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We present results of numerical studies of the two-dimensional XY model with four- and eightfold
symmetry-breaking fields. This model has recently been shown to describe hydrogen-induced re-
construction on the W(100) surface. Based on mean-field and renormalisation-group arguments, we

first show how the interplay between the anisotropy fields can give rise to difFerent phase transitions
in the model. When the fields are compatible with each other there is a continuous phase transition
when the fourth-order field is varied from negative to positive values. This transition becomes dis-

continuous at low temperatures. These two regimes are separated by a multicritical point. In the
case of competing four- and eightfold fields, the first-order transition at low temperatures opens up
into two Ising transitions. We then use numerical methods to accurately locate the position of the
multicritical point, and to verify the nature of the transitions. The difFerent techniques used include
Monte Carlo histogram methods combined with finite-size scaling analysis, the real-space Monte
Carlo renormalization-group method, and the Monte Carlo transfer-matrix method. Our numerical
results are in good agreement with the theoretical arguments.

I. INTRODUCTION

In two dimensions, conventional long-range order can-
not exist in continuous spin models [O(n), n ) 2] be-
cause it is destroyed by spin wave excitations. How-

ever, Kosterlitz and Thouless proposed that in the XY
[O(2)] model there is a phase below the critical temper-
ature where topological long-range order can be defined.
The vanishing of this order occurs via the Kosterlitz-
Thouless (KT) transition. Physical systems where the
KT transition occurs are numerous; they include super-
Huid He films, Josephson junction arrays, superconduct-
ing transitions of type II, and various phase transitions
on surfaces and adsorption layers.

In many cases, the realization of the XY model is ac-
companied by various symmetry-breaking fields, whose
effect is very complicated as demonstrated qualitatively
by Jose et al. For example, it was recognized already at
an early stage that the presence of a fourfold field re-
stores a conventional phase transition, but with contin-
uously varying critical exponents. In contrast, a sixfold
symmetry-breaking field opens up the KT transition into
two parts: at high temperatures, the transition remains

XY type, but at low enough temperatures it is into a
discrete planar phase in which the system orders along
one of the six preferred directions. 5 Both of these situa-
tions have been realized in experimental systems; fourfold
fields are known to be present in surface structural phase
transitions whereas liquid crystals provide a case where
the sixfold field exists.

The effects of symmetry-breaking fields are further
complicated by the existence of higher order multiples
of the fields, which are allowed by symmetry. In most
cases, since these fields are irrelevant if lower order fields

are present, their in8uence has been neglected. However,

if it happens that the lowest order symmetry-breaking
field vanishes, the higher harmonics can become relevant
at low enough temperatures. A demonstration of this
fact is the study of Selinger and Nelson who modeled
a phase transition occurring in liquid crystals by an XY
model with six- and twelvefold symmetry-breaking fields.

They found a rich behavior of the phase diagram depend-

ing on whether or not the two fields are compatible with
each other.

We have recently developed a lattice Hamiltonian for
the adsorption system H/W(100), which is based on the
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XY model with a fourfold symmetry-breaking 6eld, and
its higher harmonics. We have argued that the essential
physics of this model is dictated by an interplay between
the fourfold and the eightfold 6elds, in a manner very
similar to that of Ref. 5. The intriguing aspect of this
model is that the strengths of the symmetry fields-
the fourfold Geld in particular —are tunable by changing
the amount of adsorbed hydrogen. In fact, it was demon-
strated that the fourth-order field vanishes at a hydrogen
coverage of about 0.1 ML for this system. This system
thus provides an ideal example for studying the efFect of
interplay between symmetry-breaking fields within the
XY model.

The purpose of the present work is to conduct a de-
tailed, quantitative study of the two-dimensional XY
model with four- and eightfold anisotropy fields. We shall
first discuss in detail how the interplay between these
two anisotropy fields dictates the nature of the phase
diagram at low temperatures where the eightfold 6eld
is relevant in the renormalization-group sense. We give
both mean-Geld and renormalization-group arguments in
explaining how it is possible to obtain either a discontin-
uous or two continuous Ising transitions at low tempera-
tures due to the interplay between the anisotropy fields.
Namely, when the four- and eightfold 6elds are compati-
ble with each other and do not compete, this gives rise to
a 6rst-order transition at h4 ——0 as we pass Rom negative
(positive) values of the fourfold field to positive (nega-
tive) with a finite hs field. However, when the two fields
are competing with each other, the first-order transition
opens up into two Ising transitions with an intermediate
phase in between.

Following analytic arguments, we proceed to simulate
the XY model with symmetry-breaking fields using the
Monte Carlo method with the Wolff updating algorithm
which is generalized to include contributions &om the
anisotropy 6elds. We employ finite-size scaling argu-
ments to locate the multicritical point in this model.
These results are further corroborated by Monte Carlo
transfer-matrix (MCTM) studies. We also verify the ex-
istence of the continuous Ising transition in the case of
competing anisotropy fields by using both the MCTM
and real-space Monte Carlo renormalization-group meth-
ods. Our results are in good agreement with theoretical
predictions, and also consistent with available experimen-
tal data for the H/W(100) adsorption system.

