
0.00 0.75

I l

0.25 0.50 1.00
y/T Bc~

C

FIG. 2. The function a(T) for difFerent A' s. Curve (1) is
for A = 0.1, curve (2) is for A = 0.2, curve (3) is for A = 0.3,
and curve (4) is for A = 0.6. The dot-dashed line gives the
analytic limit of r(T) when A m 0. The computmg time or
T/T ( 0.26 with A = 0.1 became prohibitively long, and the
dashed line just indicates that the curve continues down to
the analytic result at T —+ 0.

Z(k, iu)„)= Z~(k, iur„)+ Z~(k, iu)„),

where

Z~(k, i(u„)= iur„[l—Z„(k)j~p+ g„(k)rs (12)

is the normal part and

Z~ (k, ice„)= Z„(k)[A„(k)ri+ h,„(k)~2I

In this section we use the Nambu formalism of the
strong-coupling theory to obtain the T, equation,
which includes the eKect of the lowest-order vertex cor-
rection. The (2 x 2)-matrix irreducible electron self-

energy could be written as
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FIG. 4. The lowest-order skeleton dia-
grams for the electron self-energy. The
order of magnitude of the diagram
with two crossed boson lines is A ~, /E~ in
the three-dimensional isotropic case and
A &u, 1n(E» /ug, )/Ey in two-dimensional
isotropic case. Here A is the coupling con-
stant de6ned as twice the 6rst inverse
moment of the boson spectral function, and

is the characteristic &equency of bo-
son spectral function (it is assumed that
u, « E~). The order of magnitude of the
skeleton diagrams with three boson lines is
A ~, /Ei, in three-dimensional isotropic case
and A ~, /EJ; in two-dimensional isotropic
case.

is the anomalous part. Here, Z„(k)is the renormaliza-
tion function, y„(k)is the shift of the chemical potential,
6„(k)and A„(k)are the real and the imaginary parts of
the gap function (renormalized pairing self-energy), and
7 0, 7 y, 'T2, 7 3 are the Pauli matrices. ' ' The diagrams for

Z(k, iu„)are shown in Fig. 4, where the solid lines de-
note the dressed (2 x 2)-matrix electron Green's function

G(k, iu„)and the wavy lines denote the dressed boson
(phonon or spin-Huctuation) propagators. At tempera-
tures T T, the pairing self-energy becomes vanishingly
small, and one can retain only the terms that are lin-
ear in the pairing self-energy. Then, the normal and the
anomalous part of G(k, iu„)= G~(k, iv)„)+ F(k, iu„)
could be written as

(14)

E(k '
) = Z„(k) i E~(k)rq +A„(k)r z

(i~-)' —(s:(k)]' '

respectively. Here, s„(k)is the renormalized electronic
spectrum

s„(k)=Z„(k) ' si, +y„(k) . (16)

The usual approximation for the electron self-energy in
the case of interaction with phonons and/or spin Huctua-
tions is to keep only the contribution of the first diagram
in Fig. 4,

(17)

In Eq. (17), the upper line in all curly brackets corresponds to the electron-phonon interaction and the lower line to
the electron-spin-Huctuation interaction. The phonon propagator D can be written in the form

OO 20
D(q, iv ) = N(0) d0B(q, 0)

0 tv~ —0

where B(q, 0) is the phonon spectral weight. The spin-fluctuation propagator P, is defined through a summation of
an infinite series of diagrams involving the irreducible particle-hole interaction, ir and could be expressed in terms of
the spin susceptibility y, (q, ~)

3 2 . 3U2
P, (q, iv ) = —U y, (q, iv ) =—

2
'' 2x

Imp, (q, ~)

where U is the interaction constant. As is well known, the accuracy of the approximation Z(k, iur~) = Z( ) (k, iu~) in
the case of electrons interacting with phonons in a three-dimensional system is O(u, /E~), where u, is a typical phonon
energy;is is in a quasi-two-dimensional case the accuracy is O[(urz/E~) ln(Ez/ur, )].2o Similar estimates apply to the
effective electron spin-Huctuation interaction, with ur, a typical spin-Huctuation energy, when y, (q, w) is isotropic,
and since in that case the spin-Buctuation spectral function tails oK up to SE~, the approximation is highly suspect.

