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Hopping theory of heat transport in disordered systems
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Heat transport is studied in a simple model system of Anderson localized optical (carrier) phonons
vrhich perform thermally activated hopping due to anharmonic interaction vrith delocalized acoustic
phonons. The corresponding kinetic equations (rate equations) are derived by using the density-
matrix formalism. The calculated hopping contribution to the heat conductivity exhibits a linear
increase with temperature at lower temperatures and (depending on the choice of parameters)
eventually reaches a "saturated" value at higher temperatures. Thus, unlike other authors, me

do not need a special mechanism, such as lifetime broadening of the optical phonon states, to
explain the transition to the saturation region. Furthermore, we show that particle (carrier) number
nonconservation leads to a quenching of the hopping mechanism.

I. INTRODUCTION

In recent years, transport of vibrational energy in dis-
ordered insulating solids has attracted great interest in
both theoretical&

—2o and experimental2x
—28 studies. This

interest has been much stimulated by the observation
that the temperature dependence of the heat conductiv-
ity, tc(T), of amorphous solids distinctively differs from
that of crystals. In insulating crystals, at low T, e is
a cubic function of T, and at high T it decreases with
1/T. This behavior can be well described by means
of the Peierls-Boltzmann theory of a weakly interacting
phonon gas (e.g. , Refs. 29, 30 and references therein). In
amorphous solids, one can distinguish three characteris-
tic temperature regimes: (i) low T (T & 1 K), where ~ is
approximately a quadratic function of T, (ii) medium T
(T 10—30K), where e is constant ("plateau" region),
and (iii) high T (T ) 30K), where ~ rises smoothly and
(mostly) reaches a limiting or "saturated" value.

The behavior of ~ in the regime (i) can be well ex-
plained by phonon scattering off two-level systems, ~ 2

whereas that in the regimes (ii) and (iii) is less well
understood. Regime (ii) has evoked a wide variety of
explanations, such as Rayleigh scattering, lo-
calization, and inelastic scattering of phonons.

Specific attention is at present paid to the regime (iii),
where interesting physical phenomena, such as difFusive
motion of nonpropagating modes& ' 2'~9'2o'26 or hopping
of vibrational excitations, ' ' ' are emerging as
possible transport mechanisms. The diffusive mechanism
is based on the idea that disorder is sufficient to cause
a phonon mean &ee path of the order of the interatomic
spacing, which implies vibrational modes do not propa-
gate, but disorder is insufficient to cause all the states to
localize. This mechanism does not require anharmonic-
ity. By contrast, the hopping mechanism assumes local-
ized vibrational states and needs anharmonicity to allow
energy transport between such states.

Both the mechanisms open new conduction channels,
in addition to the conventional channel of heat transport,

by propagating long-wavelength acoustic modes. Both
mechanisms cannot be described within the &amework
of the Peierls-Boltzmann theory. Which mechanism is
actually operative in a given real material is in general an
open problem. The current experimental and theoretical
situation is not yet quite satisfactory. More experimental
data are needed and the transport mechanisms require
further theoretical inspection.

It is the purpose of this paper to examine the vibra-
tional hopping transport on the basis of a rate equation
approach. Before describing this approach in more de-
tail, let us throw some light on previous studies related
to the subject of this paper.

In an early simulation evidence was seen that in a dis-
ordered vibrational system anharmonicity can enhance
the value of e at higher T.

The vibrational hopping mechanism was first theoreti-
cally studied ' in a &actal system by considering local-
ized vibrational states (fractons) interacting with acous-
tic modes. The corresponding transition probabilities be-
tween localized states were calculated by means of the
golden rule. The heat conductivity e was found to in-
crease at high T linearly with T. It was argued that ~
saturates if T is high enough so that the lifetime of the
localized modes becomes comparable with the period of
their vibrations. The results were applied to regime (iii)
mentioned above.

A linear increase of x with T over a large temperature
range, without saturation at high T, was recently ob-
served in certain complex silica glasses and interpreted
in terms of vibrational hopping. Results of simulations
of r(T) in quasicrystalline systems seem also to support
a hopping model. Thermal conductivity experiments
on boron carbides suggest hopping of vibrational energy,
too. ' In experiments with high-energy nonequilib-
rium phonons, produced by intense pulsed optical exci-
tations, evidence was seen for localized vibrational states
in amorphous silicon, the necessary prerequisite for the
hopping mechanism.

It may be argued that vibrational hopping may also be
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an important mechanism of energy transport in complex
molecular systems subjected to intense optical excitation
for reconstructing chemical bonds.

Thus, vibrational hopping appears to be an interest-
ing transport mechanism, which is possibly operative in
various systems. In order to substantiate its physical rel-
evance, it seems to be reasonable not only to perform
further studies of material-related aspects of this mech-
anism, but also to study its general features in suitable
model systems by starting kom first principles.

