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Inhomogeneous superconductivity proposed by Fulde and Ferrell (FF state) is studied in a strongly
Pauli-limited type-II superconductor with a cylindrical Fermi surface. The phase diagram of the FF
state, BCS state, and normal state is obtained. It is found that the FF state is remarkably enhanced ow-
ing to the two-dimensional Fermi-surface structure in comparison to the spherical symmetric case. We
discuss that the Fermi-surface nesting is also advantageous to the FF state as well as nesting instabilities.
Our result obtained in the cylindrical symmetric case is applicable in general to quasi-low-dimensional
superconductors in which the nesting is sufficiently incomplete so that the nesting instabilities are
suppressed. Relation to the exotic superconductors discovered recently is briefly discussed.

I. INTRODUCTION

In strongly Pauli-limited type-II superconductors un-
der strong magnetic field, the possibility of inhomogene-
ous superconductivity with spatial oscillation of the gap
function was pointed out by Fulde and Ferrell' and Lar-
kin and Ovchinnikov.? The origin of the strong magnetic
field could be assigned also to a molecular field due to
magnetic  impurities  with  ferromagnetic  spin
configuration, as well as an applied external field.
Normal-state electrons under strong magnetic field have
Fermi surfaces of up-spin electrons and down-spin elec-
trons which are displaced because of the Zeeman energy.
Therefore, attractive interactions of electrons near the
Fermi surfaces with opposite spins may lead to forma-
tions of the pairs with nonzero total momentum. Then,
the phase of the gap function varies spatially with the
wave vector of this total momentum q. We call this kind
of inhomogeneous superconductivity Fulde-Ferrell (FF)
superconductivity or the FF state.

In spite of many theoretical studies,' ' there have
been few experimental observations which indicate the
possibility of the existence of the FF state. This is con-
sidered to be because the FF state is easily destroyed by
the normal impurity.* An FF superconductor has to be a
clean limit of type-II superconductor, which seems to be
impossible in ordinary metals. Recently, Gloos et al.
have found the first-order phase transition below the
upper critical field curve in heavy fermion UPd,Al;, and
insisted that this indicates the existence of the FF state.®
They argued that their discovery was possible because
this heavy fermion superconductor is strongly Pauli-
limited and represents the extremely clean limit of a
type-1I superconductor. For the same reason, sufficiently
clean samples of exotic superconductors discovered re-
cently, heavy fermion, organic and oxide superconduc-
tors, could be good FF superconductors under a strong
magnetic field.

For FF superconductivity, the band structure of elec-
trons is important in contrast to the ordinary BCS super-
conductivity, although FF superconductivity has been ex-
amined mainly in spherical symmetric systems so far.! ~*
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When an electron pair with k and —k+q is formed in an
FF superconductor, this pair of electrons is scattered to
that with k' and —k’+q by pairing interactions, conserv-
ing total momentum q, where k'’ is arbitrary in the range
of the interaction in momentum space. Therefore, any
pair of electrons on Fermi surfaces of up and down spins
is necessarily mixed with the other pairs which are not on
the Fermi surface in general. This is disadvantageous for
FF superconductivity. However, in one-dimensional (1D)
cases, the electron (—k+q, |) is always on the down-spin
Fermi surface for any (k, 1) on the up-spin Fermi surface
for an appropriate choice of q. In fact, Machida and
Nakanishi® and Suzumura and Ishino’ found a large FF
phase on their phase diagrams in a 1D case. If there is a
flat portion of the Fermi surface even in the three-
dimensional (3D) systems, it is expected that the FF
phase is enhanced in the same way as in the 1D cases.
Takada and Izuyama® argued that in this case the FF
state is easily formed and the vector q becomes perpen-
dicular to this part of the Fermi surface. Further, in
more general cases, we could see by brief consideration
that if the nesting condition of the Fermi surface is good,
even if there is not a flat portion, the FF state is
enhanced. Figure 1 describes the portions of the up-spin
and down-spin Fermi surfaces with a good nesting condi-
tion. In this figure, Q denotes the nesting vector between
the up-spin Fermi surfaces (a) and (d), and q denotes the
difference of the up-spin and down-spin Fermi surfaces
due to Zeeman energy. If the momentum dependence of
the Fermi velocity is small on this Fermi-surface portion,
the difference q does not depend on the momentum
strongly. Then, a part of the up-spin Fermi surface (d) al-
most coincides with that of the down-spin Fermi surface
(c) by the translation with a vector q. Thus, suppose that
(k,1) is on a portion of the Fermi surface with a good
nesting condition, (—k+gq, |) is also near the Fermi sur-
face, since (—k, 1) is always on the Fermi surface due to
the symmetry of the crystal. Therefore, if the nesting
condition of the Fermi surface is good, it is advantageous
also to the FF superconductivity, as well as to the spin-
density-wave (SDW) and charge-density-wave (CDW)
states. In such cases, however, the FF state would com-
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FIG. 1. Schematic diagram of the Fermi-surface portion of
the good nesting condition under magnetic field. Solid lines (a)
and (d), and broken lines (b) and (c) show the up-spin and
down-spin Fermi surfaces. The point O represents k=0. Q is
the nesting vector between the up-spin Fermi surfaces (a) and
(d). q is the difference of the up-spin and down-spin Fermi sur-
faces due to the magnetic field.