The second diagram in. Fig. 4 represents the first-order vertex correction in the electron-phonon problem. Also,
it is possible to s»m certain infinite subsets of diagrams involving the irreducible particle-hole interaction U, and
cast the result in the form of a diagram with crossing spin-Quctuation lines. However, the diagrammatic rules with
spin-Buctuation propagators have to be augmented by introducing an additional multiplicative factor o.„which takes
into account all relevant combinations of ladders and strings of bubbles with the irreducible particle-hole interaction,
as well as the definition (19) of the spin-Huctuation propagator (see Sec. IIIB). The contribution of the self-energy
diagram with two crossed boson lines for both cases can be written as
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Z(2)(k .
) T2 ~ ~- D(k —k', iv„„}D(k—k",iv„„)

n, P, (k —k', iv„„)P.(k —k",iv„„)~l ~» Ql g»
~h

x . G(k', iv„) G(k' + k" —k, iv„+„„)G(k", iv„)70 7p To 'TQ
(20)

In this case (two crossed spin-fiuctuation lines) n, = 1/3. It is important to note that the second-order diagram
Z~ l(k, iv)„)is related to an intermediate electron propagator G(k', iu ) through the kernel that depends not only
on n —n' [as in the case of Zoril(k, i~„),Eq. (17)] but also on n

A. Isotropic electron-phonon interaction

We consider first the case of isotropic electron-phonon interaction for two- and three- dimensional electron gas.
It will be assumed that the q dependence of the spectral weight B(q, 0) is negligible, and we replace B(q, 0) by
the Eliashberg function n F(O). In the case of isotropic interaction the renormalization function Z„(k)and the
shift of the chemical potential y„(k)depend on k via ei, . We assume a symmetric band EF (—ei, ( E~, with
eI, = —k /2m+ E~, in which case A„(k) O(us/E&~) and could be ignored within the accuracy O(tu, /E~). One
then obtains from (17) and (20) the following equations for the self-energies

EF
Z~il(i(u„) = T ) A(n —n') dug ~sG(ei, , uu„)~s,

n' EF

T EF EF
Z'"(" ' -) = ) A( — ')A( — ") dCI i» dE'I »

4E
n n —EF —EF

A A

xM(k, k; k, k )7'sG(eg~, us~i)TsG(ty«i, ud~~+~» «)TsG(eleir, iw~«)ts,

where A(m) is defined in the usual way

A(m) = dOa F(O)
20

0 V2 +02

(21)

(22)

All momenta k~'l in Eqs. (21) are functions of the corresponding energies ei, ~, ~
and the function M(k, k"'; k', k") is

determined by the dimensionality of the system

(3D)
k'~-'2QX(k, k"', q)-'X(k', k" q)-' (2D) . (23)

Here QM = min(k+ k"', k'+ k"), Q = max()k —k'"i, fk' —k"[), and X(k, k', Q)2 = [Q —(k —k'}2][(k+k')2 —Q ]
is biquadratic and symmetric under the exchange of any pair of variables. As in the BCS case (see Appendix A), the
function M(k, k"'; k', k") is approximated by its value near the Fermi surface

M (k, k"', k', k") = (3D)
3vr ' ln[8EJ;//~P(el„eg, ei, , ei.„)[] (2D) )

(24)

with P(ei, e2, es, e4) = (&i+&2 —es —e4) (ei —&2+ as —e4) (ei —e2 —as+ @4). Although in the present case—in contrast to
the BCS-type interaction —not all momenta are near the Fermi surface, this approximation could be justified for the
same reasons as in the normal state. 22 One can see that after such an approximation Z~2l(si„iu„)does not depend
on eg in three dimensions (3D). In two dimensions (2D) the dependence on el, is only through logarithms that have a
reducing prefactor T/E& (see Appendix B). After equating the coefficients of various Pauli matrices on both sides of
the equation for Z~ &(iu )+Z~ l(ice ), which is implied by Eqs. (21), one finds the strong-coupling equations corrected
by the second-order diagram

Z„=1+ ) A(n —n')A(n, n') s„s„.a„., (25)

Z„~„=~T) [A(~ —~')B(~,~')+ C(n, n')]a„ (26)

The equation for 4„is the same as the equation for A„, and could be suppressed. The factors a„
(2/vr) arctan(Es/Z ~u„~) result from integrations over ei, 's in Eqs. (21) and s = sgn(u„). In 3D the matrices
A(n, n'}, B(n, n'), and C(n, n') are
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2T L ((
A(n, n) = 1— A(n —n )s„+„„s„a„+„„a„