A study of the latter kind is the subject of the present
paper.

The model system employed must be simple enough
to allow a first principles approach, but it must also be
complex enough to be physically relevant.

The basic model we use is one wherein the heat carriers
are high-&equency (optical) phonons, which are assumed
to be localized due to disorder and which are coupled
with lower-&equency delocalized (acoustic) phonons.

Ignoring heat-carrier particle-number-nonconserving
terms, the corresponding Hamiltonian (see also Refs. 34,
35) reduces to that commonly used in the theory of elec-
tron hopping (e.g. , Refs. 36, 37), except that in the vi-
brational model the carrier particles are bosons instead of
fermions as in the electronic case. Adopting this Hamil-
tonian and making use of the density-matrix formalism
employed in the theory of electron hopping (e.g. , Refs.
36—38) we derive a rate equation (master equation) for
vibrational hopping, which allows us to study aspects of

I

changing the carrier-particle statistics from fermions to
bosons.

To investigate effects of particle-number nonconserva-
tion occurring in vibrational systems, we introduce, ad
hoc, a corresponding term in the Hamiltonian and show
that this term leads to an additional term in the rate
equations, which describes carrier-particle decay.

The paper is organized as follows: In Sec. II, the
Harniltonian is introduced. In Sec. III, the heat con-
ductivity in terms of the one-particle density matrix is
formulated. In Sec. IV, the rate equations are derived.
Section V is devoted to particle number nonconservation.
In Sec. VI, the heat conductivity is calculated on the ba-
sis of the rate equations. In Sec. VII, we discuss our
approach and the results obtained.

II. MODEL HAMILTGNIAN

We consider a simplified model system of coupled lo-
cal high-frequency harmonic oscillators {optical phonons)
which interact anharmonically with low-&equency de-
localized (acoustic) phonons. Each oscillator can be
thought of as corresponding to a given vibrational mode
of a single molecule in a molecular crystal. Assuming
only one optical phonon branch and, for the time of
being, ignoring decay processes of optical phonons, our
model may be described by the following Hamiltonian:

H = ) e at a + ) J a, a + ) at a Ruz(u (q)bz+u* (q)b~}+ ) Ru~(b~tb~+ 1/2),
mmmm'

where

(2)

Here at (a ) corresponds to a (Bose) creation (annihi-
lation) operator of a local (optical) mode with frequency
e /5 at site m; J ("hopping" matrix element) de-
scribes the coupling between the oscillators at sites m
and m'; bt (bz) corresponds to a (Bose) creation (a~~ihi-
lation) operator of an acoustic phonon with wave vector
q and &equency uz (q is assumed to include also the
index of the vibrational branch); the dimensionless con-
stant p {q) describes the coupling between optical and
acoustic phonons; Rm is the position vector of site m;
and N denotes the number of molecules in the system.

In the Hamiltonian {1), the optical phonons are de-
scribed by the first two terms, the acoustic phonons by
the fourth term, and the third term represents the inter-
action between optical and acoustic phonons.

The only anharmonicity in the model is between the
local optical oscillators and the acoustic phonons.

J is assumed to be a small quantity and to depend
on lR —R l. In the presence of disorder, e and/or
J are random quantities. Moreover, p (q) may de-
pend on m in a disordered system, but we shaB neglect
such dependence.

On studying vibrational hopping, we assume the dis-

H=) ~ a a + ) J a a 4
m mmmm'

+ ) hew~(bt b~ + 1/2), (3)

where

&m = &m Epm~ (4)

order to be strong enough to localize the optical modes.
But we assume the acoustic phonons not to be affected
by disorder.

The Harniitonian (1) can be obtained &om the classi-
cal Hami&tonian of a two-atomic molecular system by as-
suming suitable interactions, introducing difference and
center of gravity coordinates for each molecule, and ex-
pressing the displacement coordinates and conjugated
momenta through creation and annihilation operators.

The Hamiltonian (1) is the Bose version of the Hamil-
tonian commonly used in the theory of electron hopping
(cf. Refs. 36, 37).

Applying the polaron canonical transformation to
the Hamiltonian (1), we can write it in the form
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and
h(k) = —) [H, H ]e

*" (14)

4 = exp ) p (q)exp(iq R )
q/2N For the model of Sec. II, by means of Eq. (13) we find

, (q)exp(iq. R )'he —H.c.). (6) S = Sph + Sop + Sint (15)

Here E~ is the polaron shift of the energy of the mth os-
cillator and 4 is the multiphonon operator describing
the formation of a polaron cloud.

