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One-dimensional bipolaron in the strong-coupling limit
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The one-dimensional (1D) large bipolaron is investigated in the limit of strong electron-phonon
coupling. The nonlinear integro-difFerential equation for the bipolaron wave function is solved nu-
merically, from which we obtained estimates for the main characteristics. An enlargement of the
stability region for the bipolaron ground state is found in 1D as compared to the stability regions
in 2D and 3D. The energy of the first relaxed excited state (RES) equals the energy of two single
polarons and the ground state in the potential generated by the 6rst RES has a slightly lower energy
than this RES and is therefore stable. The nonlinearity causes the feature that the combination of
the ground state and an excited state of one-particle wave functions could lead to a higher bipolaron
energy than the combination of two excited states.

I. INTRODUCTION

Two electrons in a polar or ionic crystal will interact
with each other through (1) the direct repulsive Coulomb
interaction and (2) an attractive interaction caused by the
polarization of the surrounding lattice. If the Coulomb
interaction is sufficiently screened by the lattice and if the
polaron~ interaction is sufBciently strong, a bound state
between the two electrons and the surrounding common
cloud of virtual phonons may be formed. Such a com-
posite quasiparticle is referred to as a bipolaron.

Using Coulombic type of wave functions for each elec-
tron, Vinetskii, Mukhomorov, Suprun and Moizhes
obtained rather wide stability regions for the bipolaron
in the limit of an infinitely large electron-phonon cou-

pling constant o.. Adamowski and later Bassani et al.
used variational calculations but compared the bipolaron
ground state energy with more correct single-polaron en-

ergies. Verbist et al. '8 used a Feynman path-integral
technique in combination with a conventional variational
approach and obtained more accurate results, especially
in two dimensions (2D).

The study of bipolarons can be relevant to examine the
applicability of the bipolaron theory to high-T, super-
conductivity (e.g. , for high-T, superconductors, o the
recent discovered fullerites ' and the proposed Bose-
Einstein condensation of large bipolarons ~4).

It is interesting also to study relatively simple systems
such as 1D bipolarons where charges are confined to a
one-dimensional structure, which could be relevant in
quantum wires and linear conjugated organic polymer
conductors. In Ref. 17 it was recently proved that in
the limit of a very strong magnetic field the 3D bipo-
laron maps into a 1D bipolaron problem.

The aim of the paper is to present a more accurate
and detailed treatment of 1D bipolaron formation in the
strong-coupling limit. In this limit the adiabatic approx-
imation leads to exact equations because the electron os-

II. STRONG-COUPLING LIMIT

The one-dimensional bipolaron Hamiltonian, which
is the Hamiltonian of two electrons interacting with a
phonon field, is given by

H = ) ' +U(z, —z2)+) ~|,b~tbg,

j=1,2 k

+ ) ) V&b&e'"" + V„'bt„e'*~
j=l,2 k

(2.1)

where z~ and p~ are the position and momentum opera-
tors of the jth electron (j = 1, 2), m is the electron band
mass, and cop is the &equency of the phonons with wave
vector k.

cillations have a much higher &equency than the lattice
frequency urz, o. Besides a variational method we use also
a Fourier series expansion of the wave function. This ex-
pansion leads in principle to an exact solution. We will
consider the main characteristics (e.g. , the energy, the
stability region, etc.) of one 1D bipolaron.

With the Fourier series approach we are also able to
investigate the excited states of the 1D bipolaron. The
relaxed excited states (RES's) and Franck-Condon (FC)
excited states of single polarons in 3D were studied by
Devreese and co-workers. For their role on the sur-
face of a liquid-helium film see Ref. 21.

