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Density of states in unconventional suyerconductors: Impurity-scattering effects
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The density of states in unconventional superconductors, N, (E), is very sensitive to impurity scatter-
ing, especially at low energies. We investigate the behavior of N, (E), using both numerical calculations
and analytic approximations; we discuss the Born limit, the unitarity limit, and the crossover between
these two cases. We consider a two-dimensional electron gas with a d-wave order parameter of the form

~2
h,(k)=h(k„—k» ). The low-energy structure in N, (E) should be quite general, applying to all gaps with

the same general behavior.

I. IN I'RODUCTION

Scattering by ordinary, nonmagnetic impurities leads
to important changes in the properties of unconventional
superconductors; for example, the density of states'
N, (E), the transition temperature' T„and the penetra-
tion depth A, (Refs. 5 —8} are all strongly afFected. These
phenomena have been subjected to detailed scrutiny in
the context of high-T, and heavy Fermion superconduc-
tors.

Underlying many of these effects is one fundamental
fact, namely, that impurity scattering causes a signiScant
change in the low-energy density of states, when the or-
der parameter h(k) is unconventional. By unconvention-
al, we mean that h(k) has less rotational symmetry than
the normal-state lattice; symmetry considerations often
force such an order parameter to vanish at certain points
or lines on the Fermi surface. '

Our purpose in this paper is to describe the behavior of
N, (E) at low energy. In doing this, we are led to consider
the low-energy behavior of the impurity self-energy a3(e, ).
To increase our understanding we develop simple analyt-
ic approximations for a3(s) and for N, (E), for both the
Born and unitarity limits, and compare these to exact nu-
merical results. We also show how N, (E=0) evolves as
we go continuously from the Born to the unitarity limit,
keeping the scattering time r fixed. Our main analytic re-
sults are Eq. (18) for N, (E) in the unitary limit, and Eq.
(29) for N, (E) in the Born limit. The physical origin of
unitarity limit scattering is unclear at present, although
such scattering has been invoked as a possible explana-
tion of experimental data.

We use weak-coupling theory, in the framework of the
quasiclassical equations. Two types of effect are not in-
cluded in our work: (1} localization effects, as recently
discussed by Lee' and (2) strong-coupling effects.
Our work should directly apply to many situations, and
provide physical insight in cases in which the above-
mentioned complications arise.

II. BASIC THEORY

liquid, with a circular Fermi surface, and an order pa-
rameter of the following form: ' '

b(k)=h(k, —k )=b, cos(2$) . (1)

Here P is the polar angle in the xy plane. This gap van-
ishes linearly at four points on the Fermi surface, and has
zero angular average. We expect that the low-energy
behavior of N, (E) depends mainly on these factors, so
that our results are quite generic.

Gaps of the form (1) have emerged as candidates for
the order parameter in the high-T, materials, so it is im-

portant to establish the expected properties of supercon-
ductors with such gaps. Microscopic theories, based on
various model assumptions, have indicated that such an
order parameter is a strong possibility. '2'3 In addition,
various pieces of experimental evidence have provided
support for such an unconventional parameter. ' 's

The density of states is given in terms of the ~, com-
ponent of the quasiclassical propagator g ( e,,P ):

N, (E)= Im I g3(ie, -+E i',P)—N(0) 2~ dP
7T 0 2'

Im(g3(is +E is), P-) ) .—N(0)

(2)

(3)

Here s is a Matsubara frequency, and the angular average
over P is denoted by ( ). The propagator is given in
terms of the impurity self-energy a3(s) by the following
equations:

i n(a+ia—3 )
g3(s 0)= [(.+ta )'+~'cos'2y]'"

The self-energy is given by

cN(0)u (g3 )
a3(s)=

1 —(N(0)~(g3) )'

Here, c is the density of impurities, and U is the strength
of the impurity potential, taken to be s wave.

The angular integral needed for both (5) and (3) can be
done; this yields

For specilcity, we consider a scenario relevant to
high-T, materials. We treat a two-dimensional Fermi

( )
—2 "E

[z'+~']'" 8+~' (6)
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Here, K(x) is the elliptic integral, ' and the function Z(s)
is defined by

Born limit
I l I I

]
t I I I

)
I I I I

)
I I I

f='s+ia3(e).. (7)

For the low-energy (E «b, ) phenomena at issue in this
paper, the important point is that at small values of Z
('K «b, ), the elliptic integral has a logarithmic singulari-

.16

1E =—ln
'f +6

166
Y2

This singular behavior is due to the fact that the gap van-
ishes at the four points (() =n /4, 3n /4, Sn /4, 7n /4. The
contribution to the angular integral in (2) froin the vicini-
ty of these points gives the logarithmic term.

