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Magnetic systems consisting of a layer with finite thickness coupled to a semi-infinite bulk are studied

with Ginzburg-Landau (GL) mean-field theory. The critical point of the system is determined in terms

of the coeScients in the GL free-energy functional and the thickness of the thin layer. From the corre-
lation functions within the semi-infinite bulk, an effective extrapolation length is able to be defined, al-

though only the continuity of magnetization is assumed as the interfacial condition. This extrapolation
length describes the coupling between the two subsystems and diverges with a new exponent v= 1. The
critical behavior of spontaneous magnetization according to the variance of the layer thickness is de-

rived as m, —gL /L, —l with the critical thickness L, and a new critical exponent PL =
—,.

I. INTRODUCE:TION

Multilayer systems have been attracting considerable
attentions from the viewpoints of both theories
and applications. Giant magnetoresistance was
observed in ferromagnetic/nonmagnetic/ferromagnetic
sandwiches. ' Magnetic multilayer systems are found
to be very useful for magneto-optical recording. Resort-
ing to the difFerences among the Curie points and the
magnitudes of magnetization, a magnetic trilayer disk of
reading/switching/recording films, has been developed
successfully in order to increase the recording density
and to reduce the recording time for magneto-optical
recording. Coupling a magnetic thin film with in-plane
anisotropy to the bulk medium for memory of informa-
tion with vertical anisotropy reduces significantly the
recording field. Multilayer systems in other materials
have also become important. A layer of He deposited on
a system of He has been reported to change the proper-
ties of the He system significantly. ' A system of a lay-
ered structure of superconducting (and nonsuperconduct-
ing) materials is found to show interesting behaviors ac-
cording to the electron-electron interactions, diffusion
constants, and the layer thicknesses.

As the present technologies are as sophisticated as to
resort to the values of critical points and the detailed
temperature dependences of relevant physical quantities,
theoretical analyses up to now became insufficient. Even
the most fundamental Ginzburg-Landau (GL) mean-field
theory' has not been worked out in multilayer systems to
provide the necessary information. In the bilayer system
for magneto-optica1 recording, for example, the thickness
of the layer with in-plane anisotropy is typically of the or-
der of 100 A. Therefore, this layer can neither be treated
simply as the surface to the bulk medium, nor be approxi-
mated as a semi-infinite bulk, both of which have been
studied extensively. ' One has to treat a system con-
sisting of a layer with finite thickness coupled to a semi-
infinite bulk. ' This structure can be a sufficient ap-
proximation for other systems, such as those mentioned
above, and will be investigated in the present study. In
the theoretical point of view, it is the simplest structure

which will show the most important aspects in multilayer
structures. Since the inhomogeneity in general multilayer
structures is taken into account in the bilayer system, the
competition between the fluctuations in the neighboring
subsystems via the interface can be discussed. On the oth-
er hand, the possible accumulated effects from other sub-
systems can be expressed formally by the extrapolation
length defined at the top surface of the thin layer in the
present bilayer system.

Since the semi-infinite bulk is one of the two subsys-
tems of this structure, it is useful to review briefly the es-
tablished results for the critical phenomena in semi-
infinite systems. The theoretical approach in this field
was begun by Mills two decades ago. ' He set up first a
microscopic molecular-field theory for magnetic systems
with a surface and derived the relations for the magni-
tudes and derivatives of the order parameter at the sur-
face. These relations are then clarified to be the bound-
ary conditions for the continuum GL free-energy formal-
ism in semi-infinite systems. Binder and Hohenberg stud-
ied the Ising model in a semi-infinite system by means of
GL theory, high-temperature series expansion, and scal-
ing theory for several thermodynamic quantities and
correlation functions. ' ' Critical exponents characteris-
tic in semi-infinite systems are defined. They also intro-
duced the concept of extrapolation length in magnetic
systems. Lubensky and Rubin investigated the positive,
negative, and infinite extrapolation length cases. ' They
presented analytic expressions for correlation functions
and the susceptibilities. Bray and Moore studied in detail
the special case of infinite extrapolation length. '

Renormalization-group study was also performed by Lu-
bensky and Rubin' for the case of positive extrapolation
length. With a formalism in wave-number space, e ex-
pansions were carried out to the first order. Cordery and
GriSn made e expansion study with another formalism
where real-space notation is used for the direction verti-
cal to the surface, while wave-number notations are
adopted for the parallel directions. ' They were success-
fu1 in making the analyses very transparent.

Critical phenomenon in thin-layer systems have not
been revealed as fully as those in semi-infinite systems. In
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GL free-energy functional formalism, one introduces crit-
ical points a priori in the coefBcients of quadratic terms of
magnetization in the free-energy expression. However,
the mean-field critical point is correct only for the corre-
sponding bulk, namely for infinite thickness. For a layer
of finite thickness and with arbitrary surface exchanges,
phase transition occurs at a temperature deviating from
the given critical point. This deviation of critical point
was discussed by Kaganov and Omel'Yanchuk from the
appearance of spontaneous magnetization. Correlation
functions, however, have not yet been studied.

The deviation of the critical point in GL mean-field
theory is very important in magnetic multilayer systems
where layers are of finite thicknesses. It is much more in-
volved than that in a single thin layer, since the interfa-
cial efFects show complicated dependences on the ex-
change coupling s within individual subsystems, the
thicknesses of layers, and the exchange coupling on the
open surfaces of the structures. To clarify these depen-
dences and to determine the true mean-field critical point
is the first purpose of the present study.