We omit in the Hamiltonian (6) contributions due to
interaction of "polarons" via virtual exchange of acous-
tic phonons, since already in (1) we have ignored anhar-
monicity in the optical phonon subsystem.

where

Sop + Sint

- (9q

III. KUBO FORMULA
AND HEAT CURRENT OPERATOR

Analogous to the well-known Kubo formula for the
electrical conductivity, the thermal Kubo formula re-
lates the thermal conductivity tensor tt„„ to (heat)
current-current correlation functions as (cf. Refs. 41, 18)

l
) h

J 'a a ' J!I' t t'

tl'mam' i k=o

—) R e [Hata]

+ —) R E [Hata ].

dA d& e'

x (S„(0)S„(t+ ih(9A)), e m +0.

Here k is the Boltzmann constant, 0 is the volume of
the system, u represents the frequency of an ac applied
temperature gradient (the experimental case corresponds
to ~ = 0), the symbol ( ) indicates the thermal average,

Here

where

+E for m =m',
J for mmmm',

E = ) ihu~ (u (q)b~+ u' (q)bt) .

(18)

(P = 1/ItT), and

S(t) iHt/AS iHt/s—
The current operator S is given by

S= des m,

where the heat current density operator s(e) is defined
by the condition of local energy conservation,

The operator Sph governs the conventional heat trans-
port by propagating acoustic phonons, while S p governs
hopping transport of optical phonons, which is expected
to dominate at sufficiently high temperatures.

In what follows, we study heat transport by retaining
only S ~ in Eq. (15). The corresponding contribution
to the heat current can be expressed through the one-
particle density matrix, similarly as the electrical current
in the case of electron hopping (cf. Appendix A). This
can be shown by making use of the nonequilibrium sta-
tistical operator42 (see also Ref. 43)

h(m) + s(m) = 0.
l9%

p(t) = Q exp
~

—J dqB(x, t) ~, (2o)

Here h(a) is the Hamiltonian density,

h(m) = ) H b(m —R ), (i2)

where

0

B(, t) =& dt, e" P(~, t+t, )h(+, t, ), e ~+0,
and the Hamiltonian is H = f ds: h(s:).

Fourier transforming Eq. (11) and dropping the longi-
tudinal projection, S = s(k = 0) becomes and Q is determined by

(21)

S = i h(k)
. k T (o(t) =1. (22)

where
Here P(a, t) = 1/ItT(a, t) and h(m, t) is h(a) in the
Heisenberg representation [cf. Eq. (9)].
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Assuming weak temperature modulation bT(m, t), then
P(a, t) can be written as P[l —bT(m, t)/T], where (kP)
is the average temperature T. Integrating in Eq. (21)
by parts, using Eq. (11), and assuming the temperature
gradient VT to be spatially constant, one 6nds to the
linear order in the temperature gradient

eE i e VP/P, (3Oa)

Fermi operators at (a ) m Bose operators a+ (a ),

(3ob)

1 0

p(t) Q 'Il+ dA/ dtze" S(t'z+xliPA)

x Vp(t+t~)Ie d, em+0, (23)

which is the expression for the statistical operator needed
for getting the thermal Kubo formula (7) (cf. Ref. 41).

The one-particle density matrix is de6ned as

(30c)

Here e is the electron charge, E is the electrical field, and
E and N are given by Eqs. (A4) and (29), respectively.

Hence, on studying vibrational hopping, we may em-

ploy the technique commonly used for electron hopping,
which is well developed.

p (t) = Tr p(t)a~ a (24)
IV. RATE EQUATIONS

and, according to Eq. (17), S z is given by

S~ —) R e [Hata ]

t=) R e —a'a. (25)

S(t) = —T [P(t)S.,] (26)

(0 volume of the system), can be expressed as

S(t) = —) R e —p (t),
1

(27)

where

Making use of Eqs. (23)—(25), the heat current density
S,

In response theory, the stationary current regime may
be described by switching on the external field E either
adiabatically at t ~ —oo or suddenly at t = 0 (and
examining the system at large t) Adop. ting the latter
procedure, electron hopping has been studied (cf. Refs.
36, 37) by means of the density-matrix formalism, which
allows electrical Eelds of any strength to be considered.
In this formalism, if necessary, linearization with respect
to E may be carried out at the level of the kinetic (rate)
equations (cf. Refs. 36, 38).

Owing to the mathematical equivalence between the
problems of electron and vibrational hopping [cf. Eq.
(30)], the density-matrix formalism may formally also be
applied to vibrational hopping in the presence of a tem-
perature gradient VT of any strength, which is switched
on at t = 0. However, only after linearization the rela-
tions obtained become physically relevant.