We must also solve for the magnitude b„using the gap
equation 8

2N(0) T ~,g 2+ ~2
2

0
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FIG. 2. Plot of N, (E) versus E, in the Born limit, for several
values of ~. The curve with the steepest structure at E=50 has
1/2~T, 0=10 '; succeeding curves have 1/2rT, 0=10 and
10 '. The energy gap in the absence of impurities is denoted by
60.

The prime indicates that the sum needs an upper cutoff,
while E (x} is the other elliptic function. '6 The coupling
constant is denoted by g.

So, we must solve Eqs. (9) and (5) self-consistently for
a3 and b„and then use these to compute N, (E) via (3).

The impurity effects depend upon the two parameters c
and v. It is often convenient to calculate in terms of two
other parameters, given by

Unitarity limit
I I I I

t
I I I I I I

)
I I I I

(N(0)mu )

1+(N(0)n v )

1 cN(0)7Tv

1+(N(0)n v )

(10)

Z:

n

Here, 1/r is the normal-state scattering rate. The param-
eter o measures how strong the scattering potential of a
single impurity is; the Born limit is defined by o «1,
while the unitarity limit is given by o -+ l. In Fig. 1 we
show plots of N, (E} in the unitarity limit, for several
values of ~. Figure 2 shows similar plots for the Born
limit.

III. STUDY OF N, (E=0)

0
0.0 0.5 1.0

E/ho
1.5 2.0

FIG. 1. Plot of N, (E) versus E, in the unitarity limit, for
several values of v. The curve with the largest N, (E=O) has
1/2~T, 0=10 ', succeeding curves have 1/2vT, 0=10 and
10 . The energy gap in the absence of impurities is denoted by

An important theme that has emerged in the study of
impurity scattering in unconventional superconductors is
that many properties, with ~ held fixed, depend strongly
on the value of o. The unitarity and Born answers can be
quite different, even if the normal-state scattering time is
the same. ' The density of states at zero energy, '

N, (E =0), is an important example of this phenomenon.
To illustrate this point, in Figs. 3 and 4 we show com-

puted values of N, (E=0), as a function of o, at a fixed
value of v. We have put 6 at its T=O value; we also note
that at the value of ~ chosen (1/2~T, 0=10 ), b, is not
significantly changed by the impurity scattering.

Figure 3 plots N, (E=0) on a logarithmic scale, which
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Varying an external variable such as the pressure would
presumably lead to changes in the parameters such as u

and N(0), which could be re8ected in drastic changes in
N, (E}.

O
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0
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—1 000

IV. UNITARII Y LIMIT

(12)

This equation is exact in the unitarity limit. We now
make approximations suitable for 'K « 5, to get

In this section we concentrate on the unitarity limit
(u~ ao, o ~1). We show how to derive simple analytic
expressions for a&(s) and N, (E) which are valid at low
energies. The impurity scattering is taken to be weak
enough so that at small values of s, Z «5, . To start, we
note that as u ~ cc, Eq. {5}becomes

C(X2y g2) I/2
ias(s) =

2N(0+K[k /(E +6 }]

0.0 0.2 Q.4 0.6 0.8 1.Q C
ia2(s) =

N(0)E in(16621K )
(13)

FIG. 3. Plot of N, {E=O}versus o, with r held fixed at
1/2~T, 0=10 '. Note that a logarithmic scale is used for
N, (E=0}. The parameter o is defined in Eq. (10); +=0 in the
Born limit, while cr = 1 in the unitarity limit.

allows us to show its tremendous variation {1500orders
of magnitude) as o goes from zero to one. We can see
that N, {E=0) is essentially exponential in o over the en-

tire range. Figure 4 aHows us a good look at the struc-
ture near cr =1, where N, (E=0) becomes an appreciable
fraction of N(0).

These results suggest that an experiment which is sen-
sitive to N, (E) near E=O could be quite interesting.

We can then derive a quadratic equation for 'E, the solu-
tion of which yields

'E= —+"(/s /4+eh/N(0) 1n(165 /5 ) .
2

(14)

y = ia2(0) =f(0) . (15)

Note that y is given by the solution of the following equa-
tion: '8

0.06
Unitority limit

Equation (14) is still not an explicit solution for 'K(s},
since 0 itself appears in the square root. To make pro-
gress we define y as follows:
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FIG. 4. Expanded version of Fig. 3, showing more detail at
the o =1 (unitarity limit) end of the graph. Note that a linear
scale is now used for N, (E=0).

