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We propose a collective-variable ansatz for a system of N extended, but finite, nonlinear exci-
tations in magnetic systems. In contrast to earlier approaches, where the interactions between the
difFerent excitations have been treated only through an external force term, we explicitly consider
a dependence of the microscopic spin field on all the coordinates and velocities of the localized ob-
jects. This leads to N coupled equations of motion with parameters (mass and gyro tensors) which

explicitly depend on the mutual distances of the excitations. We apply this ansatz to vortices in
two-dimensional Heisenberg ferromagnets with weak easy-plane anisotropy. For vortex pairs we find
either rotational or translational motion, with an additional cyclotronlike oscillation on top of the
main trajectories. Due to the interactions between the two vortices we obtain two diferent eigenval-
ues of the mass and gyro tensors with values depending on the distance between the vortices, their
vorticities, and the sign of their out-of-plane structures. In contrast to the single-vortex mass, which
depends logarithmicaQy on the system size L, we find two-vortex masses, which are independent of
L, but depend on their mutual distance. These predictions are in good qualitative agreement with
numerical simulations of the complete spin systems. However, since these simulations are performed
at zero temperature, where the vortex pairs extend throughout the whole system, we observe a
strong in6uence of the boundaries on the absolute values of the masses.

I. INTRODUCTION

Nonlinear excitations play an important role in many
diHerent areas of physics, which has led to an increasing
interest in these objects in the last 30 years. ' Unfortu-
nately, only a few nonlinear systems —most of them one
dimensional (1D)—can be treated exactly. In general one
has to develop approximate methods to understand the
dynamics of these systems. For the case of well-localized
nonlinear excitations collective-variable approaches have
been proven quite successful for many applications. In
these approaches, the nonlinear excitations are treated
as particlelike structures (on a mesoscopic length scale)
with well-defined positions and velocities. Even their in-
teraction with the surrounding Huctuations can be incor-
porated to some degree. 4 5

Magnetic systems are particularly useful for studying
nonlinear phenomena, because (i) they allow for many
different nonlinear excitations, e.g. , domain walls, vor-
tices, bubbles, etc. , depending on the form of the mutual
interaction of the magnetic moments and with applied
external fields; (ii) they can be mapped, at least in the
1D case, for some limiting cases onto completely inte-
grable systems; (iii) they are relatively easy to simulate
on computers, even for physically relevant system sizes,
i.e., larger than the characteristic length scales of the
quantities under investigation.

We will focus here on 2D magnetic systems which can
show, due to their intermediate dimensionality, a quite
genuine dynamical behavior. For example, Heisenberg
magnets with XY- or easy-plane symmetry (i.e., the in-
teraction of the z components of the spins is smaller than
the one between the other components) exhibit a "topo-

logical" phase transition, related to the unbinding of
vortex-antivortex pairs above a critical temperature TKT,
which can be observed only in 2D systems. Vortices
are topological, nonlinear excitations characterized by a
charge q. The impact of vortex-antivortex pairs below
TKT on the spin dynamics, as measured, e.g. , by dynam-
ical correlation functions, leads only to a renormalization
of the spin wave peak. Above the transition tempera-
ture, however, the unbound moving vortices contribute to
an additional central peak which has been observed both
in computer simulations and neutron scattering exper-
iments on quasi-2D materials. Analytic calculations by
Mertens et al. predicted a quadratic Lorentzian shape
of this central peak. In this approach the &ee vortices
were considered to move ballistically with a Boltzmann
velocity distribution characterized by an average thermal
speed v, , The thermal speed was estimated by Huber
from a velocity autocorrelation function based on a vor-
tex equation of motion which was derived by Thiele us-
ing a collective-variable approach for localized structures
in magnets. This calculation of v, „however, did not
take into account the presence of diferent vortex struc-
tures for diferent strengths of the easy-plane anisotropy.
Moreover, Thiele's approach is for a single, well-localized
excitation only, while its interactions with other excita-
tions are treated through an external force term.

Vortices, however, have an infinitely extended static
in-plane structure which also results in an extended per-
turbation of the static out-of-plane structure in the case
of finite velocity. Though the superposition of the static
in-plane structure of two vortices can be represented as
a central force between their centers, this is no longer
true for the superposition of their velocity-induced out-
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of-plane structures. These corrections to the static vortex
structure show up in the calculation of the mass and the
gyro tensor of the Thiele equation and suggest that the
single-vortex approach is no longer sufhcient for an un-

derstanding of many-vortex dynamics. For finite temper-
atures the vortex size becomes finite due to screening
(i.e., its structure is now localized), and a collective-
variable approach seems to be appropriate to construct
equations of motions for the vortex dynamics. However,
as long as vortex radii are not much smaller than their
average separations we still have to include the effects of
the overlapping fields in understanding the many-vortex
dynamics.