To study vibrational hopping along this line, we intro-
duce the following generalized one-particle density matrix

0

p (t) =N + —e* ') R e dt, e'"
na' —OO

x& e ~ ata, at, a

x Vp/Tr(e ~~), e ~+O,

with

N = Tr(e P at a )/Tr(e P }

(2S)

(29)

p (t) = (Ut(t)a~ a U(t)),

where U(t) is the time evolution operator,

t

U(t) = T exp (
—i/5 dd'N(d)),

with

'R(t) = H+ H'(t).

(31)

(32)

and (at, a )d denotes at, a i in the Heisenberg repre-
sentation [cf. Eq. (9)].

It can be readily verified that S(t) from Eqs. (27), (28)
agrees with S(t) = m((d)( VT)e'—, where ge is deter-
mined by the Kubo formula (7), with S ~ as the heat
current operator. Furthermore, the expression for the
heat current density, Eqs. (2?) —(29), agrees with that
for the electron (hopping) current density (in the case
of linear response), Eqs. (Al), (A3), and (A4), provided
that in the latter expression one makes the replacements

Here T is the time-ordering operator, H is the canonically
transformed Hamiltonian (3), the symbol ( ) indicates
the thermal average (8) performed with this Hamiltonian,
and H'(t) describes the eKect of the external perturba-
tion given by [cf. Eq. (30)]

H'(t) = — ) e R a aVP(t)

The diagonal elements of the density matrix (31),p
p, are needed for calculating the current density (27).
Recall that the polaron canonical transformation does
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not afFect the operator a~ a and, therefore, we can use
the canonically transformed Hamiltonian in Eqs. (24)
and (A2).

The equation governing the diagonal elements p (t)
in general also contains off-diagonal elements p, (t) with
m g m'. For the latter ones, we find that

(J/I')(p —p ), where I' is the width of the spread
of the oscillator energies. Anderson localization requires
J/I' « 1 and, therefore, in a hopping system it holds that
p, &( p, p ~. Neglecting the oH'-diagonal elements of
the density matrix, we obtain (in the Markovian limit)
the following rate equation:

J
, (p —p-)

&(t-'~ —&m)
(35) = ) jp, (l+ p )W, (t)

where J e denotes the quantity J r renormalized by
the interaction with the acoustic phonons (cf. Ref. 36).
Thus, for most of the pairs of sites we have p~, where

—p (1+p, )W, (t)),

(p gati l
a&.(p(q)~2[1 —cosq(R, —R )]

V~(t)-(e,R, —e R )

(37)

The hopping probabilities W, have the symmetry
property

W, /W, = exp(P, e

— ~"(,R .—-R-) ),
which refiects the principle of detailed balance.

Setting VP equal to zero in Eq. (I), we find that

) (p(e)() y)r( ))W(el p(e)() y)r( ))W( )
) 0

(39)

where the superscript (0) denotes the zeroth-order term
with respect to VP of the corresponding quantity. From
Eqs. (38) and (39), we obtain

—p(0) (40)

which is the eq»i&ibrium occupation number of the oscil-
lator at site m (for VP = 0 and J = 0).

Let us now linearize Eq. (36) with respect to VP. To
this end we write

p (t) = n + p" (t), (41a)

W, (t) = W~',l +W~',l (t), (41b)

W&i& (t) = ——VP(t) (e,R, —e R ) W~,&, (42)

we find that

where the superscript (1) denotes the first order in V)9
terms.

Inserting Eq. (41) into Eq. (36) and taking into account
Eq. (39) and

r, =W&;& n, (1+n ).

Ass»ming V)9(t) = V((3e* ' and writing

p~'&(t) =Pn (1+n )bp, e' ',

the linearized rate equation (43) becomes

(44)

(45)

i(un (1+n )blj, = ) I', ((e R —e,R, )
m]

+6, —b~ ),
where

(46)

I', = ~J,
~

45 sinh '
l sinh

) & )
x dt exp

p q 1 —cosq
N sinh(fuu&P/2)

x cos cubit
—1 (47)

In two limiting cases, the time integral in Eq.
(47) can be evaluated analytically: (i) for b

~p(q)( /[N sinh(hu~P/2)] && 1, i.e., weak interaction
between the optical and acoustic phonons, p (( 1, and
not too high temperatures, and (ii) for h ) 1, i.e., strong

dp() t = ) r, ((.- R -e,R, )VP(t)
TAQ

+p~'I/ n, (1+n, ) —p~'&/ n(1+n )),
(43)

where I', = I', is the symmetrized hopping prob-
ability,
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interaction, p ) 1—2, and/or sufFiciently high tempera-
tures.