II. MODEL HAMILTONIAN AND QUALITATIVE
RENORMALIZATION-GROUP ANALYSIS

vidual spin vectors 0; = (cos P;, sin P, ) on site i, h4 and

hs are the four- and eightfold symmetry-breaking fields,

respectively, and we have subsumed the temperature into
the coupling constants and fields. The summation (i, j)
goes over the nearest neighbors, and the s»~mations i
are over all lattice sites.

We will first discuss mean-6eld theory to obtain a qual-
itative picture of the critical phenomena that Eq. (1)
gives rise to. Our purpose is to give insight into the
underlying physics which is dictated by the interplay be-
tween the anisotropy fields. These arguments correspond
to the case where both fields are always assumed to be
relevant, and will thus give correct qualitative behavior
at low temperatures only. There are two possible scenar-
ios depending on the anisotropy potential V(P) of Eq.
(1), defined by

V(P) = —h4 cos(4$) + hs cos(8$).

Namely, when h4 is negative it favors spins aligning along
the directions P = ir/4+nor/2, n = 0, 1, ..., whereas a pos-
itive h4 favors P = nz/2, n'= 0, 1, .... The eightfold field
has two possibilities as well. When hs ( 0 the favored
orientations are P = nz/4, n = 0, 1, ..., which are exactly
the directions favored by either a negative or a positive
fourfold field. We say that in this case the anisotropy
fields are noncompeting or compatible with each other.
For hs & 0 the favored orientations are P = ir/8 + n7r/4,
n = 0, 1, .... As these are different &om those favored by
the fourfold field, competition will set in when the four-
and eightfold 6elds are of the same order of magnitude.

We first consider the case of a negative, i.e., noncom-
peting, hs. In Fig. 1(a), we show the anisotropy poten-
tial V(P) as a function of the angle P for various values
of h4, given a fixed hs. The local miniina at P = 0 and
at P = km/4 are clearly visible. When h4 & 0, the min-
ima at P = 0 are deeper, whereas for h4 ( 0 the minima
at P = z/4 are deeper. As h4 passes through zero from
h4 ) 0 to h4 ( 0, there is a 6rst-order transition from
one minimum to another.

In the case of a positive or competing eightfold Geld,
the situation is more complicated. The behavior of the
potential V(P) for fixed hs & 0 and various values of h4
is shown in Fig. 1(b). For h4 & 4~hs~, there is only one
minimum at P = 0, and one at P = +z'/4 for h4 ( —4~hs~.
But now as the fourfold field passes through h4 ——4~hs~,
the single minimum splits into two at P = +$0. By
minimizing the anisotropy potential V(P), we can show
that these new minima begin to form at

The Hamiltonian of the XY model with four- and
eightfold anisotropy 6elds can be written as

H = —K) cos(P,. —Pi) —h4) cos(4$;)

+hs ) cos(8$,),

where K is the XY coupling constant between nearest
neighbors, P; are the angle variables defined by the indi-

At the other boundary where h4 passes through —4~hs~,
the same argnment applies except that PIi now measures
the deviation from z/4. The first-order transition for
the compatible field case [cf. Fig. 2(a)] has now opened
up into two continuous transitions with an intermediate
phase in between [cf. Fig. 2(b)].

We will next show explicitly that the continuous phase
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W[0] = exp(K), (4)

transition belongs to the universality class of the two-
dimensional Ising model. We can approach the transition
boundaries either &om the phase where 64 ) 0 where the
preferred orientation of spins is along P = 0, z/2, . . . , or
&om the phase where h4 ( 0 and the favored directions
are then P = vr/4, 37r/2, . . . . Let us consider the former
possibility. For large h4, the system is in the energy
minimum at P = 0. When we approach the transition
(h4 m 0), two minima form at P = kPo. Let us consider
the contribution to the partition function due to these
new minima. The Boltzmann weights can be written
as exp(Kcos[(s; —sz)Po]) where s, = +1. We denote
these weights by W[s] where s = s, —s~ = 0, 2. For two
neighboring spins at the same minimum,

K sin Po. Since the argument is valid in the limit
K ~ oo only, we will later numerically verify the na-
ture of the Ising transition predicted here.

Next, we present more quantitative renormalization-
group (RG) arguments which are a direct extension of
the work by Selinger and Nelson. At high temperatures
(where K is small), only the fourfold field is relevant in
the RG sense, and the long-range order in the system is
dictated by h4 alone. At some temperature correspond-
ing to K the eightfold field becomes relevant. For lower
temperatures (larger values of K) and for finite h4 and

68, the nature of the phase diagram is determined by the
interplay between these two fields as qualitatively dis-
cussed above. Any anisotropy field h„of order p will

obey the RG recursion relation

while for two opposite spins

W[2] = exp(K cos 2go).