Generally, the critical point defined from the diver-
gence of correlation length coincides with that defined
from the symmetry breaking, namely the appearance of
spontaneous magnetization. This property is taken into
account a priori as an assumption in the usual GL formal-
ism for bulk systems and semi-infinite bulk systems.
However, this coincidence is not trivial in multilayer sys-
tems such as that studied in the present paper. To show
this coincidence explicitly in GL mean-field theory for
magnetic multilayer structures is the second purpose of
the present study.

It has been revealed that phase transitions and critical
phenomena in semi-infinite system can be investigated by

GL formalism analytically. Critical points, thermo-
dynamic quantities, and correlation functions are ex-
pressed directly from the quantities given in the GL free-
energy functional. It is of academic interest to see how
far the multilayer systems can be approached analytically
in the scheme of mean-field theory. This is the third pur-
pose of the present paper.

The remaining part of the present paper is organized as
follows: Formalism is given in Sec. II and the correlation
functions are calculated. The critical point is determined
and the mechanism for the critical-point shift is clarified.
The critical behaviors of correlation functions are re-
vealed. Susceptibilities are discussed briefly. Section III
is devoted to discussions of spontaneous magnetization.
The symmetry breaking is clarified as the thickness of the
thin layer varies. Summary and discussions are given in
Sec. IV.

II. FORMULATION AND CORRELATION
FUNCTIONS

The system studied in the present paper consists of a
layer with finite thickness coupled to a semi-infinite bulk,
as schematically shown in Fig. I where the z axis is taken
to be vertical to the surface and the interface, and the ori-
gin is at the interface. The thickness I. is finite but large
on the scale of atomic lengths. However, the area of the
surface and the interface are infinite so that true criticali-
ty occurs. The magnetic constants are taken to be uni-
form in the individual subsystems and change abruptly at
the interface. The Ginzburg-Landau free-energy func-
tional' for the present system under an external field can
be given as

F 1 2 1 4 1 Bmdx —Am+ —Bm —8 m+ —CI 4 1 ext 2 I dz+ f dx) —C)A, m (z =L, )

2

dz,+f dx,~f A2m2+ a&m—' H,„,m—+ C2— —

where
~~

is used to specify vectors parallel to the interface
and the surface, with the following interface condition:

m(x~~, z=+0)=m(x[~ z 0)

The first two integrals cover the free energy of the thin
layer with a surface, and the last integral is for the semi-
infinite bulk. The free-energy functional studied up to
now can be obtained setting I. =0.'

The coef6cients of the quadratic terms are given by

A )
= A )(T —T„) and A~= A ~(T —T,~),

A) B) C

A2 B2 C2

thin layer

infinite bulk

where T, &
and T,2 are the mean-field critical points for

the layer in the infinite-thickness limit and the semi-
FIG. 1. Geometry of the present system: a thin layer cou-

pled to a semi-in6nite bulk.
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in6nite bulk, respectively, and A
&

and A2 are positive
constants. In the present paper we consider the case of
T„)T,z. The coefficients 8; and C;(i =1,2) are taken to
be positive with weak temperature dependences. The ex-
trapolation length A, is adopted to describe the surface
condition of the thin layer. ' ' The interface condition
stands for systems with ferromagnetic interface coupling.

The difFerential equations for magnetization are de-
rived from (I}and (2}by the variational method

Bm+B]~ ' az2

8 m
A2m+B2m Hext=C2 2, z &0z'

Involving the relation S(r,r') =5m(r)/5H(r'), we ob-

tain the following equations for the spin-spin correlation
functions above the critical point and in the absence of
external Seld:

—ES(r,r')+ —S(r,r')= 5(r —r'), 0&z &L,1, 1
z ' C

—ES(r,r')+ —S(r,r')=0, z &01

2

for z') 0 and

with the following interface and boundary conditions:

Bm(r)
az

Bm(r)
z

z=L
= —X-'m(x~~, z=L),

=0,

—ES(r,r')+ —S(r,r'}=0, 0&z &L,1

1

—ES(r,r'}+—S(r,r')= 5(r —r'}, z &01, 1

m (xll'z +0)=m (xll'z = —0),

Bm(r) Bm(r)
1

z =+p Bz
—

2 z= —0

for z' & 0, with the boundary and interface conditions

M(r, r')
az z=L

'S(r, r')
z=L

BS(r,r')
and

S(r,r') =S(r,r')
z =+0 z= —0

BS(r,r') BS(r,r' }
and

Bz =+p Bz z= —0

where

A, A2
and gz

1 2

Both g& and gz can be positive and negative as well, according to the temperature.
Since the system is uniform in the directions parallel to the surface and the interface, one can perform a Fourier

transformation for the correlation function in these directions. In this way, one can solve the above equations and ar-
rive at

1 (Ctrl —Czy2)exp( —r iz)+(Ctyt+C2'y2)exp(r tz)
S(q~~;z, z )=

2C»i «iri+C2r2)(yi+~ ')/(ri —~ ')—«iyi —C2r2)exp( —2yiL)

y, +X '
X 'exp[ —y, (2L —z')]+, exp( —yp')

V1

for O~z ~z'~L,

(y &+A, ') /(y &

—
A, ')exp( —y &z+ y2z')+exp[ —y, (2L —z )+y2z']