We introduce here a collective variable approach for N
nonlinear excitations in Inagnetic systems. We derive N
coupled equations of motion, each one of them similar
to the original Thiele equation, but with additional iner-
tial terms, resulting Rom an explicit dependence of the
microscopic spin field on the vortex velocities. We then
consider explicitly vortices in 2D easy-plane ferromag-
nets, which, for small anisotropies, already have statically
a well-pronounced out-of-plane struture. Hence, each
of them is characterized by two independent "charges, "
namely its vorticity q and the sign of its static out-of-
plane component p. We use approximate solutions
to calculate the mass and gyro tensors of this system,
which now become functions of the mutual vortex dis-
tance. The discussion of the dynamics becomes sim-

plest for two vortices: they either rotate around each
other (q p = q p ), or they move parallel to each other

(q p = —q p ), with an additional small cyclotronlike
oscillation on top of these trajectories. Due to the two-

vortex corrections of the mass and gyro tensors this dy-
namic is now determined by two different masses which
inBuence the amplitudes and &equencies differently for
the various cases. This is in contrast to the one-vortex
calculations, where one expects only one vortex mass.
Comparison with numerical two-vortex simulations show

good qualitative agreement with most of our analytic pre-
dictions. However, because we necessarily performed the
simulations on a finite lattice at zero temperature, we

also find an inBuence of the boundaries on the vortex
parameters, which in some cases, is quite strong.

The paper is organized as follows: In Sec. II, we will

brieBy review the original approach of Thiele which led
to an equation of motion for a single vortex. We also in-
clude a short dicussion of a generalization of this ansatz
including inertial efFects which finally lead to a vortex
mass. In Sec. III, we generalize the Thiele ansatz to a
set of N localized magnetic structures. An application of
these results to vortices in easy-plane Heisenberg ferro-
magnets is demonstrated in Sec. IV. In Sec. V, we discuss
the special case of just two vortices, and brieBy compare
our analytic results with numerical simulations. Section
VI contains a short summary.

II. SINGLE-VORTEX EC}UATION OF MOTION

We will consider here magnetic systems which are de-
scribed by the Landau-Lifshitz equation (LLE) with an
additional Gilbert damping term

S = (QS —m2cosg, V S —m sing, m).

Starting from Eq. (1) Thielei has derived an equation
of motion for a single, well-localized excitation with cen-
ter position X(t) under the assumption of steady-state
motion [i.e. , S(r, t) = S[r —X(t)] and X = const]; we
refer to this as the Thiele-equation (TE)

F+g x X —DX=0,

where, for a 2D system,

F = — d2rv (4a)

g= d rv xvm, (4b)

VmVmD=cc dc +(S —cc)VdVQ). (4c)

F is the net force on an excitation due to other exci-
tations or external fields, 'R is the energy density of the
system, the gyrovector g is a topological invariant for the
system as a whole, D is the damping matrix, and V is
the gradient with respect to r.

This approach was applied to single vortices in 2D
easy-plane Heisenberg ferromagnetsi4 is (HFM) with
Hamiltonian

'8 = — d'r ((V'S)'+ 4bS2 —b(V' S,)')J

(which is the continuum limit of the discrete model
'(tt' = P~, -l[S;S~ —b(S,);(S,)~]). The material param-
eter 0 ( b & 1 measures the anisotropy of the system
with the two hmiting cases b = 0 and b = 1 corre-
sponding to the isotropic and planar Heisenberg mod-
els, respectively. Depending on b there exist two types
of stable vortex structures with distinct dynamics.
For b & b, (- 0.29 on a square lattice) static vortices
are purely in plane; for b ( b, they also have a well-

localized out-of-plane structure around their core. The
size of this S' component increases with decreasing b, al-
lowing for a continuous crossover to the isotropic Heisen-
berg limit, where the topological excitations are instan-
tons and merons rather than vortices. A single static
vortex at position X(t) = (Xi, X2) (lower indices denote
the vector components) has the form

( b'H'(S=Sx
~

—
~

—aSxS.
bS)

S is a classical magnetization vector in units of 5, 'R

is the energy of the system, and 6 is a measure of the
strength of the damping term. Equation (1) preserves
the length of the spins, hence we can parametrize the
vector S(r) with two canonically conjugated fields, the
in-plane angle P(r), and the z component of the spin
field m(r) = S,(r) = Ssin8(r) with the out-of-plane
angle 8(r):
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P, (r —X) = qarctan y —X2
X

m, (r —X) = pmo([r —X)),
(6)

where mo(r) has a well-localized peak at r = 0, while its
large-r limit is given by

rv
mo r —e

r

P„(r —X; X) = pP(~r —X~)