The equivalent Ising coupling constant is thus J

40
(a)

hf, &0

30-

Eh

~ 20-
h

r'/' '~ '~

/
/

/

r
.r .r' L, &m

KK

—10 .

0-
I

-80 -40
I ~

0
0 ( degrees)

hf,

(bj
40-

—30

& 20

'
~

r'
.r

.//
,
r'

4 hsi

Km
K"

10-

-80 -40 0
0 (degrees)

80

FIG. 1. (a) A schematic figure of the anisotropy potential
V(P) of Eq. (2), for the case of noncompeting fields with

hs ———1. The curves from bottom to the top are for h4 ———6,
—4, —2, 0, 2, 4, and 6, respectively. The transition at h4 ——0
is abrupt. (b) The anisotropy potential for competing fields

with hs ——+1. The curves are for the same values of h4 as in

(a). The transition around h4 ——0 is continuous.

FIG. 2. (a) A schematic phase diagram for the Hamiltonian

Fq. (I) on the h4-K ' plane, with a fixed noncompeting

h8 ( 0. For finite values of h4, the two transition lines beyond

the Kosterlitz-Thouless transition point KKT ( z /2 belong

to the universality class of the XY model with a fourfold

symmetry-breaking field. Between KKT and the multicritical

point K, there is a line of pure XY transitions. Below K
the eightfold field is relevant and there is a line of first-order
transitions. The lower bound for K is z/8 [cf. Eq. (9)]. (b)
The counterpart of the phase diagram of (a) for the case of
a fixed, competing h8 ) 0. Below K, where ha is relevant,

the first-order transitions open up into two lines of continuous

Ising transitions, which terminate at +4~hs~.
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where h„ is the field obtained after a RG iteration, b is a
constant, and

2

4~K

When the parameter A„) 0, the field h„' will increase
as iterations proceed, and the pth anisotropy field is
a relevant variable. However, as the temperature in-
creases, higher order fields become irrelevant (A„( 0),
and the respective h„' will decrease with iteration. On
the other hand, it can easily be seen that at K = oo
all symmetry-breaking perturbations are relevant. If
A~ = 2 —p2/(4zK) = 0, we get the temperature K
below which the field h„ is relevant, i.e., it is marginally
relevant at that point:

SxK
p

We can conclude that the four- and eightfold anisotropy
fields are relevant at all temperatures K i ( K 4

——z'/2

and K i ( K s
——s/8, respectively Th. e results for

the XY model with only the fourfold Geld h4 are well
known. 4 The continuous phase transition into an ordered
state (h4 g 0) along the critical lines terminating at
KK& ( K 4

——7r/2 belongs to the universality class of
the XY model with a cubic anisotropy Geld, where KK&
is the (true) order-disorder transition temperature for the
pure XY model. Along the critical line h4 ——0 we have a
series of continuous XY transitions for all K & KK~
(cf. Fig. 2). In the other limit where h4 -+ oo, the model
becomes a four-state clock model which can be shown to
decouple into two Ising models. ~

With the inclusion of the eightfold Geld, different sce-
narios occur depending on the signs of h4 and hs. For
the remainder of this paper, we will denote by K the
true value of the coupling constant where the eightfold
field becomes relevant. For K ( K i, both h4 and
hs are relevant. If hs is positive, the renormalized po-
tential V'(P) is similar to that of Fig. 1(b) with two
continuous Ising transitions. In the limit K ~ oo, we
obtain the exact mean-field result: the transition occurs
at h4 ——+4~hs~. In the other limit K -+ K, it can be
showns that to lowest order in ~hs~ we have

K ' = —+&(lisf,
8

where B ) 0 is a constant which can be estimated to
be O(1). The upper bound for K i is the Kosterlitz-
Thouless transition temperature KK& ( z'/2 for this
model. The lower bound, on the other hand, is given
by the zero-field estimate K (hs ——0) = ir/8. The cor-
responding phase diagram is shown schematically in Fig.
2(b).

For a negative hs and for K & K, the system fIuc-
tuates in the minima of Fig. 1(a). The location of the
deepest xninimum changes as h4 passes through h4 ——0,
and we expect a Grst-order phase transition. Selinger and
Nelson have in fact shown that in this case there is a dis-
continuity in the order paraxneter across the transition.
This discontinuity vanishes exponentially as K m K

thus making it very difFicult to numerically locate K
The phase diagram corresponding to this noncompeting
case is depicted in Fig. 2(a).

In the remainder of this paper, we will perform de-
tailed numerical studies of two particular aspects of the
phase diagrams shown in Figs. 2(a) and 2(b). The first
concerns the exact location of the multicritical point K
for h4 ——0, for a finite hs. The second is the verification
of the Ising-like nature of the low temperature transition
lines in Fig. 2(b) for the competing case.