S(g(),z,z' }=
(C,y, +C,y, )(y, +A. ')/(y, —

A, ') —(C,y, —Cyrus)exp( —2y/L)

for z'&0&z &L, and
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$(Q~~, z, z') = exp( —y2Iz —z'I )+1

2C2y2 2C~y2

X
(Cl Y1+C2yp)exp[ 2y1L +Y2(z +z ) ] (C1y1 —C2yz)(y1+& ' )/(y1 —

A, ')exp[y2(z +z') ]

(C,y, + C~Y2)(y, +A, ')/(y, —
A, ') —(C, y, —C2y~)exp( 2y—,L )

for z', z ~ 0, where

dd —1g
S(r,r')= f d, S(Q~~,z,z')exp[iQ(~. (x~~

—x~~')],

(12)

exp(ik1 IzI }l

2.

y1=$1 +gi nd yz=g2 +a~~.
n order to clarify the critical behaviors of the system, we transform the above correlation functions back into real

space. To this end, we make the following transformation:

1 dk exp(ik zI) 1
exp —YIzI X

2y f (y) — 21r k +y f ( ik—)

Ik =k„
exp(ik, lzl } df (

—ik}
(14)k2+y2 dk

where the summation on n is for the zero point of func-
tion f (

—ik) just on the real axis of k space, and the one
on I is for those in the upper-half k space. The above
transformation reveals all the poles of the correlation
function, which contains the information about the criti-
cal point of the system. Since the distribution and the ex-
pressions of the poles show complicated dependences on
the magnetic constants, the layer thickness, and the ex-
trapolation length A, , we will concentrate on the positive
A, case in the present paper.

where C2 =C2/C, and

O, =tan '(k/C2y2) and 82=tan '(Ak) .

Thus, the poles for S(Q~~,z, z') should satisfy

kL + tan ' + tan '(k A, ) =n n,k

Czy2

for n =+1,+2, . . . . (17)

A. Correlation function in the thin layer

We first analyze the denon1inator of S (Q~~, z, z') in (10):

ik+k—'
( ik+ C—

2y2), —( ik C—zy 2)e—xp(2ikL)—ik —X '

='1/ k +(C2y2) exp[i(kL —8, )]

X2i sin(kL +81+8&),

The above equation is solved graphically in Fig. 2,
where the negative poles have been omitted from the
symmetry. The distribution of poles is schematically
shown in Fig. 3. The interval between the nearest-
neighboring poles approaches m/L for large n from (17).
There is no pole in the upper half k space for positive A, .

Knowing the poles, we proceed to make a transforma-
tion on the correlation functions $(Q~~', z,z') in (10) ac-
cording to (14). For example, one has

1 (C,y1
—C&yz)exp[ —y, (2L +z —z')]

2y1 (C,y, +C2yz)(y, +A, ')/(Y, —A, ') —(C, Y, C2zy)ex —( p—2Y1L)

exp[&k(L—+z —z') +& 81+182] +
(k +y1)2i sin(kL +8, +Oz)

cos[k„(z —z'}]
2(L +81+8~) k„+y1

where 8', and Oz are derivatives of 8, and Oz with respect to k. Similarly, one can evaluate the remaining part of (10) and

arrive finally at

$(Q~~'z, z' ) = 1
II'

C( n=], 2, .

cos[k„(z —z') ]
—cos[k„(z +z')+ 28, ]

I. +0)+02 k„+y,
sin(k„z+ 8, )sin(k„z'+ 8, )

X
I.+8', +0,' k„+y,

(19}
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0

FIG. 2. Graphical solution for (17): curves 1 and 2:
y =tan '(k/C~y&) and y =tan '(kA, ); curve 3: y =kL, and
curve 4 is the summation of curves 1, 2, and 3.

The integrals, such as that in (18), cancel with each
other. As will be revealed more explicitly in the follow-
ing, the complete cancellation among the integral terms
is the responsible mechanism of the shift of critical point
in the layer of finite thickness.

After the above reduction of the correlation function,
we are ready to make an inverse Fourier transformation
to obtain the following correlation function in real space:

correlation function near the true mean-field critical
point, where gz

' is generally finite and thus Q
~~

in yz will

contribute only as a higher-order infinitesimal in the
asymptote of the correlation function.

Therefore, the critical point T„where the correlation
length diverges, is determined from (20} by the relation
kf+g, =0, with k& determined by (17) for n =1 and
yz—- 1/gz. As k

&
& 0, it is now transparent that T, (T,&.

This inequality between the mean-field critical points is
reasonable from the relation between the strengths of the
exchange couplings on the top surface, in the layer and in
the semi-infinite bulk.

Recalling the definitions of the correlation lengths g,
and gz in (9), one arrives at the following equation for the
critical point T, :

LQ A, /C—, =cot 'Q —A t C, /AzCz

+cot '(A,Q —A, /C, ) . (22)

This equation should be compared with (12) in Ref. 20 for
a single layer with finite thickness. Then, one finds the
explicit expression, such as the first term in the right-
hand side (rhs} of (22), for the effect of interfacial cou-
pling on the shift of the critical point.

