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Competition between the Glanber and Kawasaki dynamics in the antiferromagnetic &sing mode[
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We study, within the dynamic-pair approximation, the behavior of the antiferromagnetic Ising model
in contact with a heat bath and subject to an external source of energy. The contact with the heat bath is
simulated by the Glauber process while the continuous flux of energy into the system is simulated by the
Kawasaki process. We find the phase diagram of this model, and we show that, conversely to what hap-
pens for the ferromagnetic Ising model, the antiferromagnetic Ising model does not show the
phenomenon of self-organization within the dynamic-pair approximation.

I. INTRODUCTION

The self-organization in systems subject to an external
flux of energy is an interesting phenomenon studied in
the realm of nonequilibrium statistical physics. ' The
self-organization in magnetic systems was considered re-
cently by Tome and de Oliveira for a ferromagnetic Ising
system coupled to a heat bath and subject to an external
flux of energy. Their open system is in contact with a
heat bath whose stochastic dynamics is simulated by a
Glauber process, while the continuous flux of energy is
simulated by a stochastic dynamics given by a Kawasaki
process, characterized by the exchange of the states of
two nearest-neighbor spins. They show that, as the flux
of energy is increased, the system goes continuously from
the ferromagnetic to the paramagnetic state, and, for a
further increase in the flux of energy, it goes continuously
to an antiferromagnetic stable state. In this work we in-
vestigate the possibility of self-organization for the anti-
ferromagnetic Ising model when we take into account the
competition between the Glauber and Kawasaki process-
es. We show that this model is not symmetric to the fer-
romagnetic Ising case, since here we only find a transition
line between the antiferromagnetic and paramagnetic
phases at low flux of energy. If we increase the flux of en-
ergy, the only stable states we find are of the paramagnet-
ic type. The equations of motion for the mean values and
for the correlation function between nearest-neighboring
spins are found from the temporal evolution of the proba-
bility to find the system in a given state, through its asso-
ciated master equation. Then we use the dynamical-pair
approximation to solve the coupled system of equations,
which permits the determination of the phase diagram of
this model.

II. EQUATIONS OF MOTION FOR THE MEAN VALUES

We consider here an antiferromagnetic Ising model on
a square lattice with N lattice sites. We represent the
state of the system by o = (cr „o2, . . . , o z ), where the
spin variable o; can take only the values +1. The energy
of the system in the state cr is given by

E(o)=J go;o~,
(I;j)

where the summation is only over pairs of nearest-
neighbor spins and J & 0. Following Tome and de
Oliveira we write the evolution of the state cr in time
through the master equation. If P(o, t ) is the probability
of finding the system in the state 0 at time t, the associat-
ed master equation is written as

dP(o, t)'= g[P(o', t)$'(o', o )
—P(o, t) Wo, o')] .

CT

In this equation, 8'(o', o ) gives the probability, per unit
time, for the transition from the state o' to state o. In
order to take into account the two competing processes
we assume that

8'(tr', cr ) =@Wo(cr', o')+(1 —p ) Wx (o', o ),
where

N

Wo(o', o)= g 5, 5, , . . . , 5 w;(cr)
i=1

is the one-spin-flip Glauber process which simulates the
contact with the heat bath at temperature T, and

Wtt(o', o )= +5, 5, , . . . , 5,
V

X5, , . . . , 5, w; (o)j' i N' N

is the two-spin-flip Kawasaki process, which simulates
the flux of energy into the system. In these two equations
w;(o ) is the probability, per unit time, of flipping spin i,
while w,"(o ) is the probability, per unit time, of exchang-
ing two nearest-neighbor spins i and j. We adopt the fol-
lowing prescriptions for w;(cr ) and w;. (o ):

hE;
w;(o )=min l, exp

k~T
(6)

and

0 for hE;- ~0,
1 for AEj) 0,

where hE, is the change in energy after flipping spin i,
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and hE," is the change in energy after exchanging spins i
and j. It is easy to show that the temporal evolution for
the magnetization (cr; ) and for the correlation function
between nearest-neighbor spins ( o .cr k ) is given, respec-
tively, by

8,„= g ((o,o k
—o, crk )wj](o ) )

IWk
(NN of j)

+ g ( (C7j.o] C7 .jok)wk](O') )
l&j

(NN of k)

(13)

d(o, &

=pA;+(1 —p)B;,
dt

d( , „)=p A jk+(1 p}B—jk

where

A,. = —2(cr, w, (cr) &,

Ajk 2(ojokwj(o) & 2(ojokwk(o) &

8;= g ((o t o; )wt—(o) ),
(NN of i)

(8)

(9)

(10)

(12)

and (NN of i) indicates that the summation is over the
nearest neighbors of site i. Although the set of equations
(8)—(13) is exact, the mean values of the right-hand sides
of these equations cannot be calculated because we do not
know the exact full expression for the probability P(o, t)
Then we need to consider an approximate expression for
P(cr, t). We employ here the pair approximation ' to
evaluate the mean values on the right-hand sides of Eqs.
(10)—(13). First of all, we divide our lattice into two sub-
lattices, so that first-neighbor sites belong to di8'erent
sublattices, and look for solutions such that (cr]) =m,
for any spin belonging to sublattice 1, and ( cr 2 ) =m 2 for
any spin of sublattice 2. The correlation function between
spins o, and o 2 is written as (o,cr2) =r. If we then per-
form these calculations within the pair approximation we
easily obtain the expressions for the evolution of m, , m 2,
and r. We then can write the following expressions:

A, (m„m2, r)= — (z +4z u, +6z v]+4rjzv, +rj u, )+ (w +4w v2+6W v +24 jwrU+2jru2},
X V1