The paper is organized as follows. In Sec. II we intro-
duce the nonlinear Schrodinger equation for the 1D bipo-
laron. This integro-differential equation is solved varia-
tionally in Sec. III and by a Fourier series expansion in
Sec. IV. Also a comparison is made between estimates
for bipolaron charateristics calculated within the two ap-
proaches. In Sec. V we investigate the excited states of
the 1D bipolaron and in Sec. VI the conclusions are given.
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In the case of an electron interacting with the LO xnode
we have dispersionless phonons cog ——uL,~ and the inter-
action coefEcients are

2o.'
Vj, ———iL)I.~ L 2m')l, o

(2.2)

with L the length of the system and o.' the cou-
pling constant for the one-dimensional electron-phonon
interaction (defined in Refs. 22 and 23): a'
cd~mr((D —1)/2) /2r(D/2). Here cd is the standard di-
mensionless electron-phonon coupling constant in 3D and
D the number of space dimensions. For D -+ 1 we have
a' = o(/(D —1). Indeed, the polaron characteristics di-
verge for D = 1 because of the Coulombic nature of this
problem. By using the renormalized coupling constant
a' rather than o., all expressions are regularized and fi-
nite results are found for the energy and the mass of a
polaron or bipolaron in 1D.

The 3D Coulomb repulsion between the electrons is
defined by

U(zl, z2', X) = 42 2f dzldz2dzZX (zl, z2)X (zl, zl)

—4&2f d22 X (Zl, Z2) +X (Z2 22)

+2gh (zi —z2) (2.7)

and with s = Ep / RuL, c)o.' . To obtain Eq. (2.6) a scaling
is performed which made all the quantities in it, e.g. ,
the positions z;, the energy e, and the wave functions,
dime nsionless.

III. VARIATIONAL APPROACH

By multiplying both sides of (2.6) with g(zi, zz) and
after integration over zq and z2 the above integro-
differential equation (2.6) can be rewritten as a varia-
tional problem. The ground state energy can then be ob-
tained from the minimization of the obtained functional
with respect to y(zi, z2). However, it is convenient to
introduce the center-of-mass and relative coordinatesU, r(D/2)—= U~, , exp[ikr],r 7r

zx+ z2
)

2
P = px+p2

r((D —1)/2)
2I'(D/2)

(2.3)

with D = 3. In the limit D ~ 1 the corresponding
Coulomb potential takes the form of the so-called contact
potential 2Uib(zi —z2). Therefore we have in (2.1) U(zi-
z2) = 2Ui6(zi —z2). It is convenient to introduce also
the dimensionless coupling constant U',

Z —Zg Z2)
pl p2p—

2
(3 1)

OO 2

2[0] = — dZdz
l4 „'(,aZ

f ((94(Z, z) l
49z

We use the notation y(zi, z2) = 4(Z, z) and the symrne-
try ly(zi, z2)l = ly(z2, zi)l of the wave function. The
functional then takes the forxn

I (
Ui = huge) U,

mQ)1,~

and the ratio of the coupling constants,

(2.4)

(3.2)

—4 f2 XdZdzdz'42 (Z, z)41 (Z+ z/2, 2')

+2g dZ@ Z, O .

UI
g =—

where g = e /ep with e (ep) the high frequency (static)
dielectric constant.

Starting from the Hamiltonian (2.1) and using the adi-
abatic approximation (the ious are at rest) we arrive at
the nonlinear efFective Schrodinger equation for the one-
dimensional bipolaron in the strong-coupling limit (for
more details see Refs. 24 and 25). Using the symmetry
of the wave function ly(zi z2) I

= ly(z2 zi)l which al-
lows symmetrical as well as antisymmetrical solutions,
we obtain

1 82 1 82
+ U(Z1 Z2lX}) X(Z1, Z2) = 2 X(Z1 Z2),2 (I9z~ 2 Bz2

Following Ref. 8 we consider the product ansatz

@(Z,z) = 4(Z)P(z)

and choose a Gaussian trial wave function for the center-
of-mass motion,

)' u)Z )
4'(Z) = — exp l-

2n. g 4 )
which leads to the functional

(3.4)

A[4t}] = —+ u)
l

—
l

dz + 2V'2(u
(u t' ddtp') &'(o)
16 gdz y 1 —g vr

x dzidz2 exp l- (z, + z2)' )

Zg Z2

(3.6)

with

(2.6)
with cu a variational parameter. The ground state bipo-
laron energy Eb;~ (in units of hcuL, c)o.' ) is then to be
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obtained by minimizing the functional A[/] with respect
to ~ and P.

The bipolaron can exist as a stable state when the
bipolaron energy Eb;~ is lower than twice the single po-
laron energy E~ ~. In the strong-coupling limit Eb;~

and E~~~ ~ o.', and as a consequence a' can be fac-
tored out. The bipolaron formation is then exclusively
determined by the physical parameter rI = s /so. It is
found that a critical value g, exists below which a bipo-
laron state will be energetically more favorable than a
state with two single polarons.