The above analyses for the correlation function are es-
tablished only in the temperature region where no mag-
netization exists in the total system. Thus, the critical
point T, derived as the solution of (22) is meaningful only
if it is above the critical point T,z of the semi-infinite
bulk. From (22), the condition for T, & T,z is

~ = 2 sin(k„z+ 8, )sin(k„z'+ 8, )
S(r, r'}=

C) „ L+8', +8,'

X Gd i(x((
—xl, k„+g'i }, (20)

A 1( Tcz) /C i ( Tcz)

&cot '[A,Q —A, (T,z)/C, (T,z)] . (23)

where the function Gd, (r, t } is defined as'

and

Gd(r, &)= „. . .gd(lrlv &}
I (d/2 —1)
4~d/z r~d

—z

' d/2 —1

1 u
d IZ —1

(21)

Imk

with the I function and the Bessel function K.
It is noted that the approximation yz-—gz

' has been
involved in the derivation of (20) from (19). This treat-
ment is reasonable since we are concerned about the

This point will also be discussed from the correlation
function within the semi-infinite bulk.

As will be revealed in what follows, the critical point
T, is also the temperature at which spontaneous magnet-
ic ordering occurs in the thin layer and magnetization is
induced in the semi-infinite bulk. We note that this coin-
cidence is not trivial in the present bilayer system. Here-
after, T, will be referred simply as the critical point of
the system, although the bulk phase transition occurs at
T,z. The correlation function can only be evaluated
analytically above T, in the present inhomogeneous sys-
tem.

There are two limits for the layer thickness, namely
L ~0 and L —+ ~. They correspond to a semi-infinite
system with a surface and a system consisting of two cou-
pled semi-infinite bulks, respectively. The system in the
limit of L ~0 is equivalent to the system obtained by put-
ting the magnetic constants in the layer equal to those for
the semi-infinite bulk. In this way, we obtain from (10)

-k3 -kz -k, k, 3k

Rek

S (gl, z, z' }= exp[ —yz(z' —z ) ]
l

2Cqy~

1 'Vz+ , exp[ —y~(2L —z' —z ) ] .
2C2V2 y~+

FIG. 3. Distribution of the poles for positive A,. (24)
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This expression is nothing but (4.5) in Ref. 16, except for
a trivial difference in the definition of the z axis.

In the limit L~ 00, the interval between the nearest-
neighboring poles in (17) approaches zero and one obtains
the continuous integral path, the real axis of k space. Ex-

plicitly, we have from(17}

(L+8', +82}dk=n(n+1 —n)=sr, for L»1. (25)

Then, the summation in (19) is replaced by the following
integration:

dk cos[k(z —z')] —cos[k(z+z')+28&]
S(Qii;z, z'}= fC) o m k'+ y',

1 I dk exp[ik(z —z')] 1 I dk exP[ik(z+z')+i28, ]

C] ~ 277 k +p) C) ~ 2' k +y)
(26)

This expression is equivalent to (4.5} in Ref. 16. From the correspondence between these two expressions, it is found
that the effect on the top bulk from the bottom one can be described by an effective extrapolation length C,gz/Cz. The
present effective extrapolation length is positively finite as far as the temperature is above T,2 and diverges with the crit-
ical exponent v= —, for the correlation length. However, the effect of the finite layer on the semi-infinite bulk is

significantly different, as will be revealed in what follows. As L ~~, the minimal pole approaches zero and the critical
point is then restored to T„,as it should be by definition.

B. Correlation function in the bulk

There are two terms in (12). The former describes the direct correlation and has been discussed in previous publica-
tions. ' As for the second term, it is found that there are three typical temperatures

A+A~(T(~}—T ~)/C~=l,

.LV AI(T„—T(2})/C~+tan 'kQA I(T„—T(2})/C~ =—,
LQA', (T„T(3})IC&+—tan 'A+A', (T„—T[3])IC, =~,

(27)

which satisfy T~3» & T~2» & T„&T~&». There is no pole in the upper-half k space in the temperature region T & T~2»,
while there is one for T & Tt, ».

With the approximation

1 J~ dk exp[ ik(z+—z')] k ia ——1 J~ dk exp[ ik(z+—z')+i2kz ]
2~ k+g', +g, ' k+ia C, — 2n k'+Q~~+g, '

we have from (12)

(28)

Gd(r —r', (2 )
— Gd[r —vr' —z2Czg, coth(t+Lg, '), gz ],

2 2

T T[]»

S(r,r')= Gd(r —r', g2 )
— Gd[r —vr' —z2Czg&tanh(I'+Lg& '), (z ],

2 2
T[1» —T —Tcl &

(29)

Gd(r —r', g'z ) — Gd[r —vr' —z2Cz~g, ~tan(8+L~), (
'},gz ], T„&T& T(2},

Cq C2

where the notation of vr=(x~~, —z) in Ref. 16 is used and

P=coth —,P=tanh —,and 8=tan

The above expressions of correlation function hold when ~r —vr'~ is much larger than the substractors in the arguments
of the second terms. For Tt, »

& T & Tt, », we have
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S(r, r') = G&(r —r', $2 )— Gd [r—vr'+z2Cz (g& ~cot(8+L ~g&~
' —n /2), (2 ]

2 2

+ C', (g, ( 'tan(8+L [g'&~
' —n./2)exp[(z+z')C'» ~g',

~

'tan(8+L ~g, [
' —m. /2)]