III. LOCATION OF THE MULTICRITICAL
POINT

To quantitatively locate the multicritical point K, we
have performed extensive Monte Carlo simulations of Eq.
(1), by adopting a modified Wolff algorithm. The Wolff
algorithm was originally developed for isotropic, continu-
ous spin systems such as the XY model. In our case, we
have added symmetry-breaking fields to the model. This
is accounted for by modifying the WoHF cluster update al-
gorithm in the following way. We divide the Hamiltonian
of Eq. (1) into two parts, the isotropic part H~i,

H~y = —K ) eos(P; —Pi),
(i,j)

(10)

and the anisotropic part H4, s,

H4 s = —h4 ) eos(4/i) + hs ) cos(8$;).

We form the WolÃ cluster for the isotropic part H~y
in the usual fashion using a cluster labeling technique
similar to the "ants in the labyrinth" scheme. We then
calculate the change in the energy due to the anisotropy
fields for the old and the proposed new cluster as

H4, s = H4, s" —H4, s ~ (12)

Whether or not the cluster is fIipped is determined by
applying the standard Metropolis acceptance criterion to
this energy difference. It is easy to verify that this com-
bined algorithm satisfies detailed balance and is ergodic.

It has recently been shown~ that the WolÃ algorithm
performs poorly for anisotropic XY models at low tem-
peratures. It probes the phase space effectively but, in
the presence of strong anisotropy fields, reaching thermal
equilibrium from an initial state can take very long. The
Metropolis algorithm, on the other hand, reaches local
equilibrium rapidly but fails to search the phase space ex-
tensively. We have overcoxne these problexns by a scheme
where Wolff and Metropolis algorithms are simply cora-
bined by inserting several Metropolis local update sweeps
after a certain amount of Wom' steps. A sixnilar approach
has also been suggested previously in Ref. 11.

To locate the multicritical point of the XY model
with anisotropy Gelds, we use the method of Lee and
Kosterlitz. In this schexne, the "free energy" F for a
given system of linear size L with order parameter 4 and
with periodic boundary conditions can be expressed as
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exp[ —E(4, L, N)] = NZ (P) ) O(E, 4) exp( —PE),

F(iI, L) = L"f, (4, g) + L' ' fx(@,g) + (i4)

where fo(4', g) is the bulk &ee energy density, fx(4', g) is
a surface term which has a maximum at 4q & 4 ( 4'2,
and g is a scaling field g oc (T Tc) It c—an th.en be shown
that the &ee energy has a minimum on both sides of the
maximum 4', and that the height difference between
the minima and the maximum is

b,F(L) —= F(C,L) —F(@x,L)
= A(g)L" '+ B(g)L"

This expansion holds for first-order transitions when ( «
I, and the &ee energy difFerence b F(L) is an increasing
function of the system size L. Even for L « (, b,F(L)
is an increasing function of L. Thus, at the first-order
transition point when F(4'x, L) = F(@2,L), b,F(L) is
an increasing function of L. In the disordered phase, the
&ee energy difFerence b,F(L) decreases as a function of
L.

Near a fixed point describing a continuous transi-
tion, a scaling form can be developed for the singular
part of the &ee energy. Its analytic expansion gives
DF(L) = a —bgL ~ + O(g L ~ ), where a and b are
I-independent constants. This form is appropriate for
L « (, where g & 0 for K & K and g & 0 for K & K
Thus, we expect that AF(L) increases with L in the low
temperature phase. However, for our model the behav-
ior in the vicinity of K is expected to be very compli-
cated, and a finite-size scaling form has not been devel-
oped. Naively, we would expect that because 1/v = 0
and ln(() g ~, the barrier AE(L) will increase as
gin (L). For K & K, however, b,F(L) must increase
more rapidly with L eventually crossing over to the linear
behavior of Eq. (15) for L )) ( deep into the first-order
regixne. We will use this property of b F(L) and change
K at h4 ——0 to locate K, as explained below.

To facilitate the use of the Gnite-size scaling technique

(13)

where N is the number of samples (configurations), Z(P)
is the partition function, O(E, 4) is the number of states
with energy E, and we assume that the transition is
driven by an external field. In the following, we shall
for simplicity drop the N dependence of I". I" differs
from the actual bulk free energy but its shape is identi-
cal to that of the bulk &ee energy and thus is also the
difjerence b,F [see Eq. (15) below]. The "free energy"
has two minima due to the two coexisting phases. These
minima, located at 4q and 4'2, are separated by a max-
imum at 4 . In the thermodynamic limit the double
minima structure vanishes at the transition points but in
a finite system it may persist even above the transition
temperature. In this method it is precisely this property
that is exploited to reveal the order of the transition for
a finite system. More specifically, the &ee energy can
be expanded below the transition where the correlation
length ( « L as