In case (i) we obtain

I'~, ~ =
~
J~,~~ (5 /2vr) i sinh ' sinh')& ')

E = ) ]p(q)] Re~[1 —cos q(R, —R )]. (50)

As will be discussed in Sec. VI, the expressions (48)
and (49) lead to r oc T and r oc 1/~T, respectively.

x i sinh
2 )

x —) ip(q)i [1 —cosq(R, —R )]

xS(~, —I.—,—e I/a), (48)

V. HEAT CARRIER NONCONSERVATION

To get a 6rst insight into effects of optical phonon non-
conservation in hopping transport, we introduce, ad hoc,
the following additional term to the canonically trans-
formed Hamiltonian (3):

and in case (ii), by means of the method of the steepest
descent, we 6nd that 0"= ) K (at +a )4

mmmm'

(51)

pe, ) pe )

(e, —e )')
x exp( —pE ) exp 16E kT (49)

where the quantities K are assumed to be propor-
tional to J . Such a term can be easily incorporated
in our diagrammatic technique (Appendix B).

Equation (51) leads to the following additional term
on the right hand side of the rate equation (36):

where E (the high-temperature small polaron activation
enorgy) is given by Here

(t) [w,"(t) + w, (t)] + w;(t). (52)

WP(t) = (—1)"—) K, K
mg m2

OO 2

x dt' exp —(—1)"Q (t) (p/2+ it'/5) exp ) a ', cosmist' —1 (53)

where k = 1, 2; Q (t) = e[1+R VP(t)/P], K is the quantity K renormalized by the interaction with the
acoustic phonons, similar to J and J, and

a ' ', = 2(cosq(R, . —R ) + cosq(R —R, )

—cosq(R, —R, ) —cosq(R —R )).
(54)

Setting Vp equal to zero, we find that the expression (52) vanishes for the equilibrium occupation number p~ ) = n
[Eq. (4O)]. Furthermore, to the first order in Vp, Rom Eqs. (36) and (52) we now obtain, instead of Eq. (46),

[i~+1/~ ]n (1+a )bp

= —(i/7 )n (1+n )e R (Vp/p)+) I', ((~ R —~,R, )(Vp//))+6y, , —bp

where

1/ - = [ (1+ -)~'] '~'

(56)

As compared to Eq. (36), Eq. (55) contains new terms, which describe the decay and generation of optical phonons
due to processes governed by the Hamiltonian (51).

VI. RESULTS AND DISCUSSION

A. Parameters and computational procedure

To illustrate the rate equations (46) and (55), we calcu-
late the hopping current (27) on the basis of these equa-

tions and study its dependence on the various parameters
characterizing the model system in question.

We solve the rate equations numerically for two-
dimensional (2D) systems with site (optical oscillator)
energies e and positions R distributed at random.
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The acoustic phonons are described by a Debye model
with Debye frequency uD.

The "hopping integral" J between sites m and m'

is assumed to decrease exponentially with the distance
[R —R

~

between the sites, J = Js exp( —2a~R
R [), where the parameter n i characterizes the range
of interaction between the oscillators m and m' and Jp is
some constant.

The other parameters characterizing the model system
are the mean oscillator energy e, the spread of the oscil-
lator energies Le, the constant p governing the strength
of the interaction between optical (carrier) and acoustic
phonons, the concentration of sites (optical oscillators)
Af, and the temperature T. Anderson localization, the
prerequisite of hopping (at least for small p), requires
that Ae ) J, where J is some typical value of J

Heat conduction due to hopping is expected to be rel-
evant for kT & ~D.

In what follows, all the energies are given in units of
huii, and the temperatures in units of ~~/k.

The integral in Eq. (47) is solved using (48) as the first-
order approximation and then integrating the difference
between (47) and (48) numerically. To calculate the sum
over the wave vector q in Eq. (47) the coupling strength
p is assumed to be independent of q and the expression
[1—cos q(R, —R )] is approximated by (1/2) [q(R
R )]'.

Figure 1 shows the temperature dependence of the time
integral in Eq. (47) (curve I). For comparison, the ana-
lytically obtained values in the limits of weak and strong
interaction, corresponding to Eqs. (48) and (49), respec-
tively, are given, too (curves II and III). The parameters
chosen are e, —e~ = 0.5~D, [R, —R [

= c/~~,
where c is the sound velocity, and p2 = 0.05. In contrast
to the electronic hopping case, where the temperature is
usually small as compared to ~D, so that the limit of
weak interaction is a good approximation, here we have

to compute the time integral in (47) numerically to ob-
tain the right temperature dependence of the hopping
rates.

The systems studied for calculating the thermal con-
ductivity consist of NL2 = 700 optical oscillators, where
L is the linear size of the system, the site energies e

are equally distributed between 2~a and 3~~, and
a = 50/L, except for the two curves in the case of strong
disorder discussed in Sec. VI C, for which a = 200/L.

