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Minimum total-energy calculations on the Hubbard-Peierls Hamiltonian
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Minimum total-energy calculations, which account for both electron-lattice and electron-electron in-

teractions in conjugated polymers, are performed for chains with up to eight carbon atoms. These calcu-
lations are motivated in part by recent experimental results on the spectroscopy of polyenes and conju-
gated polymers and they shed light on the long-standing question of the relative importance of electron-
lattice vs electron-electron interactions in determining the properties of these systems.

A large amount of experimental evidence' regarding
conjugated polymers can be understood in terms of
independent-electron theories that account for electron-
lattice (e-I) coupling and tr-bond compressibility. '

However, there exists a considerable body of spectroscop-
ic results, concerning especially the ordering of excited
states, s which cannot be explained without invoking
electron-electron (e-e) correlations. Since such different
experimental results are usually rationalized in terms of
models that describe adequately only either the e-l or the
e-e interaction, different groups of researchers have been
led to emphasize in these systems the importance of one
of the two effects at the expense of the other.

Here, the results of a set of minimum-total-energy cal-
culations that fully include both interactions are present-
ed. There are several reasons to pursue this goal. From a
theoretical standpoint it is natural to assume that the
transfer integrals depend on the distance between carbon
sites and that there is an energy cost involved in stretch-
ing a carbon-carbon bond. It is also not surprising to
find manifestations of e-e interactions which are not ac-
counted for by models implying complete screening such
as those of Refs. 2 and 3. On the experimental side there
is a growing amount of evidence indicating that the or-
dering of excited states depends on the specific polymer
and in some instances it appears that different probing
techniques lead to different results in this regard. In
particular, recent observations in short thiophene oligo-
mers and in poly (p-phenylene-vinylene) show that in
these systems the ordering of the two lowest excited
states is reversed compared to that observed in po-
lyenes. ' Within the context of the Su-Schrieffer-Heeger
(SSH) model it is natural to interpret this reversal in
terms of lack of ground-state degeneracy in the systems
of Refs. 6 and 7. This is because, upon excitation of one
electron from the highest occupied to the lowest unoccu-
pied molecular orbital, lack of ground-state degeneracy
leads to two separate bipolaron levels as opposed to a pair
of degenerate soliton levels. e-e repulsion favors the
2'A~ over the 1'8„level, ' and the results of Refs. 6
and 7 suggest that this latter effect is not strong enough
to overcome the energy difference between bipolaron lev-
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where y=(Etp)/(2a ) accounts for the strength of the
e-I coupling (small y corresponds to strong coupling). A
diagonalization of the first term in the right-hand side of
Eq. (2) gives the single-particle electronic energy levels
e~, (Ip„ I ). For a given set of occupation numbers v
it is possible to determine the values of the coordinates p„
(i.e., of the hopping constants} which minimize the total
energy
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for a given y. Here the first sum runs over the possible

els in these systems. These qualitative considerations
hint to the possibility that important physical effects may
be overlooked if the spectroscopic results are interpreted
without fully accounting for e-/ interactions.

Minimum-total-energy calculations based on the SSH
description were presented in Refs. 10 and 11. For a
trans-polyacetylene chain with N carbon atoms, the start-
ing point is the Hamiltonian for the n-electron system:
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Here c t, and c„, are creation and annihilation operators
for an electron of spin s on site n;u„ is the displacement
of the nth ion from its equilibrium position, so that
(u„+,—u„) is the deviation of the length of the nth bond
from its equilibrium length. The first sum describes hop-
ping with transfer depending linearly on bond length.
The energy associated with o -bond compressibility is de-
scribed by the second term, E being an elastic spring con-
stant. The Hamiltonian of Eq. (1) can be rescaled and
rewritten in terms of the dimensionless coordinates
p„=a(u„+,—u„)/tp as
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single-particle energy levels; the second is a sum over the
(N —1) bonds. It is through such a minimization pro-
cedure that the models of Refs. 2 and 3 account for e-l in-
teractions. In the ground state of the half-filled system
this procedure leads to Peierls dimerization.

Within the framework outlined above, the first 'B„ex-
cited state is obtained moving one of the two electrons
occupying the Nth level. to the (N +1)th level. In a long
chain (even N~ m } the set of bond lengths (i.e., the set
of values of P„) which minimizes Er(IP„ I ) for this elec-
tronic configuration displays two kinks; these delimit a
central portion of chain where the dimerization is invert-
ed. 'o Corresponding to this bond geometry the ¹hand
(N+1)th levels are degenerate and are found at the
center of the Peierls gap. Similar drastic distortions of
the ground-state bond geometry with inverted dimeriza-
tion in the middle of the chain occur for short chains;
however, finite-size effects modify the kink bond
geometry and break the degeneracy of Nth and (N +1)th
levels. In all cases the total energy corresponding to the
optimized bond geometry is substantially smaller than
the energy that the system would have for the same elec-
tronic configuration in the ground-state bond geometry.
From the Franck-Condon principle it should be expected
that absorption experiments probe the situation where
bond lengths are held to their ground-state values while
fiuorescence experiments probe the spectrum found by
optimizing the bond geometry.