Gross showed that the analogous strong-coupling 1D
polaron problem could be solved exactly in the adia-
batic approximation (see also Ref. 27) from which we
obtain the exact polaron energy in dimensionless units
[cf. definition of s in Eq. (2.6)]: s'"J't = —1/3. When
a Gaussian trial wave function is chosen the energy is
~GsUss 1 /~pol

Of course, the condition for bipolaron formation will
depend on the value of e'~ ~

(s'"&'i or sG &"") we choose
(see, e.g. , Ref. 8). The corresponding rI, will be de-

&~ 1
= s„&""———1/x. The g,' is a lower bound to ik,

due to t.lxe fact that the obtained bipolaron energy is an
upper bound to the exact energy. As for g, p ' ", it pro-
vides us neither an upper nor a lower bound, but as an
estimate it could be closer to the exact value than g,'
Both g, values are considered in this paper. Normally,
one should compare the bipolaron energy with twice the
energy of the single polaron obtained within the same ap-
proximation. However, because the exact single polaron
energy e'"j" is available, we can obtain a lower bound
to g, .

The dependence of the wave function on the relative
coordinates is contained in P(z). We checked various trial
wave functions (for details see Ref. 25). The best result
(i.e. , the lowest upper bound for the bipolaron ground
state energy) was obtained with the function
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FIG. 1. The 1D bipolaron energy (in dimensionless units) is
plotted vs rl for the best variational trial function (considered
here) and for the solution of the integro-differential equation
using the Fourier series approach after extrapolation to the
n -+ oo limit sos (points). The horizontal lines give the
energy of two separate polarons s = 2s~o& where (1) si, ~ is
calculated within the Gaussian approach, and (2) s~, ~ is the
exact result. The crossings of the curves with the straight
lines determine the g, values.

sionless units, is plotted as a function of g for the above
trial function (3.6). The results for this energy could
be fitted to the curve e = —1.07 + 0.737' —0.273g2,
within 1.5% over the range rl C [0,0.9]. The two dashed
horizontal lines in Fig. 1 correspond to twice the single-
polaron energy calculated using the asymptotical exact
wave function and a Gaussian, respectively. The cross-
ings of the ground state bipolaron energy curves with
those straight lines determine the critical g, value at
which bipolaron formation occurs. The trial wave func-
tion (3.6) gives the lowest bipolaron ground state energy
of all tested trial functions and leads consequently to the
largest g, value. Because the g,' are lower bounds to
g„this largest g is the best lower bound for g, we
obtained within the variational approach. We obtain
g ~~' " = 0.874 and g' = 0.764.

P(z) = N(1+ B~z~ + Cz ) exp
V Z

4 )
' (3.6) IV. FOURIER SERIES APPROACH

where 1V is the normalization constant and B, C, and v
are variational parameters. In contrast to the 2D and 3D
cases, the direct repulsion in 1D is a contact potential,
which implies that for the 1D bipolaron ground state: (a)
The wave function P(z) is not zero for z = 0, and (b) the
first derivative of P(z) can be discontinuous at z = 0.
Therefore, the constant term in the polynomial part of
P(z) is not negligible as it was in 2D and 3D (see Ref. 8).
From trying also other trial functions we observe that the
term B~z~ in the wave function P(z) turns out to be very
important while the term Cz plays no significant role.
Besides, we have found that the exponentially decreasing
Coulombic type of functions give smaller binding energies
than the Gaussian function (3.6). The opposite is true
for the single polaron case.

In Fig. 1 the bipolaron ground state energy, in dimen-

The power of the variational approach lies in the fact
that the method provides an upper bound to the bipo-
laron ground-state energy. This gives a criteri~~m to judge
which is the best bipolaron wave function. On the other
hand, it is less clear how to improve in a systematic way
a given variational wave function. E.g. , the presence of
the quadratic term in the polynomial factor of the trial
function (3.6) does not lower substantially the bipolaron
energy (less than 0.4%) which might indicate that the
resulting bipolaron wave function (3.6) is close to the ex-
act result. Because this is not guaranteed, we present an
approach which inherently allows to improve systemati-
cally the bipolaron binding energy. Another advantage
is that we do not have to make the product ansatz ap-
proximation (3.3).