4t(r) = Kmp(r),

(8a)

m„(r —X;X) = qCm(r —X) ', (8b)
[(r —X) x X] e,

m(r)

p6-

p. 8

p p

a)

with the vortex core rodiee r„= thi tre [Ftg. 1(o)].
For 6 ( 6, the so-called polarization p = kl denotes the
sign of the static out-of-plane structure, while p = 0 for
6 & 6 . This static structure becomes distorted when
the vortex is moving and in lowest order in velocity this
change in its shape isi

with K = ~&& and C = (46JSz) i. The velocity-induced
change in the in-plane field is as equally localized as
the static out-of-plane structure. The dynamic out-of-
plane structure, on the other hand, decays only as-
[i.e., m(r » 1) = 1]. The deviation of this asymptotic
shape of m„(r) for small distances from the vortex core
is described by m(r). Since the main part of the angu-
lar anisotropy is evidently covered by the cross product
(r —X) x X, as can be seen from Fig. 1(b), we will sim-
plify our following calculations by assuming m to be a
function of the radial coordinate r alone. This angular
dependence of m„(r) is not only observed for a single
moving vortex. Simulations of vortex pairs exhibit an
angular dependence of the spin field which, in first and
dominant order, can be well described by a linear su-
perposition of single-vortex contributions. Hence, we are
confident that a use of this symmetry in the two-vortex
integrals in Sec. IV is appropriate.

Inserting (6) and (8a) into (4) yields an equation of
motion which can quite successfully describe the vor-
tex dynamics with (sufficiently strong) damping, as was
shown explicitly through numerical simulations of the
LLE for two vortices. However, if we set the damp-
ing parameter 6 = 0, the TE no longer makes sense for
in-plane vortices (6 & 6,), because here the gyro vec-
tor vanishes and F need not be zero. It is interesting
to consider why the TE is invalid for in-plane vortices.
The difBculty stems &om the fact that the z component
is zero for the static vortex, and then changes apprecia-
bly (in a relative sense) with velocity. Thus, the basic
assumption of a fixed vortex shape that simply makes
a rigid translation is strongly violated. This problem is
smaller for the out-of-plane vortices because the velocity-
dependent changes in m are small compared to the static
out-of-plane structure. Nevertheless, the TE cannot ex-
plain why out-of-plane vortices perform small oscillations
around their mean trajectories as observed in computer
simulations with small or zero damping (see below).

Wysin et al. therefore proposed a more general
ansatz for the spin field where the time dependence en-
ters explicitly not only through the vortex position, but
also through its velocity:

m(r) S = S[r —X(t), X(t)]. (9)

p 2 Inserting (9) into (1) and following the procedure of
Thiele leads to the generalized Thiele equation (GTE)

p. 1
F+ g x X —DX = MX, (io)

p p

p. 1

where F, g, and D are defined in (4), while M is an
eH'ective mass tensor with components

& ay am ay am&

(»' BX~ BXz»')

FIG. 1. Out-of-plane fields of single vortices: (a) static
structure for 6 = 0.2; (b) velocity-induced structure for a
vortex moving in the z direction with velocity v = 0.1(aJS)
and b = 1.

Because of the dependence of the fields on r —X we can
rewrite the gradients in M, D, and I into gradients with
respect to X ( &, ~ —sx ). This form of the mass and
damping tensors and the gyro vector (i.e., a pure depen-
dence on gradients of the fields with respect to the collec-
tive variable X) can also be obtained by using the more
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generalized ansatz S = S{r;X,X), if one immediately
uses the gradient with respect to I in the Thiele ansatz.
This fact will allow us to generalize Thiele's ansatz to
more than one excitation (see Sec. III).

For a single-vortex system the mass tensor is diagonal:
M;~ = Mob;~ with Mo given in Eq. (19a). Since we do
not know the exact form of the ffeld m(r), we can try
to determine the mass through numerical simulations of
the complete spin system (the gyro vector can be eas-
ily evaluated analytically, giving g = 2z'qpe, ). Without
an external field the force F is zero and the vortex is
expected to perform a circular motion with angular &e-

quency &u, = ~M. However, this is difficult to test by0
direct numerical simulations: Because the LLE (1) is of
first order in time we need the exact shape of a moving
vortex as an initial condition. But this shape is known
only in the continuum limit and only far away from the
vortex center. The situation is more favorable for a two-
vortex system, where the two vortices drive each other,
leading to a steady-state motion after a short transient
time of adaption to the lattice. Because of the extended
structure of the vortices their mutual interaction is not
only described by a central force, but also by a renor-
malized mass tensor and gyro vector. A generalization
of the single-structure collective variable ansatz to many
excitations will be performed in the following section.