FIG. 5. Plot of N, (E) versus E for the unitarity limit, show-
ing behavior at small E. Solid line is the exact result, while the
dashed line shows the approximate formula, Eq. (18}. We chose
~ such that 1/2~T,0=10
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cb
2N(0) in(46/y)

' (16} Z= —++a /4+y
2

(17}

Then, as a first approximation to (14}we take as our solu-
tion

We can use (17) to compute N, (E ), by substituting it into

(3) and (4). This gives the following:

N(0) 2 2 2 2 4h E m+4y /5 E /—6 ln +———arccos(E/2y), E &2y
y 6 2

N, (E)= N(0)
2

[E/6+)/E2/52 4y2/b—,2], E &2y .
(18)

N (E=O)= yln —,2N(0)
nb, y

which also correlates well with Fig. 4.

(19)

V. BORN LIMIT

In this section we discuss the Born limit (o ~0, ~ con-
stant); as in the previous section, we assume that ~ is long
enough so that at low energy we have X « h. Our equa-
tion for a 3(s ) in the Born limit is given by

iai(e)=
~~[~2+g2]1/2 ~2+ g2

(20)

For small E ('K « b, ) we approximate this as

166
ia, (s)= ln

2m~6
(21}

Our implicit equation for f is then

Figure 5 shows a comparison of the analytic formula (18)
with the exact computed answer. As can be seen, the for-
mula becomes exact at low enough energies, and does not
do a bad job at energies somewhat greater than 2y. The
answer at E=0 is given by

It is difficult to formulate a simple analytic approxima-
tion which captures the behavior of N, (E) at very low

energies and yet is accurate at the physically more impor-
tant higher energies, of order E=10 h. So we present a
derivation of a relatively simple formula for N, (E) which
is accurate over a wide range of energy, but which misses
the structure of N, (E) at small values of E. To start our
derivation, we rewrite (22) as follows:

1+(1/2m~6, ) ln('E /166 )
(26)

'K~4k
(4

' ~~6/(1+ n.7.6)

Now, if we simply replace 'E by 'K=P+(i'd�}s on the
right-hand side, this would give a formula for Z(s) which
works for s &P, but which fails at higher energy. So we
follow a different path. As long as 1 lm~b, is small, and as
long as s is large enough so that in(X/4b) is not too
large, then the second term in the denominator of (26) is
a small perturbation. Under these conditions, we can ob-
tain a very accurate answer by iterating (26) once, and
then substituting for Z. Rather than simply replacing 'f

by c, it is more accurate to make the following substitu-
tion:

'f(s) =s+ ln
'E 165

2~~5

If we define the Born limit value of'K(0) as P,

p—:'K(0) =ia3(0},

(22)

(23)

It can be seen from (22) that when X—s is small, this sub-

stitution is quite good. Thus our approximate formula
for Z(s) is

then Eq. (22) yields
&(s)=

1+[1/(1+nab, )](1/2) ln(e2/1652)
(27)

P—4ge n~h— (24)

We can see that when impurity scattering is not too
strong, P will be an extremely small energy scale. For ex-
ample, if 1/~b, =10 ', then P/5=4Xe ' =9X10
When P/6 is very small, so is N, (E=0)

N, (E=0)= ln (25)
m.b, P

N, (E ) =—2'(0) Re['E(iE~E —iq) ] . (28)

Using the approximation (27) in the general formula (28)
yields

We then note that Eqs. (3) and (5}, in the Born limit, im-

ply that the density of states is given in terms of'E by the
following equation:
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FIG. 6. Plot of N, (E) versus E for the Born limit. Solid line
is the exact result, the dashed line represents the approximate
formula Eq. (29), while the dashed-dot line plots E/h. We
chose 1/2~T, O= 10 '.

FIG. 7. Expanded version of Fig. 6, showing behavior at
lower values of E. Note that the solid line (exact result) and the
dashed line [Eq. (29)] are in complete agreement.

(E}$7 N(0)E
I+~&& [1+[I/(I+nab )]1n(E/4b, )] + [[I/(I+trek)](n/2) j

(29)

As long as 1/rh is not too large, Eq. (29) is very accurate
over a wide range of energies. Figures (6) and (7) show a
comparison between the exact N, (E) and the above ap-
proximation; even for quite strong impurity scattering
(I/2rT, a=10 '), the approximate formula does very
well for E/650. 2. In the same figures we also plot
E/6, which is the low-energy, pure limit answer for
N, (E)/N(0).
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