In order to solve (2.6) numerically we put our system in
a square box with dimension [ L, L] and infinitely high—
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wells. The bipolaron wave function can now be repre-
sented as a linear combination of the basis functions of
this box,

(a) b)

N, M
nx(zg+L) . mx(z2+L)

zl z2 = G~~ sin sin2I
n, rn

(4.1)

Multiply both sides of Eq. (2.6) with y(zq, z2) and inte-
grate over zq and z2. The resulting equation constitutes
an eigenvalue problem which provides the bipolaron en-
ergy and the parameters a„ for a given potential U.
Because this potential U depends on the wave function

y in a nonlinear way, we solve the problem iteratively by
inserting the found wave function into U until conver-
gence is obtained. In principle this is an exact procedure
when N = M ~ oo. In practice, we have to limit our-
selves to a finite number of terms in Eq. (4.1), typically
N=M =15.

The resulting g, value for N = M = 15 is 0.672.
Using the symmetry of the ground state we had the pos-
sibility to calculate the ground state bipolaron energies
c~p for some discrete values of g with N = M = 30.

This method gives higher ground state energies, and
thus lower binding energies, as compared to the best
variational solution. Therefore we investigate the de-
pendence of the bipolaron energy on the number of
Fourier terms in our expansion (4.1). We found that
the numerical data could be well presented by the curve
sg;z ——ss —B/n with so ———0.783 and B = —0.965 for

g = 0.5. This is a very slowly converging series with n
which explains why we found less accurate binding ener-
gies as compared to the variational approach. Therefore
we used this fit sg;z ——so —B/n in order to obtain the
n = N = M ~ oo results of the Fourier expansion which
are also indicated in Fig. 1 by points which we were able
to fit to the polynomial: e = —1.176+ 1.062' —0.551@
with an accuracy of 4% in the region g E [0, 0.9]. We see
that these energies sP& are lower than the variational re-
sults and tend asymptotically to the energy of two single
polarons. The proof of the latter statement is given in
the next section. The corresponding g, is in this case 1.
Therefore, the ground state is always stable and exists.

In Fig. 2 the wave function y(zq, z2) together with its
contourplot is shown for g = 0.2 and N = M = 15.
From this figure it is clear that the two electrons avoid
each other and that they have the highest probability to
be at a well-defined distance from each other.

The critical (maximal) value of the repulsion U'(n')
at a given value of n' is determined by the condition
Eh'r (a', U,') = 2E~ ~(a') that the bipolaron ground state
energy equals the ground state energy of two indepen-
dent &ee polarons. The point where the curve U'(n')
goes out of the physical region gives us the critical (min-
imal) value a,' of the electron-phonon coupling constant:
U,'(n', ) = ~2a,' Using th.e Feynman path-integral tech-
nique this value was found to be n = 6.8 for the 3D
case. It was proven that within this path-integral ap-
proach the polaron ' ' and bipolaron ground state
energies satisfy scaling relations such that the corre-

N

2
0 0

Zp Z1

—2 0 2

Z1

FIG. 2. (a) The 1D bipolaron wave function P(zq, zz) for

g = 0.2 as obtained within the Fourier series approach. (b)
The contour map corresponding to this bipolaron wave func-
tion.

sponding energies in nD can be obtained from the one
in 3D. Applying these scaling relations one obtains~~
a', = 2.3 in 1D.

The rms separation (scaled by gh/murL, on'2 into di-
mensionless units) between the electrons is defined by

(4.2)
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FIG. 3. (a) The rms separation R of the electrons in the
bipolaron as a function of g is shown for the best (con-
sidered here) variational trial function (solid line) and for
the wave function obtained by the Fourier series approach
(points). The results are only shown when the bipolaron is
stable within the corresponding approach (g ( g,' ). (b) The
electron-phonon correction to the efFective bipolaron mass for
n' = 8 as obtained with the best (considered here) varia-
tional trial function (solid line) and the Fourier series method
(points). The horizontal line indicates the value of two times
the efFective mass of a strongly coupled 1D polaron.
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where the averaging is performed over the wave function.
The evolution of B as a function of q is shown in Fig.
3(a). Notice that R increases smoothly with increasing
iI, as expected. For the trial function (3.6) we found for
the endpoints of the bipolaron region: R(g = 0) = 0.88
and R(xI = xI,