Multiplying {13a) by &~ and (13b) by —&~~, adding
t

the two resulting equations, and integrating over r leads
to N coupled equations of motion for the N collective
variables X (t):

) (M ~X~+ G ~X~) = —V R, a = 1, . . . , N, (14)

which are all of GTE-type. The mass (M ~) and gyro
tensors (G ~) are defined as

Bg Bm BP Bm ( (15a)

8$ Om 8$ Bm

BX BX~ BX~ &&j j
(15b)

i.e. , there exist, as expected, single- and two-excitation
contributions. V' is the gradient with respect to X
and E is the energy of the system.

The above derivation of the equation of motion is
purely Hamiltonian. Damping can be included following
a similar scheme as Thiele, is which leads to an additional
term D, ~X~ on the left-hand side of Eq. (14) with

III. GENERALIZATION TO N LOCALIZED
EXCITATION 8

D,, = —jd~r (16)

The equation of motion derived in the previous sec-
tion describes only the dynamics of a single localized
structure, though the inHuence of other similar excita-
tions can be included in the external force term. With
this strategy, however, one will neglect important infor-
mation about the parameters given as integrals over the
spin field (i.e., the gyro and mass tensor). Especially,
one would expect the appearance of two-center integrals
representing the mutual inHuence of different excitations
on each other. To include all these effects for a system
with N well-localized excitations we will in this section
generalize the modified Thiele ansatz (9) further, sup-
posing an explicit dependence of the spin field on all the
positions X (t) and velocities X (t), a = 1, ..., N:

S(r, t) = S(r;X', ..., X;X', ..., X ) (12)

dP &. . ~ 8$ ) -~ 0$ 8'R

iP iP 2

(13a)

(13b)

(the upper indices always denote the difFerent excita-
tions). To derive equations of motion for the collective
variables X we will make use of the canonical equations
of motion for the total time derivatives of the fields P and

IV. APPLICATION TO AN N-VORTEX SYSTEM

In the following we will consider explicitly a clas-
sical Heisenberg FM with weak easy-plane anisotropy
(8(0.29), where the localized excitations are out-of-
plane vortices as described in Eq. (6). This case is partic-
ularly interesting, not only because here the gyro tensors
are nonzero, but also because discreteness efFects are very
small, so that we can directly compare our analytical
calculations to numerical simulations without the need
of adding a (phenomenological) pinning potential to the
equations of motion (cf. Sec. V). Moreover, we will focus
our study here on systems with no damping term (i.e. ,
a. = 0). This will allow us to obtain a clearer picture
of the effects of the inertial term on the vortex dynam-
ics and will emphasize the difFerences with overdamped
dynamics which has been studied earlier.

We will study systems of unbound vortices, with-
out taking into account interactions with spin waves or
tightly bound vortex-antivortex pairs which can be cre-
ated sponaneously for finite temperatures. To allow for
an analytic calculation of the mass and gyro tensors we
will restrict ourselves to systems where the vortices are
well separated, i.e., where their mutual distances are
larger than twice the radius r of the static out-of-plane
structures. In this case it is justi6ed to construct the
spin fieM as a linear superposition of single-vortex solu-
tions (6), since the static in-plane field is a solution of
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the Laplace equation, while the other fields are either
well localized with vanishing contributions at the centers
of neighboring vortices, or they are very small beyond a
radius r .

The energy of such an ¹ ortex system is given by

E = —) kq q~ ln iX —X~] + E„k= 2xJS, (17)
a)P

from which we derive

p X —X~
iX- - Xr i'

us which of the matrix elements are zero and which are
not.

For the one-vortex mass and gyro tensor we obtain
the same result as Huber and Pokrovsky, however,
with an additional contribution &om the dynamically dis-
torted in-plane Beld, namely

M; = Mp82,
(19a)

Mp ——m'C dr + xK dr rmp(r)mp(r),
m(r)

Qp CLp

0.
2

= 27iq P (19b)
E, contains the contributions &om the static out-of-plane
vortex structures, which are independent of the vortex
position due to their localized shape, and the velocity-
dependent corrections of the vortex shapes to the total
energy are quadratic in the velocity. Because we restrict
ourselves to well-separated vortices their velocities are
small and we will neglect these terms of second order in
the vortex velocities.

For the calculation of the leading contribution to the
gyro tensors it is sufficient to consider only the static
parts of the P and S, fields, while for the mass tensors
we only need the static part of the P and the velocity-
induced part of the S, field (the velocity-induced part of
the P field is already exponentially small). If we assume
that m(r) depends on the radial coordinate r only [which
seems to be justified by comparing with the numerically
obtained m field for h = 0 in Fig. 1(b)], then we can
perform all of the angle integrations exactly. These tell

I

b;~ and e;~ are the 2D unit and completely antisymmetric
tensors, respectively, ap is a lower cutoff of the order of a
lattice constant, and L is the system size. (In the analytic
calculations L is the radius of a circular symmetric plane,
hence, in our numerical simulations on a square lattice
we choose L to be half of the linear dimension of the
system. )