Similar considerations hold for higher electronic excit-
ed states. Indeed, for realistic values of y, if one allows
bond geometry relaxation, the lowest 'A excited state
corresponds to moving both the ¹hlevel electrons to the
(N + 1)th level: in the N ~ ao limit both the total energy
and the bond geometry corresponding to this situation
are the same as those of the first 'S„excited state. '2

However, if the bond geometry of the ground state is
kept fixed, the electronic configuration which gives the
lowest excited 'Ag state is different: it corresponds to
moving one of the Nth-level electrons to the (N+2)th
level. '

The rest of this paper is devoted to studying how add-
ing Hubbard terms of the form

mined for given values of y, vo, and v, . This procedure is
the natural extension of that of Refs. 2 and 3. The hop-
ping constants (bond lengths) are not forced into
configurations which cease to be optimal when e-e in-
teractions are turned on.

The treatment outlined above differs from the explana-
tions usually given' ' to rationalize the spectroscopic
results of Refs. 4-9: these are based on the results of
Pariser-Parr-Pople quantum chemical calculations, where
the hopping constants are forced into a dimerized
configuration fixed from the outset. Within this scheme,
lattice relaxations are prevented: i.e., neither the hopping
constants for the ground state nor those for the excited
states are optimized. Bond lengths are obtained a pos-
teriori from n bond orders Ha. yden and Mele'6 ad-
dressed the issue of geometry optimization in models in-

cluding e-e interactions; using a renormalization-group
(RG) method they did obtain the optimized ground-state
geometry. However, they computed the energy of the ex-
cited states using the ground-state geometry; this pro-
cedure does not account for the e-I efFects underlying the
soliton physics.

The program described above has been implemented
numerically within the full basis set of singlet states for
half-filled systems with up to eight carbon atoms. ' The
valence bond basis of Ref. 18 for the S=O subspace is
used as a starting point. A symmetric fermion Hamil-
tonian is obtained by changing to a new basis of singlet
states by Gram-Schmidt orthogonalization; standard al-
gorithms can then be used to find the required eigenval-
ues. ' The set of coordinates P„which minimizes the
right-hand side of Eq. (5) must correspond to bond
geometries symmetric with respect to the midbond.
Therefore for a system of N sites minimization of a func-
tion of Nl2 independent variables is required; the
downhill simplex method has been used for this pur-
pose.
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associated with the mth (many-body) level can be deter-

to the Hamiltonian of Eq. (2) modifies the picture
presented above. Here, as usual, vo and v, describe on-
site and nearest-neighbor e-e repulsion, n is the number
operator for electrons on site ni, and n

&
(n &} is the

number of spin up (down) electrons. The distinguishing
feature of the treatment presented here resides in the way
the Hamiltonian [sum of (2) and (4)] is dealt with. The
fermionic part of the Hamiltonian is diagonalized to give
the (many-body) energy leve1s E ( tP„j,v vo). iThen the
set of values of the coordinates p„which minimize the to-
tal energy
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FIG. 1. Energy E& (in units of to), relative to the ground
state, of the 1 'B„state (empty squares @=0.9, filled squares
@=1.2) and of the 2'Ag state (circles @=0.9, bullets @=1.2).
Here v& =0 and N=S. The continuous (@=1.2) and broken
(y=0.9) curves show the corresponding results obtained from
the fixed ground-state bond lengths.
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Figure 1 displays examples of results obtained in this
way: ' it shows the energy (relative to the ground-state
energy) of the 1'B„and of the 2'As states for two
difFerent values of y (y=0.9, and @=1.2), N =8, and
v

&
=0. The energies of 1 'B„and 2 'Ag obtained keeping

the ground-state bond geometry fixed are also shown.
Note that level crossing between 1 'B„and 2 'Ag occurs
at much lower values of vo for the optimized excited-state
bond geometries than for bond lengths fixed to their
ground-state values. Also larger y's, e.g., smaller e-/ in-
teractions, lead to 1 'B„-2'As crossings at lower values
of vo, at least for N & 8. Including a nearest-neighbor in-
teraction (nonvanishing U, } does not (for reasonable
values of the ratio vI /Uo) change the qualitative features
of these results. In the range 0 ~ vo ~ 5, the main effect is
to increase slightly the 2 'As energy while that of 1 'B„ is
nearly unchanged. As a result, the 1 'B„-2 ' A crossing
occurs at slightly higher values of Uo. Results qualitative-
ly similar to these are found both for N =6 and N =4. A
detailed description of these and of the other numerical
results summarized here will appear i,n a forthcoming
publication.