' = 0.764) = 1.91. The rms separation R
is also shown in Fig. 3(a) for the Fourier series approach
(points). Notice that the Fourier series approach predicts
that the electrons are on average closer to each other as
compared to the best variational approach. The Fourier
series result (extrapolation from N = M ( 15; see later)
is only shown when the bipolaron is stable within this
approach (xI & xI,

' = 0.672).
Within the strong-coupling limit the effective bipo-

laron mass is given by (for details see Ref. 24)

OO

= 2 + 8V 2cx' dzidz2dz2 y (zi, z2)
II9Zy

t9 2 ]x y (zi, z, )
l9Zy

(4.3)

In Fig. 3(b) the result of the electron-phonon correc-
tion to the bipolaron mass b,m'/m = m'/m —2 is shown
for the best variational wave function and for the wave
function obtained by the Fourier series method. We ob-
serve that the variational approach (solid line) repro-
duces in the limit of x1 = xI,

' (where xI,
' is obtained

within the same variational method) almost the correct
asymptotical effective mass of two separated 1D polarons
(dashed line). This asyxnptotical value is just twice the
value obtained by scaling the 3D effective polaron mass
(calculated within the first two orders of the strong-
coupling expansion2s). The reason for this choice is that
the center-of-mass motion of the bipolaron is treated in
a Gaussian approximation [cf. Eq. (3.4)j and thus cal-
culated in the same approximation as the 3D effective
polaron mass.

Also the effective bipolaron mass calculated with the
Fourier series method (points) is given for some values
of g below g' = 0.672 obtained with the same method.
The Fourier series approach is, however, not accurate
enough to obtain good estimates for the effective mass
and rms separation (an accurate result for the energy can
be extrapolated, but for the wave function with which
the effective mass and rms separation are calculated we
cannot do this). We used in the calculations of the rms
separation and the effective mass the Fourier series ap-
proach with N = M & 15 and extrapolated the results
in the limit N = M m oo.

final electronic configuration. These states are described
by self-consistent solutions of the nonlinear Schrodinger
equation. Then, there are the Franck-Condon (FC) ex-
cited states. The electron is then excited while the polar-
ization is remaining at the initial ground state electronic
configuration. Finally, there exist also Franck-Condon
type excited states which are states available for an elec-
tron in a potential well created by one of the RES's.

In what follows we use the quantum number n & 1
to enumerate the self-consistent solutions and n' & 1 to
enumerate the excited states in an effective potential well
generated by one of the self-consistent solutions. There-
fore, e„„lwill be the energy of the n'th state in the
effective potential generated by the nth self-consistent
solution. It is clear that dealing with FC-type excited
states we will find between them the corresponding RES
itself which, due to symmetry reasons, is not the ground
state in this potential. More precisely, a level with quan-
tuxn numbers (n, n) corresponds to the nth RES (or the
ground state, if n = 1). Only the ground state generates
a potential in which itself is the ground state too. If,
e.g. , the effective potential is generated by the first RES,
the latter having an antisymmetrical wave function, will
be the first excited state (n = n' = 2) in this potential.
It means there exists a ground state with a lower energy
(see s2 i in Fig. 4) and with a symxnetrical wave function.
For n = 3 the corresponding RES is the second FC-type
excited state (n = 3, n' = 3) and there are the ground
state (n = 3, n' = 1) and the first FC-type excited state
(n = 3, n' = 2) with lower energies.

The energies of several states with n = 2 are shown
in Fig. 4 and the contourplots of the wave functions for
n = 2, n' = 1, 2 in Fig. 5. From the ground state energy
6p ] 0 332 of the 1D polaron in a box with length
2I = 7, and from the value e2 q ———0.679 in Fig. 4 for the

2,4

2,5

2,6

0.5

C
0
0
0
CL

CD

—0.5

V. EXCITED STATES OF THE 1D BIPOLARON

With the Fourier series approach we are also able to
investigate the excited states of the 1D bipolaron. Fol-
lowing the definitions given by Devreese, we distinguish
three different types of excited states. First of all, there
are the ground state and relaxed excited states (RES's).
The polarization of the medium is then adapted to the

I i I s I i I i I

4 6 8 l0 12

Box length

FIG. 4. The energy levels e2 x which belong to the states in
the potential well generated by the 6rst RES as function of the
size of the confinement box (calculated with N = M = 15).