On two parallel sides of the system, an area of a tenth
of the total system size is considered as a heat bath. The
heat baths are simulated by setting hp —e R VP/P
equal to —e(P~ —P)/P at the sites m which are inside
these areas, where P~ denotes the corresponding recipro-
cal heat bath temperature. With these bp as boundary
conditions, the remaining quantities hp are calculated
by using the systems of equations (46) or (55) with u = 0.

The magnitude of the calculated heat conductivity of
difFerent configurations varies by about a factor of 2 for
the system size considered here, but the resulting tem-
perature dependence remains qualitatively unchanged.
Thus, for reasons of short computational time, no con-
figurational averaging is performed.

On studying particle nonconservation, the time inte-
grals in Eqs. (47) and (56) are evaluated by means of the
method of the steepest descent [cf. Eq. (49)], because the
actual temperature dependence of these integrals is irrel-
evant, if one is interested only in the qualitative effect of
the decay rate on the heat conductivity. In this case, the
temperature is fixed at 4 hz~/k.

Inclusion of particle-nonconserving terms requires a
careful choice of the reference temperature I/(kP), which
is in between the (nearly equal) temperatures of the
cold and the warm heat baths. Due to the finiteness
of the considered systems, the number of produced opti-
cal phonons may not be equal to the number of decaying
optical phonons per time unit. This corresponds to a
net energy transfer between the subsystem of the acous-
tic phonons and the subsystem of the optical phonons.
To guarantee that heat transport is only due to hopping,
the quantity P is chosen such that the net production of
optical phonons in the finite system vanishes.

To obtain the magnitude of the ratio between the char-
acteristic decay rate and the hopping probability, the
mean decay rate v is calculated as the arithmetic mean
of the decay rates 7 i of all oscillators in the system, and
the mean hopping probability W is calculated as W
with an energy difference equal to half the width of the
optical band. This underestimates the true characteristic
ratio r i/W but should give the right order of magni-
tude.

0
0 4

TEMPERATURE B.Temperature dependence of the heat conductivity

FIG. 1. The numerically computed time integral in the ex-
pression for the hopping probability (47) compared with its
approximations leading to (48) and (49). Curve I is the nu-
merically computed integral, curve II corresponds to the ap-
proximatiou leading to (48), and curve III corresponds to that
one leading to (49). The coupling strength is p = 0.05. The
temperature T is given in units of fuuD/k.

The temperature dependence of the hopping contribu-
tion e to the heat conductivity resulting from Eqs. (27),
(45), and (46) (for ~ = 0) is illustrated in Fig. 2.

As shown in Fig. 2, curve III, for a strong interaction
between optical (carrier) and acoustic phonons (p ) 1—2;
small polaron model) the heat conductivity m decreases at
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on vibrational hopping, let us write the heat current S

0. 8

M
m
C4

0.6

M

a 0.4
R
O

where

and

S = Sg+ S2)

(e R —e,R, )
TATA g

x [(e,R, —e R )( V—PjP)j (58)

0
0 4

TEMPERATURE

82 —— ) I', (e R —e,R, )(bp, —bp ).
TATA g

FIG. 2. Tem erap ture dependence of the hoppin contribu-
tion to the heat conduc ' '

g con ri u-

e ea conductivity tc for varying stren th of th

p
'

g between optical and acoustical phonons; the cou-

pling constant p is 0.01 for curve I, 0.05 for curve II and 1.0
for curve III. The tee . e temperature T is given in units of huo/k
and the heat conductivity in arbitrary units.

lugh temperatures with increasing T as 1/~T. This be-
havior qualitatively agrees with results of calculations
or explaining experimental heat conductivit data o

boron carbides 22

Furthermore, Fig. 2 shows results for a weak interac-
tion etween optical and acoustic phonons (p ( 1). For a
sufBciently small parameter p (o - h hne-p onon opping pro-
cesses), the heat conductivity rc increases at hi h Ts a ig nearly

y with T, without changing to a "saturat d"
curve ~I. uc a behavior has been experimentally ob-

served in certain silica glasses and interpreted as an indi-
ca ion or vibrational hopping transport. 2~ On the other

at moderate temperatures (kT —
) d, h'

e~ an, at higher tem-
peratures, a change of r. to a sat t d lura e va ue (curve II).

uc a behavior has been experimentally observed2~ 24 in
certain amorphous materials.

According to the fracton-hopping conception, a
linear increase of ~ with T may b d t he ue o opping and
a crossover to a saturated level d t hue o an armonicity
induced lifetime broadening of th l l' de oca ize vibrational
states (&actons), which quenches the ho i
nism. B

c es e opping mecha-
suc a quenchingnism. y contrast, we do not need such

effect for explaining saturation of t hi h
In our stud a

o e a g temperatures.
y, crossover of m to saturation results &om

a careful examination of the int l ~47) gegra ~ ~ governing the
hopping transitions.