A2(m„m2, r)= A](m2, m„r),

(14)

A]2(m], m2, r)= ( 2z —4z u]—+4qzu]+2' u, )+ (
—2w —4W v2+4rjwvz+221 v2)

X1
1 1 1 3

+ (
—2z —4z v2+4gzuz+2rj u2)+ (

—2w —4w v]+4rjwv, +2' u, ),
X2 V2

B](m„m2, r)= —
3

(3z v]+3zv, +3W v, +3wv]+9zwv, +v])8

X 1VZ

(16)

+
2 2

( z v2+ ZV2+ w U2+3wv2+9zwv2+V2) |
x2V

82(m], m2, r ) = —8](m],m2, r ),
6

B]2(m„m2, r)= 2 3(3z u]w+3z u]w +3z u]w +z w u,
X 1V2

+z v ]w —zU ]w —z v ] +zU ] + U ] + 3zwv ] + 3wU ] +3w U ] )

+ (3zw v +3z w U +3z w U +z w v +z w U
6
3 3 2 2 2 2 2

X2V1

—z wu2 —w u2+wu2+v2+3zwu2+3zv2+3z u2),

(18}

(19)

where

X, 2= —,'(1+m, 2),

j ],2=-,'(I —m], 2)

z =—,'(1+m, +m2+r),
U, 2= —,'(1+m] 2

—m2 ] r), —

w= —,'(1 —m, —m2+r),

(20)

(21)

(22)

(23}

(24)

4Jg=exp
k, T

(253

III. RESULTS

We look for the stationary solutions of Eqs. (8) and (9).
We try solutions of the following types: m1= —m2&0,
antiferrornagnetic stable states, m, =m2&0, ferromag-
netic stable solutions, and m, =m 2 =0, corresponding to
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the paramagnetic stable states. Then, the paramagnetic
stationary state is given by the following expression:

p( —z —2z u+2gzu +g v )+12(1—p)

X(z u+4z u +5z v +5z v +4zv +u )=0, (26}

where z =(1+r')/4, v =(1 r'—)/4, g=exp( —4J/kz T),
and r' is the stationary solution of Eq. (9}where we have
taken m& =m2=0. We can find the phase diagram for
this antiferromagnetic model by considering the station-
ary solutions for rn

&
and mz from Eq. (8). If we write the

order parameter for the ferromagnetic phase in the form
mF = ( m, +m 2 ) /2, and the antiferromagnetic phase as
m „=(m,—mz )/2, and we expand the right-hand side of
Eq. (8) up to linear terms in rn, and mz, we obtain

mg

dr
XQ m g Q7) 0 '

0.00
I

0.01
I

0.02 0.03 0.04

dmF

dt
XFmF

where

A, q
=32p [q (3v —2v )+3'(4u —2v )z

+6(3v —u)z +2(6v —1}z +3z ]

+512(1—p)[15(12v —Sv )z

+6(12v —6v )z —7v ],

(28)

(29)

FIG. 1. Phase diagram of the kinetic antiferromagnetic Ising
model in two dimensions. T is the heat-bath temperature and
P =(1—p )/p is related to the flux of energy. The system exhib-
its only the antiferromagnetic (AF) and paramagnetic (P)
phases, separated by a line of continuous nonequilibrium transi-
tions.

IV. CONCLUSIONS

AF=32p[3ri v +2g(6z —1)v +6(3z —z)v

+6(2z —z )v —2z +3z ], (30}

with z =(1+r')/4 and u =(1 r')/4. The tran—sition be-
tween the antiferromagnetic and paramagnetic phases
can be obtained by solving simultaneausly Eqs. (26) and
(29) with A, „=0. This defines the continuous
paramagnetic-antiferromagnetic transition line as we can
see in Fig. l. Ifp =1,we find that the Neel temperature is
given by kz T=2.885J, which is the equilibrium critical
temperature in the Bethe-Peierls approximation. It is in-
teresting to nate that the stable antiferromagnetic region
is very small when compared with the corresponding re-
gion obtained for the ferromagnetic Ising model. The
antiferromagnetic phase is destroyed by a small input of
energy into the system. If we try to solve simultaneously
Eqs. (26) and (30) with A,F=0, we do not find any solution
for p in the range 0(p 1. That is, the paramagnetic-
ferromagnetic transition line is absent in this antiferro-
magnetic model. Therefore, the self-organization
phenomenon, observed for the ferromagnetic Ising model
with competing Glauber and Kawasaki dynamics, has
..o counterpart for the antiferromagnetic Ising model
with the same two competing dynamics for any finite
value of the parameter (1—p)/p.

We have studied the behavior of an antiferromagnetic
Ising model in two dimensions, which is in contact with a
heat bath and subject to a continuous flux of energy from
an external source. By employing the dynamical-pair ap-
proximation we have found only two stationary states:
the antiferromagnetic and paramagnetic states. For finite
values of the energy input, which is simulated by the
Kawasaki dynamics, the ferromagnetic state is never at-
tained. Moreover, the antiferromagnetic region occupies
only a small area in the phase diagram. That is, the non-
equilibrium antiferromagnetic state is easily destroyed
with a small flux of energy into the system. As expected,
the fiux of energy into the system breaks the symmetry
between the ferromagnetic and antiferromagnetic Ising
models observed in equilibrium. While the ferromagnetic
Ising model subject to two competing dynamics exhibits
the self-organization phenomenon, the antiferromagnetic
Ising model displays only a paramagnetic-antifer-
romagnetic transition line in its phase diagram.
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