2

XG, , [x»
—xI, g —[C» lg&l 'tan(8+L lg»l

' —~/2}]'], (31)

with C'» =C& /C2.
The critical point T, is identified as the following. In the case T,2 & T[2], one has T, =T,2 from (29) and the phase

transition is the bulk one. This is the same conclusion as that given in Sec. II A. In the case T[z] & T 2) T[3] g2 drops
from a positive value to zero as temperature decreases from T[z] to T,2. Meanwhile, tan(8+L ~g, ~

' —n'/2) increases
from zero to positive. Thus, there is a temperature between T[z] and T,2, where

(32)

and the correlation function in (31) changes its asymptote.
The above relation is equivalent to (22). Therefore, the temperature thus determined is the critical point T, derived

in the discussion for the correlation function within the thin layer. It is then concluded T[z] & T, & T,2. The correlation
length in the semi-infinite bulk parallel to the interface diverges as the one in the thin layer diverges. In the case
T,2& T[3] one finds that as the temperature decreases from T[2] to T[3] tan(8+L ~g, ~

' —m/2) increases from zero to
infinite, while fz remains finite in this region. Then we arrive at T[2] & T, & T[3] & T 2 Recall that the expressions of
the correlation function for temperatures below the critical point T, are meaningless.

C. Correlation function between subsystems

exp(y zz')
X

2y2

The expression of correlation function for T &
T~&~ is given as

2g» cosh[P+(L —z)g, ']
S(r,r')= », Gu[x» xI+z—[z Czkcoth(P+Lg» }l 4 JC, sinh(p+L(, ') Bz'

The correlation function (11) is equivalent to

(y, +A, ')/(y» —][, ')exp( —y,z)+exp[ —y, (2L —z)]
S(g»,z,z') =2

Bz' (C»y»+Czy2)(y, +A. ')l(y, —
A. ')—(C»y» —Czyz)exp( 2y,L)— (33)

(34)

where the approximation 1/(a +ik) =exp( ik /a)/—a+0(k ) has been involved.
The subtractions in (29) are replaced by a derivative operation in the above correlation function. This results in the

same critical exponent for the two correlation functions as will be discussed later.
Similarly, we have for T[,]

& T & T„

2g, sinh[P+(L —z)g, ']
S(r, r') =C, , Gz[x» —x»'+z[z' —Czg, tanh(/+LE, ')],g2

cosh( +Lg» »)

for T i T) T(p)

(35)

2lg)l sin[8+(L —z)lg»l ']
S(r,r'}= 8+L~ki~ '}]kz']

cos(8+L g
—

»)
(36}

and Snally for T~z~ )T &
T~3]

2I4&l
S(r,r') =

C)

2+

sin[8+(L —z}(g (
']

xj~+z[z'+Cz lg'~ lcot(8+L lg) I

' —~/2)], g, ']
cos(8+L g'& ')

sin[8+(L —z ) (g, (
']

sin(8+L g» ') Gd —1 [x» xI 42 [C» lk] I
't»(8+L lg» I

' —~/2)]']

&«)lg»l '«n(8+Lip, [
' —n/2)exp[z'C', (g, ~

'tan(8+L[g'»[ ' —~/2)] . (37)
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As pointed out previously, the expressions of correla-
tion functions are meaningless for temperatures below the
critical point.

As revealed so far, the correlation functions change
their expressions as temperature varies. This is a charac-
teristic feature of the multilayer structures.

D. Critical behaviors of correlation functions

as ix) xj(l ~ ~ (38)

Thus, one arrives at the critical exponent g~~,
= —1, the

same as that in (4.29) in Ref. 16.
Since 0(k,z+8, k&L+8& =m —82 at the critical

point and 83&0, we have sin(k&z+8&)sin(k&z'+8&) &0.
Therefore, the correlation function is positive, as it
should be in the present ferromagnetic system. Two
linear asymptotes are derived from (38}:

S((x~~,z), (x),L ))-sin8&sin82

+k, cos8&sin82Xz, for z 0,
S((x~~~,0), (x~~, z ) ) —sin8, sin83

+&ksin &8c so8X2(L —z), for z &L

(39)

near the top surface and the interface.
As for the correlation function within the semi-infinite

bulk, it is found from (29) that

S(r,0)-, as lrl~~,1

S(( „,0),0)- 1
(40)

which state p~ 2=1 and
g~~

2=2, respectively. They are
the same as those in (4.21) of Ref. 16.

Comparing the expression of the correlation function
in (4.19) in Ref. 16 and those in (29) for the present sys-
tem, one finds that the effect from the thin layer to the
semi-infinite bulk can be expressed effectively by an extra-
polation length. Extrapolation length has been incor-

Knowing the expression of the correlation function
and the critical point, we are now ready to investigate the
critical phenomena in the system. Let us start to investi-
gate the correlation function (20) for 0&z &z'&L and
A, &0. Near the critical point determined by (22}, the first
term in the summation in (20) becomes dominant. Its
asymptotic behavior changes from an exponential decay
to a power-law one at the critical point. The divergence
of the correlation length parallel to the interface

g(~,'=gk, +g, is ready to be evaluated from (21) as

g(~,'-QT/T, —1 for T T, . The critical exponent is

2'
At the critical point, one has

sin( k &z+ 8, )sin(k, z'+ 8, )
S(r, r') =

C) L+8)+82

I [(d —3)/2)]/[4m "
]

lx„—x,', l"
'

porated a priori in the models for semi-infinite systems up
to now and the type of phase transition is classified by the
value of this parameter. ' ' However, in the present
system, the effective extrapolation length at the interface
shows a clear temperature dependence. This effect mani-
fests itself most significantly in the correlation function
(31). The third term in (31) behaves as
exp( —lz+z'l/A, )/A, in the vertical direction, where A. is
the effective extrapolation length and is given explicitly
by