It should be noted that three dimensionless parameters
(y, vo, and vI ) completely determine the ratios between
the energies of the electronic states as well as the relative
size of the hopping integrals. On the other hand, in order
to estimate bond lengths and absolute energies additional
phenornenological constants' are needed. To avoid in-
troducing other parameters, Table I shows examples of
how the hopping constants (rather than the bond lengths)
change as e-e interactions are turned on; note that large

TABLE I. Results for the hopping constants {1—IS'„) for
chains with N=8, y=0.9, and u& =0. The nth column gives
the nth hopping constant with the outside bond corresponding
to n = 1 and the central bond to n =4. N, is the number of elec-
trons. The last set of data refers to a doped chain.
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has been added to the Hamiltonian (here tb is a site-
independent phenomenological constant). Figure 2
shows numerical results for this situation when
(tblto)=0. 08, y=0.9, and v, =0. As anticipated the
1'B„-2'A crossing occurs for higher values of vo than
before. Again, analog behavior has been obtained for sys-
tems with N =4 and N =6 and the distorted bipolaron-
like bond geometry survives in the presence of e-e repul-
sion. Although these results agree with the qualitative
arguments presented at the beginning of this paper, in or-
der to account quantitatively for the findings of Refs. 6

hopping constants correspond to short bonds and vice
versa. The experimental values of the energies for the
2 'A and 1 'B„states are close in polyenes; i.e., realistic
values of vo correspond to the 1'8„-2'A crossing re-
gion. It is clear from Table I that the various types of
solitonlike bond geometries (and in particular the re-
versed bond alternation in the chain center) survive at
these levels of e-e repulsion.

It seems appropriate at this point to comment on a re-
cent paper by Konig and Stollhoff" which called into
question the importance of the Peierls mechanism in
determining the ground-state dimerization of trans-
polyacetylene. The results of Table I for the half-filled
ground state are at variance with the conclusions reached
by these authors. These results show that (for realistic2
values of y} e-e interactions have little effect on the
ground-state hopping constants and are consistent with a
picture where the Peierls mechanism is the main reason
for dimerization. The results of Konig and Stollhoff ap-
pear due to their failure to fit their ub initio results in-
dependently to those obtained from a semiempirical
Hamiltonian which does not include correlations.

In order to model systems where ground-state degen-
eracy is lifted as a consequence of the local molecular
structure, an explicitly biased hopping term
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FIG. 2. Same as in Fig. 1 in a system where ground-state de-
generacy is broken by a biased hopping term of the form (6},
with ( tb /tp )=0.08. Here y =0.9, v, =0, and N =8.
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and 7 computations on larger systems as well as more
realistic forms of the terms lifting ground-state degenera-
cy are needed. It should be stressed, in this regard, that
the energies Er computed in this paper refer to the
semiclassical minima relative to the optimized bond
geometries for the mth many-electron level. Spectroscop-
ic experiments, on the other hand, probe the various vib-
ronic levels associated with this electronic state.

The results of Figs. 1 and 2 show that 1'B„-2'Ag
crossing occurs for suSciently high values of vo even if
the bond geometries are held to their ground-state
con5gurations. However, failure to account for lattice re-
laxation for the electronic excited states' ' amounts to
ignoring a physical ingredient which is essential in inter-
preting the available spectroscopic evidence.

In summary, numerical results from a full many-body
description of conjugated chains which includes both e-1
and e-e effects have been presented for chains with up to

eight carbon sites. These systems are too small to allow
reliable extrapolation to N~ ~ of detailed numerical re-
sults such as those for the energy of the excited states (for
given y, Uo, and U& ) or for the strength of the e-e repul-
sion at which 1 'B„-2 'A crossing occurs. However, in
view of the results of Refs. 10 and 11, it is natural to ex-
pect that for long chains the nonlinear excitations pre-
dicted on the basis of the models of Refs. 2 and 3 will
continue to correspond to the relaxed (minimum-energy)
bond geometries of the excited states when realistic e-e
interactions are turned on. Moreover, the effect of such
interactions on the electronic excitation spectrum for
long chains' will be qualitatively similar to that dis-
cussed here for smaller systems.

Several useful discussions with Ken Hass, Phil Pincus,
and Bill Schneider are gratefully acknowledged.
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