pete with SDW and CDW states. Which state is most
favorable depends on properties and strength of interac-
tions. However, when the nesting becomes incomplete,
the SDW and CDW instabilities are suppressed even at
T=0 for sufficiently weak coupling, while the FF super-
conductivity survives. This is because the FF supercon-
ductivity could appear for arbitrary weak attractive in-
teractions, even if there is no Fermi-surface nesting at all.
Therefore, quasi-low-dimensional superconductors whose
Fermi-surface nesting condition is good enough to
enhance the FF state and bad enough to suppress the
SDW and CDW instabilities could be good FF supercon-
ductors, if they are clean limits of strongly Pauli-limited
type-1I superconductors.

In this context, we consider superconductors with a cy-
lindrical symmetric Fermi surface in this paper, as a
model of quasi-two-dimensional (Q2D) superconductors.
In this system, any finite surface portion of the Fermi sur-
face could not touch any translated Fermi surface, while
only a line on the Fermi surface could do. Thus, SDW
and CDW instabilities do not occur for sufficiently weak
coupling. On the other hand, the FF state is expected to
be enhanced in the present system in comparison to the
system with the spherical symmetric Fermi surface, ow-
ing to the nesting on a line. In this sense, the nesting
condition of this system is moderately good. Thus the
present system is interesting rather than the system with
a spherical symmetric Fermi surface and the systems
with complete Fermi-surface nesting. In application to
real materials, we expect that our model describes Q2D
organic superconductors, for example. In this paper, we
implicitly assume the existence of three-dimensionality
which is strong enough to justify mean-field treatment for
sufficiently low temperatures and is weak enough to be
neglected in the self-consistent equation. This is the
reason why we call our system a quasi-two-dimensional
system, not a two-dimensional system.

In Sec. II we derive the gap equation of the FF super-
conductivity from the condition of the free energy
minimum. In Sec. III, we obtain the second-order transi-
tion curve and make a phase diagram on the temperature
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and magnetic-field plane in the present Q2D case. Sec-
tion IV is devoted to the summary and discussion.

II. FREE ENERGY AND GAP EQUATION

We start with the model Hamiltonian defined by
H= Egkaa Io’aka
ko

- s

t t
N Oy —kypk,—k, 0k, +9/219 —k,+q/20
kp Ky kyk,

Xa _y,+q/21%,+q/21 2.1
with &, =&,—oh and §, =€, —u, according to many au-
thors.'>* Here, a,,, €, and p are electron operators,
one-particle energies, and the chemical potential, respec-
tively. h is the Zeeman energy uo/H|, where H is the
magnetic field and p, is the magnetic moment of an elec-
tron. The interactions are assumed to exist only in a re-
gion T, around the Fermi surface. We define the ap-
proximate Hamiltonian H as

HO: 2 Ekaalaaka 2.2)
ko
with

Qg =uga + 1

kt — Ykx+q/2t TV —k+q/2 >

to= t

Ay = URdy g1 TULA —k+q/21 »
2.3)

uk—_—cosek ’

vy =sinf, ,

where E,, 6,, and q are variational parameters. Here,
we have ignored the orbital magnetism for simplicity.
This is justified either for specimens smaller than the
penetration depth or near the critical field in the strongly
Pauli-limited superconductors, as discussed by Takada
and Izuyama.® It was shown by Gruenberg and Gun-
ther’ that coexistence of the vortex state and FF state is
possible. For the two-dimensional nature of the present
system, the direction of the magnetic field is also impor-
tant when we consider orbital magnetism. We leave this
problem for future study.