The two-vortex contributions, however, depend on the
choice of the coordinate system and are only diagonal
for a system with axes parallel and perpendicular to the
line connecting the two vortices under consideration. (In
general these coordinate systems clearly do not coincide
for different pairs of the same system. ) In the coordinate
system with the first axis parallel to X —X~, the second
perpendicular to it (which we will refer to as the main
frame system of the two vortices under consideration),
we find for the mass tensors

M p p & Mp —g(d ~)+Q(d ~) 0
M; =qq

O Mo —~(d ~) y(d ~)— (2o)

with the abbreviations d ~ = iX —X~i,

L
g(d ~) =

&
dr rm(r),

CXp

and

y(d ) = m'C dr + xK dr rmp(r)mp(r).
m(r) I

ap CLp

(22)

With the help of the operator P,--, which projects out
the component parallel to X —X~ when applied to an
arbitrary vector, we can rewrite (20) in the coordinate
independent form

M,-- =q q~ Mo — d ~ +y d ~ 2P," —b;2-

(23)

All the mass tensors depend on Mp which increases log-
arithmically with L, if we insert the asymptotic single
vortex solution for a slowly moving vortex [Eqs. (6) and
(Sa)].

G,. - = 2xq p [mp(d ~) —mp(L)]e;z, n g P. (24)

Since we consider only mutual vortex distances d ~ & r,
these contributions are exponentially small [cf. Eq. (7)].
For q pr = —q~p we obtain for the gyro tensors in the
main frame system (cf. the discussion of the mass tensor)

G;~ = 27rq p ((d ~)
i( —10)'

L
((d ~) = — dr r mp(r),

Clp

(25)

For the two-vortex gyro tensors it is convenient to dis-
cuss the cases q gP = q~p (i.e. G;~ = G, ) and

q gP = q~p (i.e. G; —= G~~) separatel—y. In the
first case the gyro tensors are independent on the under-
lying coordinate system and we obtain the completely
antisymmetric matrix
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or in general

G, = 2xq p ((d ~)e;r, (2S& —br~), ~ g P, (26)

where the operator S& - projects out the component per-
ky

pendicular to X —X~ when applied to an arbitrary
vector. In this case the components of G t decay as
(daP) 2

These are now no longer single-vortex masses, but M can
be considered as total mass of the two-vortex system, M»
as the reduced mass.

The dependence of the gyro tensors on the products

q gP suggests that we distinguish the cases qip = q2p

andqp = qp.
(a) q p = q p: (vortex rotation). For this case we

find for the gyro tensors

an

V. COMPARISON WITH NUMERICAL
SIMULATIONS OF TWO-VORTEX SYSTEMS

We will now apply our ansatz to two-vortex systems
and compare the analytical results to numerical simula-
tions of the complete spin system. Because we have two
"quantum numbers" per vortex, namely its vorticity q
and the sign of its out-of-plane structure p, we have to
distinguish between four physically difFerent cases, when
considering two pairs. This is difFerent &om the vortex-
pair dynamics in other systems, like, e.g. , incompress-
ible Quids, where each vortex is characterized by a single
"quantum number, " leading to only two difFerent scenar-
ios in a two-vortex system.

A. The equations of motion

For a two-vortex system it is more convenient to
rewrite the equations of motion (14) in center-of-mass

(cms) C = 2(Xi + X2) and relative coordinate Y'

X» —X2

Though (31) looks similar to Eq. (10) for a single vortex,
there are two important differences: (i) the mass is now

represented by a tensor leading to two diferent masses
for the two main frame directions, and (ii) the masses
depend on the mutual vortex distance (the dependence of
G on the mutual distance is exponentially small and will

be neglected in the following discussion). A particular
solution of (31) is a rotation of the two vortices around
each other at a distance d with angular velocity

1 G 4qlq2 M
(dp = — ( 1 — 1—

2M» 7r d2
(32)

Equation (27) can only be satisfied if C is a constant
(which, without loss of generality, can be set zero). Using

Eqs. (A2) and (24) we obtain a completely antisymmetric

gyro tensor G; = mq (p —p p,)e,~ = 2q p Gc;~, p =
mp(d) —mp(L), which allows us to rewrite the product

gY as a cross product Y x g with the gyro vector g =
Ge, . This leads finally to the single equation of motion

1 2

MY —gx Y=2 Y.