of Lee and Kosterlitz, we calculated the histogram of the
order parameter C' = (1/L ) P,. cos 4P, summed over the
lattice by dividing the interval [0, 1] into 200 equal bins,
and putting each value into its respective bin. Thus we
can construct a histogram which shows the double peak
structure. This histogram is essentially an approxima-
tion of the partition function. By taking the negative of
the logarithm of this histogram, we obtain an approx-
imation for the free energy distribution F(4, L) of the
system [cf. Eq. (13)]. As we reside on the transition
line at h4 ——0, the two peaks of E(@,L) are equally
high, and we can readily calculate the difFerence AF(L)
given in Eq. (15). For the eightfold field, we used the
value hs ———0.15. When using the combined algorithm,
we first did 3000 Metropolis steps to reach a local equi-
librium and then continued with 5000 Wolff cluster for-
mations with 10 Metropolis steps after each 1000 cluster
formations. All this information was discarded. The data
were averaged over 1000000 cluster formations so that
after every 1000 Wolff cluster formations ten Metropolis
steps followed. We calculated the order parameter his-
togram for several systems of sizes L = 8, 12, 16, 24,
32, 48, and 64 at various temperatures along the line
hq ——0. From these data we can then deduce b,F(L). In
the first-order regime and in two dimensions, it should
scale linearly with increasing L. If the transition is con-
tinuous, the double peak structure should vanish in the
limit L m oo. We also studied the distribution of angles
by constructing a histograxn of each individual angle P, .

Our main results are depicted in Figs. 3(a)—3(c). Typ-
ical histograms for various system sizes are shown in Figs.
3(a) and 3(b), and the extracted energy barriers AF(L)
as a function of the linear system size L in Fig. 3(c),
for the present case of noncompeting anisotropy fields.
All the b,F(L)'s were calculated by fitting an eight-order
polynomial to the data. All data points are averages of
about 10 configurations. The energy difference increases
with L for temperatures corresponding to K & 2.3, which
indicates a first-order regime. The behavior of bE(L)
at temperatures corresponding to K & 2.2 indicates, on
the other hand, a regime where the transition is contin-
uous. At K = 2.2, b,F(L) first seems to increase with L
up to L = 12 and then decrease for larger L, although
within error bars it is almost constant. At K = 2.1,
no double peak structure exists. We also analyzed the
size dependence of the multicritical point K . By fitting
AF(L) vs the logarithm of inverse temperature K for
L = 8, 12, 16, 24, 48, 64, we were able to determine the
multicritical point K (I) for each system size. From
this we estimated the multicritical point by scaling these
data against 1/L. We conclude that

K = 2.1 + 0.1,

which is the main result of this section. It is also well
within the theoretical bounds 2/7r & K & 8/7r, as ex-
pected.

Finally, we should note that the accuracy of the re-
sult suffers from severe Buctuations in the vicinity of
the multicritical point, in particular for the largest sys-
tems. This inhibits the use of histogram techniques for
extrapolation.
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IV. ISING TRANSITION IN THE CASE OF
COMPETING ANISOTROPY FIELDS

The other scenario for our model is the case where the
anisotropy fields are competing. It was shown analyti-
cally that the first-order transition at low temperatures
opens up to two Ising transitions with an intermediate
phase in between. In this intermediate phase the long-
range order is dictated by the eightfold field. To see
this transition numerically, we chose a finite fourfold field
h4 ——0.06 which favors the orientations P; = 0, z/2, etc. ,
for the individual spins. The competing eightfold field
is chosen to be equal in magnitude to the one used in
the noncompeting case, i.e., h8 ——0.15. We try to locate
the corresponding Ising transition temperature KI by
scanning the inverse temperature K. KI should be well

above our estimate of K 2.1 [cf. Fig. 2(b)j. For this
calculation, we used the Monte Carlo renormalization-
group (MCRG) scheme proposed by Binder. i4 Consider
the XY spins o'; = (cos P;, sing;) on a two-chmensional
lattice which is divided into subcells or blocks of (linear)
size LB. Let us first define a block variable

Ci. =L, )1

B i'll. B

where g; is a measure for the local order in the system.
We can then define an order parameter for each block size
as @L,s = (4L,s), where angular brackets again denote a
configurational average. We studied difFerent moments of
the block variables 4 L,s, and constructed the fourth- and
sixth-order cumulants UL, s and VL,s for each block size
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as in Ref. 14. The variation of these two cumulants as a
function of the block size LJ3 gives a flow diagram anal-
ogous to that of a renormalization-group method. These
cumulants approach zero above T~ as the block size in-
creases. Below T~, both cumulants tend to nonzero val-
ues, Ul, s ~ 2/3 and VI, -+ 8/15 as L~ ~ oo. At the
critical point T~, the cumulants approach nontrivial Gxed
point values U* and V*. Thus, the behavior of the cu-
mulants is reminiscent of the renormalization-group flows
under subsequent transformations of the length scale.
One can also estimate the correlation length exponent
v &om the data in the vicinity of U* by noting that

K=5.10
K=5.00
K=4.95
K=4.93
K=4.90
K=4.80
K=4.70

L a g(i —~)/ v

Ul, ~
—U* (18) 0.2

t

0.3
I

04

for subsystem blocks of size LB ——IB/6, and by using
the scaling relation o. = 2 —vd.