We variationally minimize an approximate free energy
F defined by

F=(H—H,),+F,, 2.4)

where ﬁHFOE — Tln[TrISe _ﬁH")] and ()
=Tr(e 270---)/Tr(e °7°). This is equivalent to the
mean-field approximation of the Hamiltonian Eq. (2.1):

}IMF= 2 gkaa ITwaka + 2 Aqa lTﬁTat-k—ql
ko k

+ EA;a_k_qlakT (25)
k

with

Aq= - VN_l % <a_kr_quaklf ) . (2.6)
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If we fix q=0, our approximation reduces to the ordinary
BCS approximation.
Taking the average, we obtain

F=T 3 In[1—f(E,)]— 3 E, f(Ey,)
ko ko

+ 3 (ui —v2)ESf(Egp )+ f(Eyy)—1]
k

+ 3 EOf (B — f(Ey )+ 1]—NVG2—NVG?
k
(2.7)
with
1
Gr =y 2 (uif (i) Hoklf (B )= 1)
1 (2.8)
N%ukvk f(EkT +f(Ekl “‘1]
where f(x)=1/(e?*+1), and
¢ z% Sk+q2t TEk+qn21)»
(2.9)

k - (§k+q/2T g k+q/21) .

The term including G, cornes from normal decoupling of
the interaction term: V(a a){a'a), and contributes to
the internal magnetic-field shift as well as the unimpor-
tant chemical potential shift. We ignore this term for a
while and will discuss the effect of the shift of the internal
ﬁeld due to interactions later. We assume that

=k%/2m in this paper. Thus, we have
§“)=§ +g2/8m and &'=h(gx —1), where § =vpq/2h,
x =cos6, and 6 is the angle between k and q. k = k| is
equal to \/ k; +k2 in two dlmensmns and \/ k +k +k2
in three dlmensmns The g2 term of £ is neghglble 1f
Ay/op <<1, since vpg ~h ~Ag.

Variational conditions with respect to E,, and 6,:

oF dF
=0 =0
3E,, = " 38,
lead to the gap equation
_V l—f(EkT)—f(Ekl)
AQ*N % 2E, A, (2.10)
with
w=0&"+E, ,
|4
Aq:'—GSV=—7V-Zukvk[f(EkT)+f(Ekl)_1] s
k
172
1 £
= |- |1+ , (2.11)
ko2 E,
(s) 172
Uy — i 1— k ] N
2 E,

E, =V EP+AL.

We have to solve the gap equation for each q and evalu-
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ate F for this solution and then minimize F with respect
to q. The final solution in our approximation is that for a
particular q which gives the minimum of F.

Using the gap equation, we rewrite the difference

AF=F—F, as
1—f(Ey,)
AF=T 3 In f{a) - ()
w 1-fe&2+I&)
+2 [EQI—E )+ VAg, (2.12)
and further
_B(Ué-:(a)+[§(kx)i)
AF=T 31t
ko 1+e ko
— L vnoaDP | 1421 | 22O (2.13)
2 e tl Ay '

in the weak-coupling limit.

In the FF state, there are regions of k where the quasi-
particle excitation energy E,, is negative, which is denot-
ed by Ry here and called blocking region. The region
where both excitation energies E,; and E, | are positive

is denoted by R;. Then, the ground state |g.s.) is ex-
pressed as
- t
lg.s.)= ]I (uk—vkahq/ﬂa_“qm)
KER,
XIT TI @bcrqol0), (2.14)

9 KERY

where |0) is the electron vacuum state. The blocking re-
gion has been examined in detail in Refs. 1 and 3. For
g1,

E ;<0 for —1<x<¢7 (&) and |&I<¢§

(2.15)
E <0 for 12x>¢%(£) and |&]<§&,,
while for g <1,
—1=x<¢7(&) and & 2§26,
Eq =<0 for | _j<y<i and £>]6]20, (2.16)
where
L hEVE+AL
)= ————,
gh
&=h(g+1x, with x,=ReV 1-A2/{h(z+1)}?
2.17)

,=h|g—1|x, with x,=ReV 1-A2/{h(z—1)}?