4Ey

2
7l T W ((B(n, n) =1- A(n —n )s„+„„s„.a„+„„a„„,
2Ep

7r2
C(n, n') = ) A(n —n")A(n' —n")s„„+„s„a„„+„a

4E~

(27)

(29)

The second term in matrix A(n, n') is due to a vertex cor-
rection contribution to the diagonal (i.e., normal) part of
the self-energy. Since near T, it is sufEcient to keep the
diagrams for the pairing self-energy in which the anoma-
lous Green's function E(k, iu„)appears only once, there
are only three vertex correction diagrams that contribute.
The second term in matrix B(n, n') corresponds to the
sum of the contributions &om the second-order graph
when the anomalous function F(k, iu„)is taken for the
Grst electron line or the third electron line in a diagram
with two crossed boson lines. The matrix C(n, n') corre-
sponds to the contribution from the second-order graph
when the anomalous function P(k, iu„)is taken for the
middle line in such a diagram. We note that the usual
Eliashberg equations are obtained from Eqs. (25)—(29) by
taking the limit E~ -+ oo.

The solutions of the T, equations for the Einstein
model asF(0) = AO@/26(0 —OE), with 0@ = 10 meV,
are shown in Fig. 5. As in the case of the BCS model,
Sec. II, the critical temperature T, decreases with in-

creasing 0@/E~. However, in the strong-coupling case
the T is suppressed at a slower rate, presumably due

I

to a reduction of the renormalization function Z„bythe
lowest-order vertex correction. This effect is absent in the
BCS case. To illustrate the effect of the lowest-order ver-

tex correction on T, for a realistic spectrum a2E(0) we

solved Eqs. (25) and (26) for Pb.2 The maximum energy
of the spectrum is 0 „=11.1 meV, and the electron-
phonon coupling parameter A = 2 f~ dOa2E(0)/0 is

equal to 1.55. It is easy to include the usual Coulomb

graph into the theory and describe it in terms of the
pseudopotential p,'.3'4 We have chosen p,

' = 0.136 for
the cutofF of 55 meV in the sums over Matsubara fre-

quencies so that the T, is 7.2 X for E~ ~ co (the usual

case). The results (full squares in Fig. 5) are very simi-

lar to the results obtained for the Einstein model. It is
interesting to note that for Es = 9.47 eV, which is the
free-electron-gas value for the Fermi energy in Pb, 24 the
correction to T, is about 0.2%%up.

Finally in this subsection we consider the correction
to the critical temperature for the spectrum which, like

the spin-Buctuation spectrum in an isotopic system, is
linear in 0 at small energies and has a long 1/0-tail at
high energies. Namely, we take

0 (dpa E(0) = — —8(urp —0) + —8(0 —(up)8(ur —0)
4 cdp 0

4Jp1—
2~max

(30)

2 - * asF(0)
ln(u)„——— dO ln 0

p

&max

u = dOa F(0)0
p

~~

&max

dOa F(0) . (32)
p

Note that the area under spectral function (30) increases
logarithmically with increasing sum, but the average
frequency is approximately proportional to ur (for

one can find r3 u /ln(u /up) and
ui„=up). We choose A = 1, ~p ——10 meV, td = 500
meV and the cut ofF in the sums over Matsubara frequen-
cies is 5' ~. For these values of parameters co~„——9.43
meV, Cu= 111.8 meV, and T = 37.2 K.

The relative changes of T, calculated from Eqs. (25) and
(26) compared to T@ calculated from the usual Eliash-
berg equations at difFerent ratios ui„/E» and u/Ey are
shown in Fig. 6. Here, ~~„is the logarithmically averaged
frequency and 6 is the average frequency,

B. Highly anisotropic electron-boson interaction

As an example of a highly anisotropic electron-boson
interaction, we consider a model of a spin-fIuctuation me-
diated superconductivity, which is analogous to the rnod-
els proposed to explain the superconductivity in copper-
oxides. ' s iP To evaluate the second-order correction
graph for the self-energy due to the exchange of spin-
Huctuations, we use a model in which the irreducible
particle-hole interaction is taken to have a contact form
and magnitude U. The fnst-order graph can be ob-
tained in the usual way (see Fig. 6) by combining the
contribution from the strings of bubbles and ladders. i
In evaluating the contribution &om these diagrams in the
superconducting state we use Gor'kov's diagrammatic
method due to the appearance of difFerent boson lines
in the normal and the anomalous channel: the line that
corresponds to the ladders (t), the line with odd num-
bers of bubbles (li), and the line with even numbers of
bubbles (l2). After making the usual approximation for
these lines2 one gets the expression for the self-energy
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1.0