For the block variable we chose

CL,s =
2 ) (sing, ).
B i

FIG. 4. Typical MCRG Qows of the fourth-order cumu-
lant vs 1/L for the competing case, with h4 = 0.06 and

hs ——0.15. When K is varied, the Ising transition occurs
at around Iti = 4.9—5.0 [cf. Fig. 2(b)]. See text for details.

This order parameter, when the angles are folded be-
tween 7r/4 &—P & vr/4, is zero in the high temperature
phase and finite in the low temperature phase when a
single domain dominates below and above the transition.
We studied the fourth- and sixth-order cumulants UL,

and VL,~. From the flows of these cumulants as a func-
tion of the inverse linear size of the block, we can deduce
the nontrivial fixed point value from which we can further
extract KI.

At low temperatures, the simulations suffer from high
barriers between different regions of the phase space,
which we tried to overcome by using the combined algo-
rithm. We first used 5000 Metropolis steps to bring the
configuration to a local equilibrium, and then continued
with 3000 Wolff cluster formations before we started to
collect data. The data were averaged over 100000 clus-
ter formations, and after every 1000 cluster moves ten
thermalizing Metropolis steps were completed.

The flow of the fourth-order cumulants is depicted
in Fig. 4. We can readily see that the value of K
at which the transition takes place is Kl C [4.9, 5.0].
A more detailed extraction of KI was done by study-
ing the ratio Ur, /Ur, where L& E [ ~, ]I gy

——2, 4, 6, 8, 12, 16, 20, 24, 32, 48, 64. The point where
U &'U = 1 was taken as the transition point. This
extraction finally gave the result

K = 4.95 + 0.05. (20)

By flipping the sign of the fourfold field, we also con-
firmed numerically that the Ising transition boundaries
are symmetrical with respect to the line h4 ——0 [cf. Fig.
2(b)]. It is also possible to use a different order parameter
((cos P, sing, )) by rotating the spins into the first quad-
rant. The results using this order parameter agreed with
the choice of (sing, ). We also used the order parameter
blocks to estimate the critical exponent v for the transi-
tion point, and obtained v = 1.1+0.1 in very satisfactory
agreement with the exact Ising result of v = l.

V. MONTE CARLO TRANSFER MATRIX
METHOD

Besides Monte Carlo simulations, another numerical
approach which has been quite successful in the study
of statistical mechanical models is the transfer-matrix
method. In this method, the free energy of the model
defined on an infinite strip can be obtained directly from
the largest eigenvalue Ao of the transfer matrix as —ln Ao.
These calculations can be done exactly for models with
discrete degrees of freedom when the transfer matrix is
of low order. When this technique is combined with
finite-size scaling, one can obtain very accurate estimates
of critical exponents and other quantities. For mod-
els with higher order transfer matrix or continuous de-
grees of freedom, as for the case of the XY model wit
s mmetry-breaking fields, one has to resort to a Monte
Carlo transfer-matrix (MCTM) techniqueis in order to
estimate the largest eigenvalue of the transfer matrix.
Some models with continuous symmetry have already
been studied by this method, including &ustrated XY
(Refs. 17, 18) and coupled XY-Ising models.

We proceed to summarize the method. Further de-

MCTM consists in a stochastic implementation of the
well-known power method to obtain the dominant eigen-
value of a matrix. First, helical boundary conditions
are implemeted in order to get a sparse transfer matrix.
At each step a new configuration is obtained from the
previous one, by adding a new spin L+is' and relabel-
ing the sites. The infinite strip can be constructed by
repetition of this identical elementary step. This process
defines the transfer matrix to add a single site T(s', s),

umn, with I spins. Then a sequency of random walkers

R; — . - 8 - 1 & i & r, representing the con-1)2 ) 2)'t $ ' ' ) LI)z) )

figurations of a column, is introduced with correspon-
lng welg s tD&.ht .. The number of walkers r is maintaine
within a few percent of a target value ro by a justing
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the weights properly. A matrix multiplication can be
regarded as a transition process &om s to 8' with a prob-
ability density P(s', s) defined from the elements of the
transfer matrix as T(s', s) = D(s)P(s', s) with a normal-
ization factor D(s) independent of s'. In each step the
weights are changed according to tp,'. = D(s)tie;/c, where
c = ApT/Tp is chosen to maintain r close to rp, with Ap

a running estimate of the eigenvalue. In this procedure
a MC step consists of a complete sweep over all random
walkers. After disregarding to MC steps for equilibration,
an estimate of the largest eigenvalue can be obtained as