50 ONE-DIMENSIONAL SIPOLARON IN THE STRONG-COUPLING LIMIT 12 529

c4 0

~ $
~ ) ~

/

% %her
N

~ ) ~ Q ~

LLw~ r/Ij

—2 0 2
z1

. (b)

—2 0
z,

) ' L ' )/

I II/
I I) I %ILL

FIG. 5. The contourplots of the wave functions for n = 2

and n' & 2. The solid line corresponds to positive values of
the wave function and the dashed line to negative values: (a)
n' = 1, (b) n' = 2.

1D bipolaron in the same box, we can conclude that this
ground state in the potential of the first RES is stable
and will exist for certain values of the box length 2L and

)) (see also later).
In the limit of an infinitely large box we found that

the energies of the excited states are grouped because of
symmetry reasons. Let us look at Fig. 6 in which we plot
the energy spectrum for n & 3 and n' & n+ 1 (n = 3) or
n' & n (n = 1,2). Apparently, the e„„consistof groups
of n + 1 energy levels if n = 3, and of n energy levels if
n = 2. The energies es „~for n' & 4 as function of the
box length 2L show us that in the limit of an infinitely
large box the energy levels indeed combine to groups as
discussed above and that in this limit all these energies
e3 & (n' & 4) tend to the energy eREsg —e3 3 of the
second RES. This energy level is fourfold degenerate. In
Fig. 7 we plot the contour plots of those wave functions

0.5 [ ~ I I I
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I i i s i I i I i I I » s s I
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Box length

FIG. 6. The energy levels e „Ifor n & 3 and n' & n+ 1
(n = 3) or n' & n (n = 1,2). For increasing box length
2L we observe a grouping of energy levels which is a con-
sequence of the syvnvnetry of the wave functions (calculated
with JLI = M = 15).

cv 0
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«(, )))')A iXN~~rrr r

(c)
) a
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/ I /~

) I5))L)'r I) I

+r

—2 0 2
z,

FIG. 7. The contourplots of the wave functions for n = 3
and n' & 4. The solid line corresponds to positive values of
the wave function and the dashed line to negative values: (a)
n'=1, (b) n'=2, (c) n'=3, and(d) n'=4.

for n = 3, n' & 4. They correspond to the energies
e3 q (a), e'3 3 (b), es 3 (c), and e3 4 (d). We see the four
symmetries which are allowed by the integro-differential
equation (2.6) and cause the degeneracy. For the excited
states in the potential generated by the first RES (n = 2)
the symmetry relations are restricted to two symmetry
combinations (see Fig. 5). So we indicated the reasons
for the grouping seen in Figs. 4 and 6.

With )) = 0.2 the numerical results for the energies of
the ground state and the first three RES's in the limit
of an infinitely large box and extrapolated to an infinite
number of terms in the Fourier series (N = M -+ oo)
are, respectively, eq q ———0.986, e2 2

———0.667, e3,3
—0.442, and e4 4 ———0.416. The e„„withn even corre-
spond to an antisymmetrical wave function. In this case
the b function of the contact potential does not contribute
because the wave function is zero at zq ——z2. However,
for the RES states with odd n the b function will play an
important role.

To understand better the structure of the bipolaron
excited states we consider the bipolaron problem with
no repulsion (U' = 0) between electrons. Then the ef-
fective potential becomes separable and bipolaron wave
functions can be represented as products of one-polaron
wave functions of Ref. 30. Moreover, we consider the box
length large enough so that the peaks of the one-particle
solutions are infinitely separated.