1 2

MC+MY+G C+G Y=
2 Y, (27a) and an additional cyclotronlike oscillation around this

trajectory. Using the abbreviations y = 7rRp2/Mi and

Rp = d/2, we can rewrite Eq. (32) as
1 2

MC —MY+6 C —G Y= — Y.
Y

(27b)

fM 0 'l - 1 (Mi 0

2q 0
(28)

with

M, = (1+q'q') M, —q'q'(q —y), (29a)

M2 ——(1+q q )Mp —q'q (y+ g), (29b)

Mi ——(1 —q'q )Mp + q'q (x —@), (29c)

(For a derivation of the above equations and the defi-

nition of the consequent mass and gyro tensors see the
Appendix. ) In a system with the first axis parallel, the
second perpendicular, to Y, the mass tensors become di-

agonal

2 1 1 q q
1 2

pRp=q p 9
y J' (33)

which has for vanishing mass Mi (i.e. , y -+ oo) the ex-

pansion

cdpRp = + +0/
q'p'

2 8y qy') ' (34)

Y' = 2Re„= 2R(cos ye, sin &pe„)

with the result of the original Thiele equation (without
inertial force) as leading term. In the case of vortex-

vortex rotation, where M» depends only on the difFerence

of the distance-dependent functions y and @, we expect
only small deviations of ~upRp2~ from 2.

If we assume that the amplitudes of the cyclotronlike
oscillation are small compared to the radius Rp of the
main circular motion, then we can linearize the equation
of motion (31) and obtain the solution

M2 = (1 —q q )M. + q q (X+ 0). (29d) with
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R(t) = Rp + rp cos vent, y(t) = Idpt + yp sin 1d&, (36)

and

M2 + Mi Bine)o M2 ~o
1d =(d 1 — 2 +Rp

QMIM2 BRo Ml j 1dc

Bin~Of (~0't '
)+ 4+2

~Rp ) ((dc j J

where u, = G /MIM2. The amplitude ratio of this cy-
clotronlike oscillation in the R and p directions, respec-
tively, is

Rpyp G/M2 —2(dp

TQ 4J

mutual vortex distance d, then we can linearize Eq. (40)
and obtain the complete solution

d
2i(t) = Vpt + $p COS Left, y(t) = —+ 'gp Sln ddt~

2
(48)

with

(»)' t -2 q'q'M21 —
C

MIM2 f «1+( (44)

1+((~'l M2 I q'q'M2 1 —(
('go) Ml I «(1+t,')s J

The ratio of the amplitudes of the small oscillations is
given here by

which becomes proportional to the mass ratio Mq M2
for large mutual vortex distances d.

(b) qlpz = —q~pl: (vortex translation). For this case
we derive from Eqs. (26) and (A2) the gyro tensors

In contrast to the previous case we have now masses of
different origin present (M2 corresponds to the cms mo-

tion, Ml to the relative motion of the two vortices) which
have different dependences on the system size [cf. (29)j.

p'+ p'& ~
G = —G—:G=2z.q I

(
I 2() 0 rE

—p —p

(39a)

p' -p'( &

(1+ 2() 0

(39b)

The two resulting equations of motion (27) only have
solutions for vectors r and V which are perpendicular
to each other. For example if we set X = (z, y) and
X = (—z, y), we obtain the two equations of motion

kq'q'
Mgy'+ gz =

2y
(40a)

M2z —gy = 0, (40b)

with

u = 2~q'p'(1+ () and C = p'p'( (41)

A solution of (40) is a parallel motion of the two vortices
perpendicular to their connecting line with a constant
speed vo which is related to their mutual distance d by

k
vpd = —= qlq2

q'p'(1 + pip'()' (42)

i.e., we expect ~vpd~ to be larger than 1 for the vortex-
vortex case (qlq2 = 1, plp2 = —1) and smaller than 1
for the vortex-antivortex case (qlq2 = —1, plp2 = 1),
respectively. Since ( is small and only weakly d depen-
dent, these corrections to 1 should be small and almost
constant.

There are again cyclotronlike oscillations possible. If
we ass»~e their amplitudes to be small compared to the

B. Comparison arith numerical simulations

We will now compare these results to numerical sim-
ulations of the complete spin systems on finite lattices
(50 x 50 and 84 x 84) which have been performed in
the following way: we initialized the system by putting
the linear superposition of two approximate static single-
vortex solutions (6) onto the lattice, then we integrate the
LL equation (1) using a fourth-order Runge-Kutta algo-
rithm with time step b,t = 0.04(JS) I and free bound-
ary conditions. The vortices will adapt rather quickly
to their final shape due to the finite discrete lattice by
radiating spin waves. To eliminate these initially ex-
cited spin waves we start the integration with a finite
Gilbert damping parameter 6 = 0.1 for a time period of
t = 40...80(JS) I, during which the vortices follow an
additional inward (qlq2 = —1) or outward (qlq2 = 1)
trajectory. After switching oE the damping parameter
we are able to observe vortex dynamics as predicted in
Sec. V A. Because the vortices have at this time already
acquired quite a large velocity component in the forward
direction, the additional cyclotronlike oscillations are not
expected to be very well pronounced. All our simulations
were performed at zero temperatures, where the vortices
fill out the complete system, independent of its size. We
therefore will discuss the results only in a qualitative way,
since we expect rather strong boundary e6'ects on the
absolute values of the parameters, especially, when they
depend on the total size of the vortices. However, as will
be shown now, these simulations are already sufficient
to demonstrate the impact of the two-vortex contribu-
tions on the mass and gyro tensors, as predicted by our
calculations.