0.8 0

0.6

0.4 q

0.2 q

0.0
.0 , 4

that could be written in the Nambu notation [the lower
line in curly brackets in Eq. (17)]. It is possible to sum
several infinite series of diagrams for the normal and the
anomalous self-energy and cast them into the form of di-
agrams with two crossing spin-Buctuation lines. All pos-
sible diagrams of this type are shown in Fig. 7. With the
same approximations for the propagators t, lq, and I2 as
in the first order graph, one can write the contribution of
all diagrams in Fig. 7 in the form given by Eq. (20) with
n, = 1/3. In numerical calculations we will treat n, as
a free parameter (& 1/3), which will allow us to control
the relative contribution of the second-order graph.

We consider a model of electrons moving on a square
lattice with a dispersion

ck = —2t[cos(k a) + cos(k„a)]—p,

FIG. 5. The relative changes of the superconducting crit-
ical temperature calculated from Eqs. (25) and (26), which
include the lowest-order vertex correction, compared to the
temperature T, calculated from the usual Eliashberg equa-
tions for difFerent spectral functions cr F(A). Curves (1)
and (2) are for the Einstein model with Oa = 10 meV
and A = 0.5, p' = 0.0, T, = 4.57 K for curve (1), and
A = 1.0, p' = 0.0, T, = 13.28 K for curve (2). For these
two curves ~, is 0@. Curve (3) is for the spectral function of
Pb: A= 1.55, p, '= 0.136, 0 „=11.1 meV, and T, = 7.19 K.
For this curve ur, is 0 „.Curves (4) and (5) are for the spec-
tral function given by Eq. (30) with A= 1.0, p'= 0.0, T, =
15.3 K. For curve (4) u, = r3 and for curve (5) ur, = Q~„(see
the text).

where a is the lattice constant, t is the hopping matrix
element, and p is the chemical potential. The wave vec-
tor k runs through the first Brillouin zone (—x/o & k

x/a, —m/a & k„&x/a). For the spin-susceptibility we

adopt a model that gives very sharp peaks in the momen-
tum space at the four corners of the Brillouin zone,

20
y. (q iv ) = yz dQP(o)

0 V2 +02
1 . I' I'

g& )
(q q )2+I'2 (q q )2+I'2

(34)

~t

l
I

I

I +
l I

+ e m m m J

FIG. 6. (a) The random-
phase-approximation sum-
mation of the diagrams contri-
buting to the interaction aris-
ing from the exchange of trans-
verse spin-Suctuation (line t)
and from the exchange of lon-
gitudinal spin-Quctuation with
odd (line li) and even (line l2)
numbers of bubbles. (b) The
contribution to the normal ir-
reducible self-energy from the
first-order spin-Huctuation ex-
change. The third diagram
is subtracted to prevent dou-
ble counting, since it is a part
of both t and li. (c) The
contribution to the anomalous
self-energy from the first-order
spin-Huctuation exchange.
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0)
x2

x2 12

12

x 2 2I

FIG. 7. (a) The second-order spin-
Buctuation contribution to the normal
self-energy near T,. (b) The second-order
spin-Suctuation contribution to the anoma-
lous self-energy near T . Some diagrams ap-
pear twice, since the exchange between dif-
ferent boson lines gives topologically distinct
diagrams, which have the same contribution.

12

x 2,

12

Here P(O) is the spectral function analogous to the
Eliashberg function in the isotropic case. For convenience

P(O) is normalized such that J dOP(O) = 1. The snm
over Q = (kz'/a, kz/a) is the sum over the positions of
four peaks in the spin susceptibility at the corners of the
square Brillouin zone. We will assume that the four peaks
are sharp enough so that in a product of spin susceptibil-
ity with any other smooth function of momentum only
the values of this function at the corners of the Brillouin
zone are taken into account. Formally this is expressed
by replacing the sharp peaks with h functions, i.e., by
taking the limit I' ~ 0. We note that this is purely
a formal device, since this limit corresponds physically
to an infinite antiferromagnetic correlation length. The
b-function approximation will, however, simplify several
integrations over momenta which appear in the expres-
sions for the contributions of the first- and the second-
order graph to the self-energy. It should be noted that
this model of four h peaks in the corners of a square
Brillouin zone implies the eg and cu dependence of the
normal-state self-energy Z(eg, u), which is qualitatively
different &om the one found in the isotropic case.2~