L
I+

I
2

(41)

comparing the third term of (31) with (4.28}of Ref. 16.
From (27), it is found that the effective extrapolation

length A, diverges as temperature approaches T(z). The
divergence of this extrapolation length is characterized
by a new exponent V

(1 T/T(~) ), T p T(~) (42)

asz ~—oo (44)

Thus, one arrives at gz 2= 1, same as that for the correla-
tion function for z, z' ~ 0. The other critical exponents are
also the same with those obtained previously. '

K. Susceptibilities

Susceptibilities can be evaluated from the corres ond-
ing correlation functions via the following relations:

with v=1. This exponent should be compared with the
well-known critical exponent v= —,

' for the correlation

length.
Since ltan[tan '(A/ g, l)+L/lg, l]l~~ as T~T(3),

the last asymptote in (29) and the second term in (31}be-
come invalid. It is not difficult to obtain the following
correlation function at T= Tt2~.

S(r, r') = Gd(r —r', g2 )+ Gd(r —vr', $2 ) . ( 3)
2 2

As the thickness L of the layer approaches infinity, the
typical temperatures T(2) and T[3] coincide with T„as
seen from (27}. The correlation function in this limiting
case can be seen in (26), where 8, =kC', gz for small k.
The length C', gz diverges at T = T,2 with the critical ex-

ponent v= —,
' for the correlation length. Therefore, the

divergence of the interfacial extrapolation length with the
exponent V= 1 at a temperature above the critical point is

a characteristic phenomenon in systems where a layer
with finite thickness is present.

Finally, we discuss the correlation functions for
z'&O~z ~L. The asymptotic behaviors z~O and z~L
are similar to those given in (39). From (36), one has

S((xi', z ), (xi', z') )

, G„{™z[z' C,
'

gl, t la(n8+—Llg, l
')],g', ']

az' d

1

lz' —c3 lg) lt»(8+L lg, I



50 MEAN-FIELD THEORY FOR CRITICAL PHENOMENA IN. . . 12 655

y(z, z'}=fd 'xIS(r, r')=S(0;z,z'),

y(z)= fd"r'S(r, r')= fdz'S(0;z, z') . (45}

where iF = r—nr +2mL +2X mL .
The magnetization in the thin layer can be expressed

using these quantities. Especially, one has

X(zz )= X
1

C) „
sin(k„z+ 8, )sin(k„z'+ 8, )

L +0)+Oq

Therefore, we have from (19) N» dm dm+
v2 &0 +~4—2rnz+y4 mL, Qrn4 —2m'+iF4

(49)

x
km+ O'I

1 1

k, +g, T —T,
, asT T, , (46)

for 0 & z, z' ~L where T, is determined in (22). The criti-

cal exponent for the susceptibility is y=1. In the same

way we can evaluate other susceptibilities. It is not
difBcult to see that the critical exponents are same with
those in Refs. 14, 15, and 16. The evaluation for suscepti-
bility y(z) is straightforward, although involved.

We notice that the susceptibility does not diverge at

T(2}, since there exists a prefactor A, in the third term
of (31). Although no new critical exponent can be ob-
tained for the susceptibility in the present bilayer system,
experimental measurement for it is still very itnportant
which identifies the critical point of the multilayer sys-
tem.

rno=@ sn[x, k]

with

(50)

2

p =1 )/1—iF—, v =1++1 iF, k—=
(51)

x=2F —,k —F arcsin2'
mL

, k,
p

1~Lv.

The above integral depends strongly on the value of iF,
which in turn is determined by the value of mL. There
are five regions for mL, as shown in Fig. 4, which corre-

spond to different values of 8 and thus one has different
final expressions for (49}.

In the region (a}, where 0~ mL & (+4+2/A,
—l/2/X)/2, (49) is integrated and the expression for mo

as a function of mL can be obtained in terms of the Jaco-
bian elliptic functions as

III. SPONTANEOUS MAGNETIZATION

In order to integrate the simultaneous differential equa-
tions (4) for H,„,=0, we use the magnitude of magnetiza-
tion at the surface, mL ——m(z =L), as a parameter. One
then obtains from the first equation (4)

—C
1 Bm, z, 4

a
=—A)m +—B)m4

The function F [x,k] is the first type of elliptic integral.
It is ready to see that p is proportional to NFL near the
critical point where mL is small.

The first derivative is evaluated as

A
CI =+B,C, /2 +()tI —mo)(v —mo)

@=+0 1

=QB&C&/2 cn[x, k]dn[x, k] .
—AI~

1—( —'A )mt + 'B I mr )+—'CI—
2 4 2 BZ

A)m +4'B)m

—( —,
' A, rnl + 4B, rnL )+—,'CI&—

z=L

(47)

(52)

On the other hand, from (4) and (5) the first derivative
at the interface from the semi-infinite bulk side is

where the first condition in (5) has been involved in the
last step.

From the discussion in the foregoing section, it is clear
that the critical point T, of the system is below T„. As
far as the critical phenomena of the system are con-
cerned, we can normalize the lengths, such as L and A,,
and magnetizations by +C&/ —A

&
and +—A &/B&, re-

spectively. Hereafter, we denote these normalized quan-
tities by a tilde.