The results of the study are as follows. First of all
there are states which can be represented in this limit
as combinations of the same one-particle wave functions
or wave functions which have different symmetry prop-
erties but with peaks on the same places. Then the re-
sulting bipolaron energy will be 4 times the sum of the
one-particle energies due to the strong nonlinear effects in
the system (see the Appendix). In particular, the ground
state bipolaron wave function at U' = 0 is constructed as
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the product of two one-polaron ground state wave func-
tions and has a peak at zi ——z2 ——0. The correspond-
ing energy A equals 4 times the doubled polaron energy:
A = —8/3. When the repulsion is switched on the peak
is splitted into two peaks (at a short distance) which are
symmetrical to the line z2 ——zq. (cf. Fig. 2). The ground
state energy becomes equal to eq i. One more exam-
ple derived &om the U' = 0 case is the symmetrized or
antisymmetrized product of one-polaron wave functions
corresponding to the first RES and to the ground state in
the potential generated by this RES. Each one-particle
wave function has peaks at the points z; = kL/2 and
the corresponding one-particle energy is —1/12 as was
found in Ref. 30. The resulting bipolaron wave func-
tions have not four but also two peaks (a positive and
a negative one) at the points z2 ——zq ——kL/2 for the
symmetrical and z2 ———zq ——kL/2 for the antisymmet-
rical states. At U' = 0 and for an in6nite large box these
states are degenerate and the corresponding energy is [see
Eq. (All)] A = 4(—2/12) = —2/3. When the repulsion
is switched on the antisymmetrical state is not in8uenced
[cf. Fig. 5(b)] and the energy corresponds to s2 2. The
peaks of the symmetrical wave function, however, will
split [cf. Fig. 7(c)] and its energy will take a higher value
depending on q which determines the factor in front of
the b-function potential. Its energy for g = 0.2 is equal
to c33.

Then there are one-particle states whose wave func-
tions have peaks at diferent points The energ. ies of sym-
metrical and antisymmetrical combinations of such one-
particle states will be the sum of the one-particle energies
as it is in linear physics (see the Appendix). From the
symmetrical and antisymmetrical combinations of the
one-particle ground state and first RES wave functions,
we can explain the origin of the third RES (n = n' = 4)
and obtain exactly the energy c4 4.

In the same limits as for the above RES states (box
length ~ oo, N = M -+ oo) the energies of the ground
state, the first RES, and the ground state in the poten-
tial of the first RES are shown in Fig. 8 as a function
of g. The 1D bipolaron ground state is always stable
and exists. The first RES, however, has a constant en-

ergy eRFsz ———0.667 which corresponds to twice the
single-polaron energy. This energy is independent of g
because g is only present in the b-function term which
does not contribute to antisymmetrical wave functions.
Because of this energy value for the first RES we see
that the energy of the ground state (when the box length
—+ oo, N = M + oo) should be lower than this value
—0.667. Taking into account that the ground state en-

ergy increases with increasing g and that the numerically
obtained upper bound (within the same limits as above)
tends to the same value for g = 1.0, we can conclude that
in the limit of an in6nite large box g = 1.

In the potential generated by this 6rst RES the ground
state has a lower energy c2 i which goes asymptotically
to sRFsq when g approaches unity (infinitely separated
electrons). Therefore, this state will be stable except in
the case of an infinitely strong repulsion caused by q m 1.
Nevertheless, because the energy of the first RES equals
twice the single-polaron energy, the lifetime in this first

0E-
~ ~—07"-

Q3
C —08
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—09
0
Q

CQ —1

ct

0.2 0.4 0.8

FIG. 8. The energies of the ground state, Grst RES, and
the ground state in the potential generated by this first RES
as function of g (in the limit N = M m oo). The curves are
guides to the eye.

RES will be very short. To obtain the ground state in the
potential generated by the first RES the electrons need to
be situated 6rstly in the first RES itself Rom where this
ground state can be reached. Therefore the probability
of finding two electrons in the latter state will be very
small despite being stable.

VI. CONCLUSIONS
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APPENDIX

To better understand the structure of the bipolaron ex-
cited states let us consider an unphysical situation when

g = 0 that is when the h-function repulsion potential in

Eq. (2.7) is not taken into account. The efFective poten-
tial becomes separable and a bipolaron wave function can
be represented as a symmetrized or an antisymmetrized
product of "one-particle" wave functions of Ref. 30:

X(zi I z2) N [Xi(zl) X2(z2) + |'Xl(z2) X2(zl)] (A1)

where p = 1 (—1) for symmetrical (antisymmetrical)
states and the normalization constant in Eq. (Al) is de-
fined by the relation

L,

1 = 2N 1+p dzxl(z) X2(z)
—L

(A2)