The self-consistent equations for the superconducting
critical temperature based on the first-order self-energy
graph take the form

Z„(k)= 1+ ) —) A, (n —n')G„(k+Q)s„s„,-4

Z„(k)6„(k)= xT ) —)—A, (n —n')
~l Q

xG„(k+Q)

where

G„(k)= Z„(k) (37)

and

A, (n —n') = —g dOP(O)I 2 0
Q p g+0 (3S)

E„(k)= B„(k)[cos(ka) + a cos(k„a)j, (39)

where cr = +1. For both a = 1 (extended s wave) and
n = —1 (d wave) the T, equations are the same. We
assnme that Z„(k)and h,„(k)depend on momentum
through eg. Thus, the momentum dependence enters
Eqs. (35) and (36) only through eg or e~+g = —sg —2p.

Here g = U gr. Note that A, (n —n') has the units of
energy. In the following we neglect the difference between
the renormalized spectrum e (k) and e~. It is assumed
that this approximation is not critical for the present
study of the effect of higher-order self-energy diagrams
Qn Tc

The sign in Eq. (36) can be changed by the appropriate
choice of the symmetry of the order parameter



12 782 VLADIMIR N. KOSTUR AND BOZIDAR MITROVIC 50

Because of the periodicity of the electronic spectrum, 200

—ek —2p m is odd
&k+~Q =

~k
k~ ~ ~ ~k

~
I

~

1m is even, (40)
150—

A(n —n') = A8((u, —~ur„!)8(cu,—~(u„ ~).

In the isotropic case for cu, )) 7rT, this approximation
leads to the BCS formula T, = (2p/vr)ur, e ~". In the
case of four 8 peaks in the corners of the Brillouin zone
the square-well approximation

A, (n —n') = A, 8(ur, —~(u„~)8(~,—~u)„ ~)

in Eqs. (35) and (36) gives the following T, equation for
w, )) 7rT, :

vrA, p' tanh = 1.
2p 2Tc

(41)

There are two important implications of this equation.
First, the solution does not exist for arbitrary A, . The
inequality A, ) 2~y, ~/vr must be satisfied. Second, for

it is clear that the functions Z„(k+Q)and 6„(k+Q)are
given by the equations that have the same form as Eqs.
(35) and (36), except that all the functions on the right-
hand side depend on k (instead of k+Q). In the following
the sums over Q are omitted and Q = (m/a, s./a).

It is interesting to compare Eqs. (35) and (36) with
Eliashberg equations in the isotropic case. The main
difference is in the presence of temperature dependent
factors G„(k)coming from the Green's functions after
integration over the momenta. In order to get more in-

sight one can take the BCS limit by using the square-well
model2s to approximate the kernel:

100—

8
g'/t'

12 16

FIG. 8. The calculations of T, from Eqs. (35) and (36) for
difFerent g and y, with the spectral function given by Eq. (42).
The value of t is 100 meV, ~0 ——0.08t, and u „=4t. Curve

(1) is for p = —O.lt, curve (2) is for p = —0.2t, curve (3) is
for y, = —0.3t, curve (4) is for p = —0.4t, and curve (5) is for

p, = —0.5t.

A, ))
~ p~ the superconducting critical temperature is pro-

portional to the interaction constant: T, n.A, /4.
The results of a numerical solution of Eqs. (35) and

(36) for the critical temperature are shown in Fig. 8 for
different values of g and p. The numerical procedure
used to calculate T, is the same as in the preceding sub-
section and is based on finding the highest temperature at
which the maximum eigenvalue of the kernel in the sym-
metrized form of Eq. (36) is one (for details see Ref. 28).
The spectral function P(Q) is taken to have the following
form:

0 1
P(O) = —,8((up —0) + —8(O —~p)8(~ —0) ln

~o2 0 (dp 2
(42)

Thus, P(O) increases linearly for 0 & 0 & urp and decreases as 1/0 for urp & 0 «u . The cutofF in the sums over

Matsubara &equencies is 5u „.In this subsection all energy variables are in units of t, where 8t is the bandwidth.
We take t = 100meV. The interesting feature of the dependence of T, on g and p is the existence of lower thresholds

for the values of g at each given p, as predicted by the square-well model. However, while at large g the square-well

model predicts a linear increase of T, with g [see Eq. (38)j, the rate of increase in T, obtained from numerical

solutions of self-consistent Eqs. (35) and (36) decreases with increasing g2.
After including the second-order graph, the T equations take the form:

7rT
Z„(k)= 1+ ) A. (n —n')A„„(k,k+ Q)G„(k+Q)s„s„., (43)

Z„(k)A„(k)= vrT ) A, (n —n')—B„„(k,k+ Q)G„(k+Q)
E„.(k+ Q)

+C„„(k,k)G„.(k)
b,„(k) (44)
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A„„(k,k + Q) = 1 —a,7rT ) A, (n")G„+„(k+ Q)G„+„(k)
, 2e„+„(k)+ e„(k+Q)(u„+» /ur„l,x

l
s»+»«s»'p»u —&»+»u /k+ ) l~»+»" ~»'+»«

l ) (45)

B„„(k,k+ Q) = 1 —a,2nT) . A, (n")G„+„(k+Q)G„+„(k)

r 4+»-(k+ Q)s»+» (k) &x
l

s»+»r& s»i+»ii
l~»+» ~» +»"

I )
(46)

C„„(k,k) = n, mT ) A, (n —n")A, (n' —n")G„(k+Q)G„+„~„~(k+ Q)

( s»~~(k + Q)s»+ ~ «(k+ C}))x
! s»" 8»+», ' —»"

l~--~-+- --
I ) (47)

By comparing Eqs. (35) and (36) with Eqs. (43) and
(44), one sees that to include the second-order graph
in the T, equations one has to multiply A, (n —n') in
Eqs. (35) and (36) by the matrices A„„i(k,k+ Q) and
B„„~(k, k+ Q), respectively, and add the additional term
with matrix C„„(k,k) in Eq. (36). The results of the nu-
merical calculations are shown in Fig. 9. The efI'ect of the
second-order graph on T, is much more pronounced than
in the isotropic case. Moreover, the T, is very sensitive to
p and for certain values of p the second-order graph leads
to an increase of T„in contrast to the isotropic case. For
y, = —0.2t the T, is increased by about 50%. However,
for larger absolute values of p, the suppression of T, by
the lowest-order vertex correction can be very large. It
should be noted that the dependence on y, at n, = 1/3
(which corresponds to the full value of the second-order

2.0

graph) is nonmonotonic. The absolute changes in T, cal-
culated from Eqs. (42)—(46) compared to T, = 100
K calculated &om the first-order self-energy graph are
shown in Fig. 10. We would like to emphasize that at
a fixed T( ) (and consequently difFerent values of g for
different values of p) the relative changes in T, are quite
similar to those obtained for fixed g (and consequently

different values of T, for difFerent values of p).
In order to understand the qualitative diHerence be-

tween this model and the isotropic case, one has to ex-
amine the relative size and the sign of the changes in
T, arising &om the correction terms in the matrices A,
B, and C, taken separately. To this end one can use
instead of a, three independent prefactors a, , o, , and
a+ in Eqs. (45)—(47), respectively. One finds that both
A„„~(k,k+ Q) and C„„~(k,k) lead to an increase of T„
while B„„i(k,k+ Q) produces a decrease of T, . The im-
portant difFerence between this model and the isotropic

200

1.0
0

150—

0.5— 100
0

0.0
.00 .22 .33

50—

FIG. 9. The relative changes of T as a function of a pa-
rameter o.„which controls the size of the contribution &om
the second-order graph, compared to T calculated &om the(~)

6rst-order graph. The parameters t, uo, and u „arethe
same as in Fig. 8. The interaction constant g is equal to
2.95t. Curve (1) is for p = —O.lt, curve (2) is for p = —0.2t,
curve (3) is for p = —0.3t, curve (4) is for p = —0.4t, aud
curve (5) is for p = —0.5t.