There is a maximal magnitude of spontaneous magneti-
zation in the thin layer for the positive A, case. This max-
imum m» is given by

(4&)

:I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4FIG. 4. Quantity iX as the function of rnL. There are five re-
gions for the value of N&. The dot curve is for iF = thL, .
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QBzC2/B, C, =
Qp sn [x,k]+2(A2/B2)/( —A, /B&)

cn[x, k]dn[x, k]
sn[x, k]

(54)

It is strongly nonlinear and involves the Jacobian ellip-
tic functions. However, since the left hand side (lhs) of
the above equation is independent from the thin-layer
thickness, it is very convenient for discussions about the
thickness dependence of the system. It can be reduced to
a very simple equation for the critical points of the sys-
tem.

Similarly, we can integrate (49) in the other regions of
mJ. Now we are ready to investigate the temperature
and thin-layer thickness dependences of the spontaneous
magnetization in the system. For this purpose, we define
a function y(mL, L } by the rhs of (54) and corresponding
ones in other regions:

QB2C2/B, C, =y(mL, L ) . (55)

Two typical curves are shown in Fig. 5. We notice the
following features for function y ( ml, L }: First, it is a
monotonic decreasing function of mL and assume its
maximum at mI =0. Second, the maximal value in-
creases with L. Therefore, for a system of
QB2C2/B&C, =0.6, for example, Eq. (55) has no solu-
tion at all for the system with the smaller thickness
L =1.0, since there is no crosspoint between y =0.6 and

0.8

06

04.

dm
—Ai

C2 =V B2C2/2
z= —0 1

Xmo+mo+2(A2/B2)/( —A )/B) ) .

(53)

Finally, we obtain from the last condition in (5) the fol-
lowing equation for the magnetization at the surface ml:

the lower curve in Fig. 5. This situation corresponds to
mi =0, and thus m(z)=0 in the total system. On the
other hand, there is a finite solution of mL for (55) for the
system with the larger thickness L =1.2. This indicates
that there exists spontaneous magnetization in the sys-
tem. Thus, there is a phase transition from a paramag-
netic phase to a ferromagnetic phase of the system, as the
thickness L increases. This phenomenon should be ob-
served during an epitaxial growth process, where the
temperature of the system is fixed at adequate value.

Now let us evaluate the critical thickness of the phase
transition. As mr ~0, one has p —+0, v —+ v 2, k ~0 and

mL 1

&1+1/X'
(56)

from (51). With the relations sn[x, k] ~sinx,
cn[x, k]~cosx, dn[x, k]—+1, and F[x,k)~x as k~O,
we derive from (54) the following equation for the critical
thickness L, :

L,Q —A, /C) =cot 'Q —A (C) /A2C2

+cot '(A,Q —A, /C, ) . (57)

It is not difficult to see that transition from the

paramagnetic phase to the ferromagnetic phase takes
place also as the temperature is reduced, while the thick-
ness L is fixed. Giving the temperature dependences of
the magnetic parameters and fixing the thickness of the
thin layer at a definite value, the above equation serves as
the equation for the critical temperature for the system.
Equation (57) coincides with (22) from the discussion on
correlation functions. Therefore, we have shown explicit-
ly that the temperatures where the correlation length
diverges and where the spontaneous symmetry breaking
occurs are the same. This coincidence is not trivial in
multilayer structures, such as the bilayer system studied
in the present paper. Knowing mL, one can evaluate the
magnetization profile m(z) easily. The magnetization
profile is displayed in Fig. 6.

Let us investigate the critical behavior of spontaneous
magnetization according to the thickness L. For L ~L,
the magnetization mL should be very small. Paying at-
tention to the fact that k -0(mL ) as mL -0 in (51), one
can expand the rhs of (54) for L ~ L, up to the second or-
der of mL as

mL —Q —A, B2/A2B, cot(arctanX —L )

(58)

0.2

0.1 0.2 0.3 0.4 0.5 0.6

where the relations

sn[x, k] = sinx —
~
k (x —

—,'sin2x )cosx,
~ cn[x, k]=cosx+ 4k (x —

—,'sin2x)sinx,

dn[x, k] = 1 —
—,
' k sin x,

(59)

FIG. 5. Dependence of y (N&, I.) in (55) with
LQ —A, /C, = l.2 (upper curve) and 1.0 (lower curve),
A,Q —A, /C, =1.5 and ( A, /B2)/( —A

& /B, ) =1.

for 0& k « 1 have been used. The expansion (58) is con-
sistent with Fig. 5, where the curves show parabolic
forms near ml =0. From (57) and (58), we have
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m, (z)-QT, /T —1, T& T, . (62)

1.2

0.6

The critical exponent is Pr =
—,'. In the present mean-field

theory, the above two critical exponents for the spontane-
ous magnetization coincide with each other.

IV. SUMMARY

0'

-0.6'

-1.2 '

-1.8 '

-2.4
0 0.2 0.4 0.6 08 m

FIG. 6. Magnetization profile with LQ —A, /C, =1.2,
AQ —A, /C, =5.0, Q(BiC2)l(B, C, )=0 4, an. d (A, /B2)/
( —A)/B))=1.