T

) ct+1Wt+1
t=to+1

T
W~

t=to+1

bF(L) = L b f. (22)

The finite-size scaling behavior of this quantity should
drastically change as a function of temperature, depend-
ing on the relevance of the symmetry-breaking fields. At
low enough temperatures this interface corresponds to
a sharp boundary between two different phases due to
the presence of the symmetry-breaking 6elds which are
relevant at these temperatures, and should therefore in-
crease as L . On the other hand, at higher tempera-
tures when the symmetry-breaking field is irrelevant, the
interface corresponds to a gradual change, in form of a
twist of the angle P, and b,F(L) scales as L, which is
roughly a constant at d = 2. In fact, in this regime AI'
(= const) can be related to the helicity modulus (divided
by kxxT) p as

where Wt ——P, ur; t, with xp; t denoting the configuration
weights of a column at time t, and T is the total number
of MC steps.

For the calculations of the &ee energy of our model
we performed extensive runs using typically ro = 20000
random walkers and T = 100000 MC steps which corre-
sponds to 2 x 10 attempts per spin. We concentrated
our attention on two quantities, the interfacial free en-

ergy and the central charge. The former can be obtained
from the free energy per site f = —lnAp, as calculated
&om the transfer matrix on an infinite strip of width
L, by a suitable choice of the boundary conditions. If
antiperiodic boundary conditions are used instead of pe-
riodic ones, an interface is favored along the in6nite strip
and the associated interfacial free energy b,F(L) can be
obtained &om the &ee energy difference between periodic
and antiperiodic boundary conditions as

and c = 1 along the critical line of the XY model. This
quantity can be related to the amplitude of the singu-
lar part of the &ee energy per site (at criticality) of the
infinite strip by

f(K„L) = fp+ (24)

1,2

0.8-

u 06-

02—

for sufficiently large L, where fp denotes the regular con-
tribution to the free energy. Although c is only defined at
criticality, the value of c extracted from an f (K, L) x 1/L2
6tting of the &ee energy as a function of system size
can be used to define an effective size- and coupling-
dependent central charge c(K, L) away from the criti-
cal point. According to the Zamolodchikov c theorem,
this quantity should have a well de6ned behavior near
the critical point and reach a constant value, equal to
the central charge, at the 6xed point. As a consequence
c(K, L) should have a maximuxn near an unstable fixed
point and converge to c = 0 in the completely disordered
or ordered phases. This property is particularly useful in
locating the multicritical point and the Ising transition.

To facilitate direct comparison with the MC results of
Sec. III, we set h4 ——0 and h8 ———0.15. The results
of the MCTM calculations for the central charge in this
noncompeting case [cf. Fig. 2(a)] are shown in Fig. 5.
The value of c was estimated by fitting the &ee energy
per site to Eq. (24), using sizes L = 5 to —11. First, the
abrupt onset of c near K 1 agrees well with the known
result for the XY transition (where hs is irrelevant). The
multicritical point, on the other hand is estimated to be
at the point where the central charge begins to decrease
from the value of 1 (the XY phase value) to zero at
K = 2.6 6 0.4. This is in fair agreement with the result
of Eq. (16) as obtained from the histogram xnethod; the
discrepancy can be attributed to severe finite-size effects
for the relatively small strip widths studied.

In Fig. 6, we show the results for the interfacial &ee

p = 2AE/vr, (23) 0
0

for large enough L. The change in behavior of the inter-
facial free energy between these regimes can be used to
find the multicritical point.

Another important quantity which can be inferred
&om the MCTM calculations is the central charge c,
which classifies the possible conformally invariant crit-
ical theories. x For example, c = 1/2 for the Ising model

FIG. 5. MCTM results for the efFective central charge along
the line h4 ——0, with hs ———0.15 [the noncompeting case of
Fig. 2(a)]. The first abrupt onset to c = 1 corresponds to
the KT transition, and the onset of decline of c at K 2.6
indicates entry to the line of 6rst-order phase transitions just
below K in Fig. 2(a).
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FIG. 6. The interfacial free energy from the MCTM
method for difFerent strip sizes as a function of K, for the
case h4 ——0 and h8 ———0.15 as in Fig. 5. Below K 2.6,
the lack of size dependence of the energy indicates the onset
of the spin wave regime corresponding to a line of XY tran-
sitions. The corresponding value of K* is in good agreement
with the theoretical prediction 8/s. See text for details.

energy for different strip widths L as a function of tem-
perature for the same noncompeting case. One clearly
sees a size dependence at large values of K indicating the
relevance of the symmetry-breaking field h8. At temper-
atures above K = 1/2.6 the size dependence is practi-
cally absent, indicating the spin wave regime of the crit-
ical line of the XY model. In this regime the helicity
modulus is equal to the renormalized coupling constant
K' and should be equal to K' = 8/vr at K . As in-
dicated in Fig. 6, the helicity modulus p = 2AF/7r is
in good agreement with the expected result. Moreover,
the termination point of the lines at AF = 0 is in good
agreement with the KT transition point.