C.. ESect of disorder on hop ' h tpping eat transport

The parameters Ae and aN ~ 'd d
s stems

imension of the
sys emj, respectively, characterize the t' d

a ion.
si iona disorders in the hopping system under consider-

To discuss the effect of changing the amount of disorder

(59)

Apart om energetic weightin of the hg o e opping dis-
ance, he term Si has in essence the form he orm opping

p a i i y times hopping distance squared) obtained for
&acton hopping6' by means of the golden rule.

The novel seconecon" term S2 may be viewed of as a dif-
fusive contribution to the heat
portional to the quantity hp, , which describes the re-

the tern erature a '
istri ution of vibrational ener y t 't

igure 3 illustrates the inQuence of the difFusive con-
ri ution S2 on the heat transport.

For strong disorder (nN ~ —8 in t
con ribution may considerably reduce the total heat con-

uctivity. Here the conductivity calculated 'th '
1

o the diffusive contribution (curve IV) is about two
orders of magnitude smaller than the conductivity calcu-
ate without the difFusive contribution (curve III). This

effect is even more pronounced in 1D than in 2D sys-

M

0. 1

~ 0, 01
C4

E 10-3
M

M

(J
D 10-4a
R
O

& 10—5

~ 10—6

4
TEMPERATURE

FIG. 3. Hopping contribution to the thermal conductivity
e i usive part of the current.~ calculated with and without th d fF

Curves I and II are calculated for a system with n/V 2

and curves III and IV for a system with cuff
I and III re resent

wi 8. Curves
represent the thermal conductivity without the diffu-

sive contribution whereas curve II d IVs an are calculated with
inclusion of the diffusive contr b t Thi u ion. e temperature T is

given in units of her k
units.

and the heat conductivity in arb t
. Note that the conductivity axis is logarithmic

ar i rary
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tems, because in one dimension "hard hops" cannot be
bypassed by the heat current, in contrast to two dimen-
sions.

For weak disorder (aJV i/~ = 2), the diffusive current
S2 is small as compared to Sq, so that in this case the
total hopping current S (curve II) is well described solely
by Si (curves I). They difFer by about half an order of
magnitude in this case.

Note that in the theory of electron hopping it has been
shown that, at least in the one-electron approximation,
in the "high-density limit" (ah/ i/ —1) the difFusive
contribution to the total current may be neglected (cf.
Ref. 36).

In contrast to electron hopping, vibrational hopping
is in general only weakly affected by energetic disorder.
This is due to the high temperatures needed for getting
a relevant contribution of hopping to heat transport.

At high temperatures, in a hopping event there is no
competition between the spatial and the energetic hop-
ping distances, because all sites are thermally accessible
for a jumping vibrational quantum. Such competition,
however, may be important for energy redistribution due
to hopping in a band of localized modes after locally ex-
citing these modes at low temperatures, for example, by a
laser pulse. Note that for large disorder, the time depen-
dence of such energy redistribution process should be in-
timately related to the frequency dependence of the heat
conductivity and, therefore, also to the diffusive current
S2.

Let us yet consider the magnitude of the parameter
aJV i/~. For the molecular system discussed in Sec. II,
the parameter nJV i/~ is in general of order unity, except
for a strongly distorted system.

A large parameter oJV /" may be characteristic of a
hopping system with a narrow acoustic band but a very
broad spectrum of localized optical modes. In such a
system, hopping should occur in narrow &equency bands
of width fuuD, which implies a large spread of nearest-
neighbor distances between the hopping centers.

Furthermore, the parameter aJV i/" is also large in

systems with a low concentration of optical oscillators
(light impurities). In such a system, there will be no
relevant hopping contribution to heat conductivity, be-
cause the heat capacity of the low concentration of lo-
calized modes is small (cf. Ref. 27). However, hopping
may be important for energy redistribution in the band
of localized states.

D. EfFect of heat-carrier nonconservation

Figure 4 shows the heat conductivity ~, calculated by
means of Eqs. (27), (46), and (55), in dependence of the
decay rate v, which results from particle (carrier) num-
ber nonconservation.

As expected, the hopping mechanism is gradually
quenched with increasing rate 7 i At .sufficiently large

, the hopping contribution to the heat current van-
ishes and even becomes negative. To understand the lat-
ter fact, we must keep in mind that our theory assumes
a fixed temperature gradient O'P in the system quoted,
which requires a diffusive transport mechanism. Such
mechanisms are hopping of optical phonons and propa-
gation of scattered acoustic phonons. Thus, in the case
that both mechanisms are operative, a large relaxation
rate x ~ may lead to a negative hopping contribution,
whereas in the case of only a hopping current, the relax-
ation rate must be small as compared to the hopping rate,
in order to justify the assumption of a fixed temperature
gradient. Note that only the term S ~ [cf. Eq. (15)j was
taken into consideration on calculating the curve shown
in Fig. 4.