.00 .22 .33

FIG. 10. The absolute changes in T, as a function of a
parameter n, at fixed T, = 100 K. Curve (1) is for p = —O. lt,
g = 1.52t, curve (2) is for y, = —0.2t, g = 1.85t, curve (3) is
for p = —0.3t, g = 2.33t, curve (4) is for p, = —0.4t, 8 = 2.95t,
and curve (5) is for p = —0.5t, g = 3.67t.
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case is the change in sign of the eKect of the C matrix.
In both the isotropic case and the model with four sharp
peaks in magnetic susceptibility the eH'ect of the correc-
tion term in matrix A is to enhance T„sinceit reduces
the renormalization function Z. Also, the efFect of the
correction term in matrix B, which is always larger than
the eKects of either the correction term in A or C taken
separately, is to suppress T, in both cases. However, due
to the symmetry of the gap function given by Eq. (39) for
the model with four sharp peaks, the effect of the matrix
C, which results from the crossed-line diagram with the
anomalous Green's function as the middle line [see the
second line in Fig. 7(b)], is to increase the T, . This is
because b,„(k)and A„(k+ Q) have different signs [see
Eq. (44)]. In the isotropic case, however, this effect is
absent, and the matrix C has the same effect on T, as
the correction terin in matrix B—it reduces the T, For.
certain not too large values of p, , the coxnbined effect of
matrices A and C can be larger than the effect produced
by the matrix B, which results in enhancement of T, by
the second-order graph. However, as is clear from Fig. 10,
the dependence on p, for the full value of the correction
from the second-order graph (i.e., for n, = 1/3) is non-
monotonic, and no simple dependence of this correction
on p could be found. This is in contrast to the T, cal-
culated from the first-order graph, Eqs. (35)—(37), where
for a fixed g and P(A) the T, decreases with increasing

p (see Fig. 8).

IV. CONCLUSIONS

In summary, we have found that including the vertex
corrections in the calculations of T, for the BCS-type in-
teraction leads to a decrease of T,. This result is general
as long as the BCS interaction parameter A is less than
l. Beyond a certain critical value of ur, /EJ;, which de-
creases with increasing A, there is no 6nite solution to
the T, equation, regardless of the dimensionality of the
system. This is a new result which, together with our
numerical calculations, gives more quantitative informa-
tion about the limits of validity of the BCS pairing model
than known previously. ~

The self-consistent calculations of the strong-coupling
equations generalized to include the contribution Rom
the diagram with two crossed boson lines for an isotropic
pairing interaction give results, which are completely
analogous to the BCS case. The xnain difference between
the BCS case and the theory that takes into account the
time dependence of the interaction is that in the latter
case a reduction in the renormalization function due to
the second-order graph slows down the decrease in T,
with increasing ur, /E~. Our numerical calculations show
that for the values of the maxixnum phonon energy and
the Ferxni energy that are typical for sixnple metals the
corrections &om the lowest-order vertex correction are
in the lixnits estimated by Eliashberg's generalization
of the Migdal's theorem to the superconducting state.
However, if u, /E~ = O(l), as has been suggested for
doped fullerenes, 2 the vertex corrections could not be
ignored, nor is it sufhcient to stop at the lowest-order

vertex correction, unless A is small, since the correct ex-
pansion parameter in the theory is A(~, /EF) W. hen this
parameter is not smaller than 1 it is unreasonable to ex-
pect that somehow all the vertex corrections cancel, so
that one could still use various approximate T, formulas
which are based on the one-boson exchange graph.

For a highly anisotropic interaction of the type used in
the antiferromagnetic spin-Buctuation theories of super-
conductivity in copper oxides, the corrections could be
qualitatively and quantitatively diH'erent. For a model
spin susceptibility with four sharp peaks in the corners
of a square Brillouin zone we find a substantial increase
of T, due to the second-order graph for certain values of
the chemical potential p, , which is related to the amount
of doping away from the half filling. The key reason for
this reversal of sign of the correction to the T, compared
to the isotropic case is the symmetry of the gap function

b.„(k)= b,„(k)[cos(k a) + a cos(k„a)],

where a = +l. This form of the gap function implies that
the diagrams in the second row in Fig. 7(b) for the pair-
ing self-energy reverse the sign compared to the isotropic
case. However, for large enough p, the remaining dia-
grams give a larger negative contribution to the pairing
self-energy, with a net result similar to what is found in
the isotropic case. We note that the sign of the correction
to the T, &om the second order graph is a nonmono-
tonic function of p, , and the maximum T, is obtained
for p = —0.2t (see Fig. 10). The changes in T, (either
an increase or a decrease) caused by the second-order
graph in this model can be large enough to render a re-
sult obtained f'rom the one-boson exchange graph highly
inaccurate.
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APPENDIX A: FUNCTION e(T)

In this appendix we summarize the analytical calcu-
lations of the correction term [see Eqs. (7) and (8)] to
the BCS equation for the critical temperature. Since

= A8(~ —]~p~) (see Sec. II), the order parameter
drops out of Eq. (7), and one finds that the usual T
equation is corrected by the term

I II
TL jfL

~l ~II pl pal YL P A P

The dependence on momenta is through the energies and
after the transformation of the momentum sums to the
integrals over the energy variables one can write Eq. (Al)
as
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~
T' ~c ~c ~c ~c