Next, we use the MCTM method to study the Ising
transition in the case of competing 64 and hs fields. As
in Sec. IV, we set 64 ——0.06 and hs ——0.15. The results
for c vs K are shown in Fig. 7. The effective central
charge has two peaks as a function of temperature. At
high temperatures the peak value is very close to c = 1,
which is consistent with a transition in the universality
class of the XY model with a fourfold field. The other
peak at low temperatures is close to c = 1/2 which is
consistent with an Ising transition. The Ising transition
can be estimated simply from the peak value of c yielding
Ky ——4.6 6 0.4. These results are again in reasonable
agreement with the MCRG method, Eq. (20).

VI. SUMMARY AND DISCUSSION

In this work, we have analyzed in detail the proper-
ties of the two-dimensional XY model in the presence of
fourfold and eightfold symmetry-breaking Gelds h4 and
h8, respectively. First we have applied mean-field and
renormalization-group arguments to predict that, when
the h4 field changes from positive to negative values,
there is a phase transition between a phase with the or-

FIG. 7. MCTM results for the effective central charge with

h4 ——0.06, h8 ——0.15, corresponding to the competing case
of Fig. 2(b). The first peak at c = 1 corresponds to the KT
transition point, while the second peak at Ky 4.6 veri6es
the expected Ising transition, with c = 1/2.

der parameter pointing along the P = m/4 direction, and
another phase with the corresponding order parameter
pointing along the P = 0 direction. This phase transition
is continuous at high temperatures where the eightfold
field is irrelevant. In this case, right at the phase bound-

ary all the symmetry-breaking fields are absent and the
system is in the ordered phase of a pure XY model with
only algebraic long-range order. At lower temperatures
when the eightfold field is relevant, the nature of the
transition now depends crucially on whether hs and h4
are compatible or competing with each other. In the for-
mer case, the transition becomes first order and there
is a multicritical temperature separating the high tem-
perature and low temperature phase boundary. In the
competing case the first-order phase transition splits into
two transitions, both of which are in the Ising universal-

ity class. The order parameter rotates continuously &om
the P = 0 direction towards the P = vr/4 direction in
between the two Ising phase boundaries. We note that
similar effects can result from the competition of sixfold
and twelvefold fields as discussed by Selinger and Nelson
in their study of liquid crystals.

We have then performed a detailed numerical analysis
of our model Hamiltonian through Monte Carlo simula-
tions. Because of the large finite-size effects, the finite-
size simulation data have to be extrapolated to infinite
size through finite-size scaling concepts and numerical
renormalization-group analysis. We have first confirmed
the qualitative nature of the phase boundary as discussed
above. We have then employed the recently developed
histogram techniques to locate the multicritical tempera-
ture. Finally, in the case of the competing fields, we have
used Binder's block renomalization technique to identify
the Ising-like transitions. These results have further been
corroborated by Monte Carlo transfer-matrix techniques.
All our numerical results are in good agreement with the-
oretical arguments.

Our model was originally motivated by the study of
the H/W(100) chemisorption system. We have shown



50 NUMERICAL STUDIES OF THE TWO-DIMENSIONAL XY. . . 12 701

previously that the critical properties of this system in
the ordered c(2 x 2) phase can be described by an XY'
model with four- and eightfold symmetry-breaking fields.
The effect of the adsorbed hydrogen in the low cover-
age limit is to change the effective fourfold field. Thus
increasing the hydrogen coverage in this system is tan-
tamount to changing the fourfold field &om negative to
positive values in the model Hamiltonian studied in this
paper. In addition, our previous work showed that the
adsorbed hydrogen also generates an eightfold field which
is compatible with the fourfold field. Experimental evi-
dence &om an infrared spectroscopy study for this sys-
tem supports the scenario of a continuous transition &om
(11) (corresponding to negative h4) to (10) (positive h4)
phase at room temperature when the hydrogen coverage
is increased. On the other hand, the low energy electron
diffraction study of GriKths et al.24 showed indications
of coexistence between the two phases for coverages in
the range &om about 0.05 to 0.16 ML, which indicates
a first-order transition. This is exactly the behavior of
our model Hamiltonian studied in this paper when the

fields h4 and h8 are compatible. Thus the qualitative
agreement between the experimental data and the the-

ory presented here is gratifying. In view of the very rich
behavior of the phase diagram, especially near the multi-
critical point, more experimental studies of the switching
transition in this system and comparison with the theo-
retical predictions here would be most fruitful.
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