Figures 2 and 3 show typical simulation results for the
4 diferent vortex pair configurations.

(a) Vortex-vortex rotation: Data for these cases is
listed in Table I. Here, we obtain one of the two masses
(Ml) by measuring the rotational frequency. Ml and the
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used values for the vorticity (q) and the sign of the out-
of-plane strucuture (p) determine the deviation of the
product ~tuoRQ from 2 [Eq. (34)]. In the vortex-vortex
case (q~ = p~ = q = p = 1) this correction is small,
positive, and almost constant, corresponding to a small
mass M~ (x d: this observation agrees qualitatively
with our analytic result Mq ——y —g [Eq. (29)], which
should depend only on the mutual vortex distance d, but
not on the dominant one-vortex contribution Mo (x ln I
[Eq. (19a)]. On the other hand, for the vortex-antivortex
case (—q = p = q

—p = 1), the observed mass is
larger, and both strongly d and system size dependent,
corresponding to our expectation that this mass is dom-
inated by the Mo term. For the rotational vortex mo-
tion we can determine the second mass Mq directly by
measuring the &equency of the cyclotronlike oscillation.
In the case of vortex-antivortex pairs we clearly observe
this additional frequency. Table I lists values of M2 &om
these simulations. As expected from Eq. (29), these val-

ues are diH'erent &om those of Mq, though they should
also depend on the total vortex size. The strong, but dif-
ferent dependence of the two masses on d and the system

size, especially the negative value of g = 2(Mq —M2) for

small radii and the sharp decrease of M2 with increasing
d, seem to show the strong in8uence of the boundaries
on the two-vortex parameters. In the case of vortex-
vortex rotation we do not observe a clearly pronounced
cyclotron oscillation. This is probably caused by small
amplitudes and by a high &equency ~ ) coo, if M2 = M~.

(b) Vortex-vortex translation: Data for these cases is
listed in Table II. Here, we also 6nd an impact of the
two-vortex contributions on the value of the gyro vector.
These show up as corrections of the product ~vIId[ from
1 [Eq. (42)], independent on whether we consider vortex-
vortex (qt = p~ = q2 = —p2 = 1) or vortex-antivortex

(
—q1 = p = q2 = p2 = 1) pairs. In the latter case the

simulations show corrections to [vod[, which are basically
constant for a wide variety of diferent d's for a given
system size. For the vortex-vortex case these corrections
show a dependence on the orientation of the cms direc-
tion of motion to the boundaries, emphasizing again the
impact of the system size on the dynamic parameters. As
in the rotational case we find clearly visible cyclotronlike
oscillations only in one of the two possible cases, but
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FIG. 2. Two-vortex simulation results on a 50 x 50 lattice
with b = 0.1, showing rotation of the vortex pair around each
other; (a) vortex-vortex pair (q = q = p = p = +1);
(b) vortex-antivortex pair (q = —q = —p = p = +1); o,
initial positions; +, vortex 1; ~, vortex two.

FIG. 3. Two-vortex simulation results on an 84 x 84
lat tice with b = 0.1, showing translation of the vor-
tex pair parallel each other; (a) vortex-antivortex pair
(q' = —q = p = p = +1); (b) vortex-vortex pair

(q = q = —p = p = +1). Symbols denote the same
as in Fig. 2.
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TABLE I. Data for vortex pair rotation obtained from nu-

merical simulations. Top: vortex-vortex pair (q q = +1);
(b) vortex-antivortex pair (q q = —1); y = "- 0.

L
25
25
42
42

Ro
5.79
8.69
8.25

12.51

i&uoRO i

0.5266
0.5272
0.5140
0.5197

u
5.21
5.11
9.44
6.86

Mg
20
46
23
72

L
25
25
25
25
42
42
42
42

Ro
6.12
7.37
7.56
8.06
9.02

10.60
11.83
12.15

[(upRQ

0.37
0.33
0.33
0.31
0.41
0.38
0.36
0.34

u
0.51
0.33
0.31
0.25
0.87
0.61
0.44
0.37

Mg
228
517
582
830
292
579
922

1262

Mg
1764

141
120
83

2507
327
161
124

-168
188
231
373

-1108
126
416
569

TABLE II. Data for vortex pair translation obtained
from numerical simulations. Top: vortex-antivortex pair
(q'q = +1); bottom: vortex-vortex pair (q q = —1); (p),
vortices move parallel to boundary; (d), vortices move paral-
lel to the diagonal of the square lattice.