At T=0, the gap equation in two dimensions is calculat-
ed as

YL | _ 1
ln—&;-—fo d§ﬂ_arccos[ ¢ (§)]Ek

§2 1 + 1
— —_ 2.18
+ [ dé—_arccos[¢ (O] (2.18)
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forg=>1, and
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limited superconductors with a cylindrical Fermi surface.
The Fulde-Ferrell phase appears at low temperatures and

1n59 = f §1d §larccos[ _¢—(§)]L +1m 1+, high fields, between the BCS phase and the normal phase.
aq & T E, 2 1—=x, It is known that the transition between the FF state and
2.19) spin-polarized normal state is second order in the cases
_ ) . . ) studied so far. We have confirmed it in the present case
for g =1. In three dimensions,” we obtain at T=0 by numerical calculation. From now on in this
A 741 1—x, paper, we study only the second-order phase transition
In—=— —q—_—— In——+2x, with respect to the FF state. We take the A;—0 limit in
A 49 1+x, the gap equation (2.10) in two dimensions:
St N P B (2.20)
46 1+x2 2 . 1=Kfmpd§f1ri€ s1nh(3§) (3'1)
0 o m &[cosh(BE)+cosh(BE)] ’
III. CRITICAL MAGNETIC FIELD
OF FULDE-FERRELL SUPERCONDUCTIVITY
In this section, we calculate the critical magnetic field with {=h(gx —1), x=cosf, and A=VN(0). In the
of Fulde-Ferrell superconductivity in strongly Pauli- weak-coupling limit, this equation is written as
|
T 7df . 2B = 2sinh’y 1
=— ["%Zsinh dy In - , , 3.2)
In T fo o fo ad cosh?y +sinh*(BE/2)  cosh?y [cosh?y +sinh*(BE/2)]
—
where T'? is the superconducting transition temperature 27.=In 1+g, 3.7)
under zero magnetic field. At T=0, Eq. (3.1) is rewritten ¢ 1—g,

as

2@ _ RCaaTY e -
A, o 7 g cosf—1

—
~In 1+‘/21 forg<1
= (3.3)

~ln-g- forg>1,

where £ (g) is the magnetic field at which a second-order
transition to the FF state with given g occurs. Critical
magnetic field H, =h_ /u, is determined by

2h 7
In—= max [m—z’%(q—) ]=ln2 : (3.4)

A0 q 0

Thus, we find that h, =4, i.e., H,=Ay/puy and it is given
by §=1, i.e,, |q|=2A,/vp. In the three-dimensional FF
superconductor with a spherical symmetric Fermi sur-
face, ! h(q) is calculated as

Ag) _ e g+1 }‘5‘””7 55
Ay 2g+1) |lg—1]
Thus, hc=maxa{ﬁ((7)} is
h, . g, +1 )@-v/a,
B 2G+0 |1g.—1] ’ -0

where g, is given by

By numerical calculation, we obtain h =0.754,, i..,
H,~0.75Ay/po. There, g=~1.2, ie., |q|=1.8A;/vp.
Comparing the above results at 7=0, we find that the FF
state is remarkably enhanced due to the two-dimensional
structure of the Fermi surface.

For finite temperatures, we have to calculate numeri-
cally. Figure 2 shows the phase diagram of the FF state,

h/A,

0 05 1
/T

FIG. 2. Phase diagram of FF, BCS, and normal states in the
Q2D system with a cylindrical symmetric Fermi surface. The
solid lines are the second-order transition curve between the
normal and the BCS phases for T > T*, and that between the
normal state and the FF phases for T < T*. The broken line is
the fictitious first-order transition curve between the normal and
the BCS phases and could be practically regarded as the first-
order transition curve between the FF and the BCS phases. The
dotted line shows the second-order transition curve between the
normal and the FF phases in the 3D system with a spherical
symmetric Fermi surface.
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FIG. 3. Temperature dependence of the total pair momen-
tum along the second-order transition curve.

BCS state, and normal state. The broken line is the ficti-
tious first-order transition curve between the normal state
and the BCS state assuming the absence of the FF state.
The first-order transition curve between the FF state and
the BCS state lies slightly below this line, because the free
energy of the FF state is slightly smaller than that of the
normal state. As in the three-dimensional case,® this
difference is negligibly small also in the present case.
Thus, the broken line could be practically regarded as the
first-order transition curve between the FF state and the
BCS state. The solid line shows the second-order transi-
tion curve between the BCS state and the normal state for
T >T*, and between the FF state and normal state for
T <T*, where T* is the tricritical temperature equal to
about 0.567,. The solid line below the broken line for
T <T* could be regarded as a supercooling critical field
when the first-order transition to the BCS state does not
occur.®>® In Fig. 2, we find that the FF phase is remark-
ably enhanced in the two-dimensional case, also for finite
temperatures as well as in the ground state examined
above. It is also found, however, that the maximum
value of the transition temperature of the FF state, i.e.,
the tricritical temperature, is not affected by the band
structure. This is plausible because |q| decreases to 0
continuously in the FF phase as one approaches the tri-
critical temperature. The magnitude of the wave vector q
just below the critical magnetic field of the FF state de-
pends on the temperature as shown in Fig. 3.