6V(T) = —A ) dpi d62 d63 d«
SEy n'n" —47c —4Pc —4Pc

1 1 tanh(es/2T) —tanh(«/2T)
2 2 2 2 Pl & Ps i P2& P4

(td&&& + Ei) ((d~» + &2) ig &&&+~» + e3 «

Here, p; = /2m(E~ —e;) (i = 1, 2, 3, 4). The function M(pi, p3., p2, P4) is determined by the dimensionality of the
system

~~ dQ 1 in 3D
(Pl &P3iP2&P4)

2 4 3 ~ 2Q~—(q p p )
—1~(q p )

—1
Qm

(A3)

PE = v'2 E~ x(q p p'} = gq' —(P p')'—g(p+p')' —q' QM = (p '+ p p +P ) d Q
max(~pi —ps~, ~P2

—P4~). Since all the energies —and thus the corresponding momenta —are restricted to the energy
shell of the half width u„one can expand in td, /E~. In 3D, the result is

and in 2D,

( u),
M(Pa, P3, P2, P4) =1+O

I
E'

I

EE~

8' 8EJ;
M(pi, ps, p2, P4) =~ ' ln +ln

I&1+ &2 —&3 —«I 1&1
—&2+ &3 —«I

8' (~. 'l
+ln

~&1 e2 &3 + &4~ (EE )
(A5)

It is sufficient to consider only the three-dimensional case, since the two-dimensional result can be obtained with
a sufficient accuracy from the one in 3D by using for M a constant (3/m2) ln(SE~/w, ) instead of 1. Thus, the
expression for bV(T) takes the form

3 7r T Q~& g~»2 2 ~c (~c + 6) + P~~+~(g
bV(T) = —A

" "
de tanh ln

2E3 „,„„

l~-
I
I~--I o 2T (cu, —e) 2 + v2,

1

(A6)

where a„=(2/n) arctan(u, /~u„~). At T (( &u, the integral in Eq. (A6) is equal to (4ln 2)~,. The BCS integral from
Eq. (10) can be written in the following form:

A(T) = m'AT) (A7)

It is convenient to introduce a function ~(T)

bV(T)EF'
Au), A(T) 2 ' (AS)

which is a imiversal function of u, /s'T and has to be calculated numerically. One finds e(T) = O(l) and it can
be proven analytically that rc(T) ~ ln4 when T ~ 0 (see Fig.2). After expressing bV(T) in terms of tc(T) one
immediately arrives at Eq. (9).

APPENDIX B:CORRECTIONSTO ISOTROPIC ELIASHBERG EQUATIONS IN 2D

In this appendix we derive the matrices A(n, n'), B(n, n'), and t (n, n') in 2D. The starting equation is Eq. (21)
for Z& &. After making the approximation (24) for M(k, k"', k', k"), one has to evaluate the integrals over the energy
variables. Because of the prefactor E& in the expression for Z~ ~ these integrals can be evaluated with the accuracy
O(ur, /EJ;). For e„and ~cu;~

& ~, one has
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, »I~i+ ~z+ "+&
I

Z &Z + 6Z Z+ (d& + 6& && M3 + 63

= —ln (l(oil+ l(uzi+ l~sl) + e aiazas+ O((u, /Es),

Iu)i[dpi &zdez Esdes 7x
, in[., +., y., +.pl = — ((3)a, + O(~./Es),

Ep M&+61 —Ep ~2+ 2 —Ep M3+ P 2

where ( is the usual Riemann zeta function. The factors a, = (2/vr) arctan(Es/lur, l) are kept for convenience, since
they provide an additional cutoff at high Matsubara frequencies. By using Eq. (Bl) one finds

3T w Ifg(n, n Ep) = 1 — A(n —n ) snt+n&z nsn&ranz~ni& nann
E~

x 1n
8EF

e,'+ (l~- I
+ l~-+- --I + l~- I)'

7&(3)+ 2 (1 Z
Sn' Sn'+n" nan—'+n" —n/an') 137r2

6T w IIB(n, n ep) = 1 — A(n —n ) s„+„„s„a„+„„a„) ) P E

x ln
8Ey

,'+ (l~- I+ l~-+- --I+ l~--I)'

7I,'(3)+ 2

IIC( ,nn; e) = A(n —n )A(n —n) s„+„„s„a„+„„a„
EF

x ln
&,'+(l~- I+ l~-+- --I+ l~- I)'

7((3)
6vr2

(B2)
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