For a sufficiently small temperature gradient, the first
term on the right hand side of Eq. (55) may be approx-
imately written as —(1/r ) n (1+n )e P(R ) —P,
where P(R ) = 1/kT(R ), with T(R ) the tempera-
ture at site R . Accordingly, for T(R ) ) T (( T)
this term describes generation (annihilation) of addi-
tional carrier (optical) phonons.

The second term on the left hand side of Eq. (55) gov-
erns the decay of the carrier phonons.

0.16
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0.08

0.06

0.04

0. 02

FIG. 4. In8uence of the particle-
number-nonconserving term on the hopping
contribution to the thermal conductivity.
The value of (Ks/Jo) is proportional to a
characteristic 7 /W, which is in this case
by about a factor of 30 larger than (Ko/ Jo)
The heat conductivity e is in arbitrary units.
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VII. CONCLUSIONS

We have shown that, changing the carrier statistics,
the model Hamiltonian and the density-matrix formalism
used in the theory of electron hopping may, with success,
also be applied to vibrational hopping.

Our study is based on the assumption that disorder is
strong enough to localize the optical (carrier) phonons.
This enables us to neglect the oH'-diagonal elements of the
density matrix on deriving the rate equation for hopping
transport.

Off-diagonal elements should be included, if one is in-
terested in efFects of anharmonicity induced broadening
of the localized states, such as tunneling processes in ad-
dition to hopping ones.

We have shown that particle (carrier) number noncon-
servation leads to a quenching of the hopping mecha-
nism. So far, we have only studied an ad hoc intro-
duced particle-number-nonconserving term in the canon-
ically transformed Hamiltonian, which can be easily in-
corporated in our density-matrix formalism. A more re-
alistic, but likewise manageable, particle-nonconserving
term would be desirable.

On the basis of a careful inspection of the integral gov-
erning the hopping probabilities, we have shown that a
linear in T increase and a subsequent crossover to a "sat-
urated" level2 '2 of heat conductivity can be explained
by heat transport due to vibrational hopping without the
necessity of invokings'4 ~o additional lifetime broadening
of the localized states.

But with the aid of a suitable choice of the parameters
involved, we can also obtain a linear in T increase of heat
conduction over a large temperature range without ten-
dency to saturation. 2~ Thus, we expect that our study is
not only of purely theoretical interest, but also of interest
for experimentalists.
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APPENDIX A:
CURRENT DENSITY FOR ELECTRON

HOPPING

T (e «" ~"}Vt(t)at a V(t))~-(t) =
Tr (e P—(H ~N })

Here N = g at a is the particle number operator, p
is the chemical potential, and U(t) is the time evolution
operator (which includes the external electrical field E as
a perturbation). II is the Hamiltonian in zero electrical
6eld.

From Eq. (A2), with E(t) = Ee'~e' ~, we find that

0

+ ~~ ~

~ ~+ R
ml —OO

xm e-~( -& ) at a, a', a

x E]r (.-'~"-"~~) (A3)

where

~
—P(H —I N)at a Tr —P(H —I"N) A4a a

The expression for the current density from Eqs. (Al)
and (A3) agrees with that obtained by means of the Kubo
formula (cf. Ref. 40).

APPENDIX 8: DIAGRAMMATIC TECHNIQUE

R,' ', (t) = (Ut(t)at, a,at, a, U(t)), (Bl)

I

occurring in the equation for p, the Hartree-Fock de-
coupling yields

R ' '=b m3 m1 ~ ml m3
m~m3 l m, + pm, pm4 + pm, pm4-

The diagrammatic technique required for evaluating
Eq. (31) is similar to that used in the theory of electron
hopping, which is explained in Ref. 36. The carrier statis-
tics is now bosonic and the replacements (30) are to be
taken into account. By means of this technique, we ob-
tain a hierarchy of equations for p and many-particle
density matrices, which require a decoupling.

We include irreducible blocks of second order in J. For
the two-particle density matrix

e ). dp (t)
0 dt

(Al)

where

The current density j(t) in the case of electron hopping
in the presence of an electrical 6eld, as obtained in Ref.
36, is

Note that, in contrast to the electron case, intersections
of optical phonon lines do not provide an additional fac-
tor in the diagrammatic technique (cf. Ref. 36).

The particle-number-nonconserving term (51) in the
Hamiltonian leads to additional interaction points which
include either an operator at . or a and are associated

with factors of the form +&K, exp[+ —'„j ' dv V, (~)j,
where V (t) = e —V'P(t)e R jP.
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