Thus, the critical behavior for mL is

mz -QL/L, —1, L ~L, . (61)

m
S

L
C

FIG. 7. Schematic critical behavior of magnetization with
PL =

z as L increases and T fixed.

It is easy to see that the magnetization in the whole sys-
tem shows the same critical behavior, with amplitude
varying with the position. This critical exponent PL

=
—,

for the spontaneous magnetization according to the vari-
ance of the layer thickness is derived for the first time .
The critical behavior in (61) is schematically shown in
Fig. 7.

Regarding (57) as the equation for the critical tempera-
ture, one can obtain the following critical behavior for
the spontaneous magnetization:

We have studied the critical phenomena in the fer-
romagnetic system consisting of a layer with finite thick-
ness coupled to a semi-infinite bulk in terms of
Ginzburg-Landau free-energy functional formalism.
Continuity of the magnitude of magnetization at the in-
terface is assumed and the top surface of the thin layer is
characterized by an extrapolation length. The exchange
coupling within the layer is supposed to be stronger than
that within the semi-infinite bulk. Therefore, as tempera-
ture drops, magnetic ordering occurs first in the layer and
magnetization is induced in the semi-infinite bulk. Bulk
phase transition will occur as the temperature is reduced
further.

In the GL free-energy functional formalism, two criti-
cal points T„and T,2, T,&

& T,2, are introduced for the
materials in the layer and the semi-infinite bulk, respec-
tively. Although T,z describes the phase transition in the
semi-infinite bulk appropriately, T, i is correct only in the
infinite layer-thickness liinit. In order to eliminate this
fictitious critical point for the present system with a finite
layer and to find the true one, we have evaluated explicit-
ly the correlation function within the layer. We have ob-
served a complete cancellation among the integrals which
show singularities at T„, as far as the thickness of the
layer is finite. The true critical point is then determined
up to the nonlinear equation, which is satisfied by the
coefBcients of the GL free-energy functional and the layer
thickness. The shift of mean-field critical point for mag-
netic layer with finite thickness is studied from the corre-
lation function.

From the correlation function within the semi-infinite
bulk, we have found that an efFective extrapolation length
can be defined at the interface, which expresses the efFect
from the thin layer. This extrapolation length shows
strong temperature dependence and diverges at a temper-
ature above the critical point. The divergence is de-
scribed by a new exponent v= 1, which should be com-
pared with the well-known critical exponent v= —,

' for the
correlation length. This phenomenon is characteristic of
systems in which a layer with finite thickness is coupled
to a semi-infinite bulk, and is observed by the present au-
thors. The susceptibility remains finite at this tempera-
ture.

The correlation functions in the present bilayer system
can be expressed analytically. They change the detailed
expression at several typical temperatures which, in turn,
are solutions of nonlinear equations. Evaluation of corre-
lation functions below the critical point is intractable
analytically in the present inhomogeneous structure,
since the magnitude of magnetization in the thin layer
and that induced in the semi-infinite bulk show compli-
cated dependences on the distance from the interface.

We have successfully reduced the simultaneous
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differential equations derived from the GL free-energy
functional by the variational method to a single nonlinear
equation for the magnitude of magnetization at the top
surface of the thin layer. The profile of magnetization in
the whole system is then expressed in terms of the solu-
tion of this equation via the elliptic integrals and Jacobi-
an elliptic functions. The present formalism has been
shown to be very useful for the clarification of the insta-
bility responsible for the para-ferro magnetic transition
according to the variance of thin-layer thickness. The
equation for the critical thickness is derived as the tem-
perature is fixed. A new critical behavior of magnetiza-
tion has been obtained and the critical exponent is—1

L

This equation also governs the critical temperature for
fixed thickness. We have found that it coincides with
that derived from the correlation functions. Therefore, it
is concluded that the onset of the spontaneous magnetiza-
tion and the divergence of the correlation length take
place at the same temperature. This property is not trivi-
al in the present inhomogeneous system, even in GL
mean-field theory, and is verified in the present work.

The exchange coupling between subsystems plays an
essential role in multilayer structures. In the present
study, this coupling has been incorporated via the con-
tinuous condition for the magnitude of magnetization at
the interface. It is not difficult to see that this condition
can be relaxed to the following one, namely the magni-

tudes of magnetization in the two materials are propor-
tional to each other at the interface, without significant
modification for the present results. Antiferromagnetic
interfacial coupling can also be treated similarly.

Although we have restricted ourselves in the case
T„&T,2, it is almost straightforward to extend the
present formalism to the case T,2& T„.The extrapola-
tion length A, can take negative value, which implies that
the exchange coupling at the top surface is stronger than
that within the thin layer. The analysis is much more
complex for the negative A, case, since a strong surface
coupling is able to make the critical temperature above
the bulk Curie point T„. It is found that the equation for
the critical point changes its form according to the mag-
netic parameters and the thickness of the finite layer.
The critical behaviors, however, remain the same as those
presented in this paper.

In spite of that the present study is for the system con-
sisted from a thin layer and a semi-infinite bulk, it
presents quite suScient approximations for double layer
systems used in magneto-optical recording, as briefly
mentioned in the Introduction. The present formalism
can also be applied to magnetic multilayer systems.

As a future work, Monte Carlo simulation will be car-
ried out to test the predictions given in the present paper
and to investigate numerically the critical exponents.
Renormalization-group study based on the present
mean-field results is also highly expected.
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