L
25
42

Ro
5... 10
5... 15

fvodi

0.96
0.92

0.042
0.087

this time for vortex-vortex pairs. The reason for this ob-
servation is the fact that the dynamics depends here on
two masses of difFerent origin and size, leading to dif-
ferent amplitudes parallel and perpendicular to the cms
motion [Eq. (45)). For the vortex-vortex case the per-
pendicular amplitude (i.e., M2) is large and the resulting
oscillations are clearly visible [Fig. 3(b)], while for the
vortex-antivortex case the parallel amplitude (i.e., Mq)
is large. The latter is hard to observe by looking at the
trajectories and can be seen in Fig. 3(a) only in the part
of the trajectory parallel to the upper boundary. From
this picture we can also learn that a single vortex moves
along the boundary, as if there exists an image vortex
just symmetrically outside the boundary with the proper
q and p values, to force this motion. This picture is bet-
ter, the closer a vortex is to its image vortex rather than
to its partner within the system. This suggests that the

boundary effects can be understood in terms of one or
more image vortices. In the translational case we need to
measure both, the frequency and the amplitudes of the
cyclotron oscillations, to obtain values for the masses.
This will be done in a forthcoming paper, where we will
also develop soxne xnethods to treat the boundary effects.

VI. CONCLUSIONS

We have presented a collective variable approach to
a system of N well-localized excitations in a magnetic
system. Generalizing earlier approaches which were re-
stricted to single excitations only we obtained N coupled
equations of motion of generalized Thiele form (i.e., with
inertial, gyro, and external force terms). The tensors
which describe the strength of the couplings between the
excitations can be classified as (two-vortex) mass and
gyro tensor, which now depend also on the mutual dis-
tances of the excitations.

As an example we applied this ansatz to an easy-plane
Heisenberg ferromagnet where the localized excitations
are vortices. Under the assumption that the vortices are
all well separated from each other, we can calculate the
mass and gyro tensors in the low velocity limit using the
vortex shapes calculated by Gouvea et al. By explicitly
considering a two-vortex system, we discuss the possible
vortex dynamics in detail and compare these results with
numerical simulations of the complete spin system. From
our theory we expect for these systems either a rotation of
the vortices around each other, or a translation of them
parallel to each other, and an additional cyclotronlike
oscillation around these main trajectories. Two vortices
are best described in cms and relative coordinates and
the values of the corresponding masses can vary on a
large scale depending on the vorticity and the sign of
the out-of-plane structures of the participating vortices,
and also the gyro tensor shows a distinct d dependence
in the translational case. Our calculations predict cor-
rectly the deviations due to the two-vortex interactions
&om dynamical quantities, e.g. , ~uoRo~ or ~vsd~, as can
be seen &om the numerical simulations. However, since
these simulations were performed on finite lattices at zero
temperature, where the boundary effects have a strong
infiuence on the absolute values of the masses, we cannot
compare these values quantitatively with our analytic re-
sults for an infinte system. The effects of the boundary,
which can in some cases be understood in terms of image
vortices, will be discussed in a forthcoming paper.

L
25
25
25
42
42
42
42
42
42

Ro
9.38 (p)
9.85 (p)
8.21 (d)
7.16 (p)
9.79 (p)

19.56 (p)
9.23 (d)

10.66 (d)
11.63 (d)

[vade

1.048
1.048
1.296
1.114
1.108
1.210
1.042
1.032
1.064

0.046
0.046
0.228
0.102
0.097
0.174
0.040
0.031
0.060
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APPENDIX: EQUATION OF MOTION
FOR TWO VORTICES

(M" + M")C+ —(M" —M")Y + (g" + g")CCd
2

For a two-vortex system Eqs. (14) become

M X+M X+ X+ X

+—(g
' —g )Y = —kq'q . (A2b)

Since the masses depend only on the vortex vorticities q
and q, we can define the two new mass tensors

X —X="''
~xi —bX ~2

' ("") M11 + M12 M22 + M21 (A3a)

M21X1 + M22X2 + g21X1 + 22X2
M = -'(M" —M' ) = -(M —M ') (A3b)

X —X'
iX' —bXzi2

Introducing the cms and relative coordinates C =
2 (Xi+

X2) and Y = Xi —X2, respectively, allows us to rewrite
(Al) as

Gi Gii + Gij (A4a)

Similarily, we can de6ne new gyro tensors, but here all
the four different quantum numbers play a role. Thus, in
general, we have to de6ne four new gyrotensors:

(M" + M")C+ —(M" —M")Y'+ (g" + g")C G' = z(G" —G's), i, j = 1, 2, i g j, (A4b)

+—(g" —g' )Y = kq'q, (A2a)

which, however, will be related to each other in the two
special cases discussed in Sec. V. Inserting (A3) and (A4)
into (A2) leads finally to Eq. (27).
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