IV. SUMMARY AND DISCUSSION

We have studied a strongly Pauli-limited type-II super-
conductor with a cylindrical symmetric Fermi surface.
In this system, the Fermi surface touches the appropri-
ately translated Fermi surface on a line. Such a system is
interesting from both an experimental viewpoint and a
theoretical viewpoint, because the nesting condition is
moderately good so that the critical magnetic field of the
FF state is expected to be enhanced while simultaneously,
SDW and CDW instabilities are suppressed for
sufficiently weak coupling. We have calculated the criti-
cal magnetic field H, for FF superconductivity, and ob-
tained the phase diagram of the normal, BCS, and FF
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states on the H-T plane. The magnitude of the wave vec-
tor q at the critical field increases with decreasing tem-
perature. At T=0, it is obtained that H,=A;/u, and
|q|=2h, /vp=2A,/vg. This value of |q| is just the same
as the magnitude of the minimum momentum difference
of the up-spin and down-spin Fermi surfaces and twice
the inverse of the coherence length.

It is found from the phase diagram that the FF phase is
much larger in the cylindrical symmetric case than in the
spherical symmetric case. This is because the up-spin
and down-spin Fermi surfaces could touch each other on
a line by the inversion k— —k and translation
—k—>—k+q by an appropriate wave vector q in the
former case, while they could do so only on a point in the
latter case. In Q2D superconductors, the situation is
essentially the same as the present case, in the sense that
the nesting holds only on a line of the Fermi surface.
Hence, we could expect a large FF phase in such systems
as we obtained in the cylindrical symmetric case. There-
fore, the FF state would be likely to be observed experi-
mentally in two-dimensional cases rather than in three-
dimensional cases.

We have also found that the tricritical point is the
same as in the three-dimensional case. This is plausible
because the tricritical point is obtained in the limit of
g —0, and as ¢ becomes smaller, the band structure be-
comes less important. Hence, we conjecture that the tri-
critical point does not depend on the band structure in
general in a sufficiently weak-coupling limit. In the re-
cent observation in the heavy-fermion UPd,Al; system by
Gloos et al.,® the tricritical point is much larger than the
theoretical prediction,'® if the observed phase is an FF
phase as they insisted. We have shown that mixing of the
singlet and the triplet order parameters, inherent in the
FF state, enhances the tricritical temperature, and dis-
cussed the relation to the heavy-fermion compound. !

Now, we briefly discuss the effect of the internal
magnetic-field shift due to the interactions. Attractive in-
teractions between electrons near the Fermi surface
reduce the internal field as is seen by a random phase ap-
proximation.3 In real materials, there are Coulomb
repulsive interactions, which enhance the internal field.
Anyway, in the presence of the interactions, the internal
field H which electrons feel, is not the same as the exter-
nal field H. Then, the magnetization M is written as
M =yH =¥H, where y is the bare susceptibility and ¥ is
renormalized susceptibility. For the second-order phase
transition curve, this effect is taken into account only by
replacing H with H. This means that the critical field of
the FF superconductivity H, becomes ) /X times the
value in the absence of the internal field shift. On the
other hand, for the first-order phase transition, it is
misleading, if we take it into account in the same way.
The critical field of the BCS state due to the first-order
transition, Hy, is roughly determined by
N(0)A2/2=¥H?% /2 at T=0. Therefore, the actual Pauli

limit Hp is Vx/f times the value in the absence of the
internal field shift.> Therefore, if the interactions
enhance the internal field, the FF phase becomes smaller
and might vanish in three dimensions, because the FF
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phase is very narrow in three dimensions even in the ab-
sence of the internal field shift. On the other hand, it is
hopeful that the FF phase survives in two dimensions, be-
cause it is much wider than three dimensions. From the
estimations in the previous section, the FF phase survives
in the phase diagram in the two dimensions, unless the
external field H exceeds approximately 2.04 times the
internal field H, while it disappears at H ~1.15H for the
three dimensions.

In conclusion, we believe from our results that the FF
state is likely to be observed in Q2D systems, such as or-
ganic superconductors. They could be clean type-II su-
perconductors, since their coherence lengths of supercon-
ductivity are short in general because of small electron
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hopping energies. Copper oxide superconductors could
also be good FF superconductors owing to the short
coherence length and the two-dimensionality, if the sam-
ple is in a sufficiently clean limit.

Competition between the SDW or CDW states and the
FF state, when the Fermi-surface nesting becomes much
better, is an interesting problem to be examined. The im-
purity effect in the two-dimensional case is also to be ex-
amined.
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