+V [Xl(z2) DX2(zl) + X2(zl) DXl(z2)] = 0, (A3)

where the operator D is defined as follows:

Inserting the general bipolaron wave function (Al) into
Eqs. (2.6), (2.7) we arrive at the equations

Xl(zl) DX2(z2) + X2(z2) DX1(zl)

DX;(z) = —-X'(z) + X*(z) —4~2N' Xl(z) + X2(z) +»»(z) X2(z) d"»(")X2(z')
—L

(A4)

and the asyinptotical value U of the effective potential (2.7) takes the form

l
L L

+ 4p dz Xl(z) X2(z) [Xl(z) + X2(z)] dz Xl(z) X2(z)
—L —L

L
U~ = 4y 2N ) dz [Xl(z) + X2(z)] + 4 dz Xl(z) X2(z) dz Xl(z) X2(z)

—L —L —L

Solutions to Eq. (A3) can be constructed with eigen-
vectors of the operator D:

large box. Then we have N = I/v 2 and obtain the fol-
lowing equations Rom Eqs. (A4), (A5):

Dx'(z) = &'x'(z).

Inserting into Eq. (A3) we obtain that

Ci + C2 ——0.

(A6)

(A7)

(x
1

-- x"(z) + U(z) x (z) =
l

—+ &
l
x (z)

1 „-fA
2

X2 (z) + U(z) X2(z) —
~

Cl
~ X2(z)

E2 )
If the wave functions yi and y2 have different symme-

tries under reBections, the interception integral
L

U(z) = 2v 2 dz xl(z) —4~2X, (z).
—L

(A9)
L

dzXi(z) X2(z) = 0
—L

(As)

and formulas (A2), (A4), (A5) are simplified. The same
occurs in the limit of an infinite large box when yi, y2
have peaks in different places, which are, of course, in-
finitely separated &om each other.

First, we consider bipolaron states which can be con-
structed &om combinations of one-particle wave func-
tions with different symmetry properties but with peaks
on the acme places. As an example we suppose that Xl(z)
is a symmetrical function in z and X2(z) is an antisym-
metrical function and suppose also that being squared
these functions will coincide in the limit of the infinitely

A Cg (g)
8 4

(A10)

After scaling zll2l -+ zll2l/2 we can choose as X2, for
example, the first RES of a single polaron, and as yi the
excited polaron state which is the ground state in the
potential generated by y2. Indeed these functions have
the supposed symmetries under reBections and peaks at
the points z = +L/2 which are infinitely separated in the
limit L ~ oo. Thus we obtain f'rom Eq. (A9)
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(i)where c, j.s the single-polaron energy in a state with
the mentioned quantum numbers of which the first is
related to a RES and the second to an excited state
in the potential of that RES. From Eqs. (A7) and (A10)
we obtain the expression for the energy of this bipolaron
state in the limit of a large box:

(A11)

The general rule is that the energy of a bipolaron state
constructed &om one-particle wave functions with peaks
on the same places equals 4 times the sum of the one-
particle energies. If both particles are in the same state,
we arrive at the same general rule (see Ref. 25).

Next, we consider the case when we construct a bipo-
laron state from wave functions with peaks at diferent
points. In the limit of the infinite length of the box these
peaks are infinitely separated. Then we may neglect all
products of the type g~ y~z in the Eqs. (A4) and (A5). We
arrive at the following pair of equations which replaces
Eq. (A9):

rl
/'A

2
——X&(z)+ Ui(z)Xi(z) =

l

—+t-"i+&
l
Xi(z),(2

ri (A
2

X (z) + +2(z) X2(z)
~

+1 +
~
X2(z)

U;(z) = y2 dzy, (z) —2@2g, (z),
—L

dz (y', —y,') .
2, L— (A12)

These equations are exactly one-particle equations and so
the expression between brackets on the right-hand side
is equal to the corresponding one-particle energies. The
general rule is now that the energy of a bipolaron state
constructed &om one-particle wave functions with peaks
at different places equals the sum of the one-particle en-

ergies, which is usual in linear physics. Considering both
general rules a combination of the one-particle ground
state and an excited state could lead to a higher bipo-
laron energy than the combination of two excited states.
This peculiarity is caused by the strong nonlinearity of
the effective interaction.
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