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We introduce a dynamic fuse model for the damage done to a current-carrying polycrystalline metal
thin film by electromigration. We determine the exact scaling behavior of the crack tip velocity for a
single crack oriented perpendicularly to the direction of the ambient current. A Lifshitz-type theory
works well only when the initial density of defects (p} is small. For all p, the mean failure time is to an
excellent approximation proportional to the average length of the shortest path across the film in a cer-
tain metric. This conclusion is supported by our simulations and by analytical work based on a varia-
tional formulation of our problem. Using the shortest-path approximation, we show that the mean
failure time tends to zero as (p, —p) ' as the percolation threshold p =p, is approached. We also use
the shortest-path approximation to account for experimental results on the lifetime of long polycrystal-
line metal wires of varying lengths and widths.

I. INTRODUCTION

When a high current density passes through a thin
metal film, collisions between the conduction electrons
and the metal ions lead to drifting of the ions. This pro-
cess is known as electromigration. ' If there is a diver-
gence in the Aux of ions at a point, a void or hillock
forms. Voids grow and overlap until conduction ceases
and electrical failure is complete.

As integrated circuits become progressively more com-
plex, the individual components must become increasing-
ly more reliable if the reliability of the whole is to be ac-
ceptable. However, due to the continuing miniaturiza-
tion of very large scale integrated circuits, the metallic
thin films used as conductors are subject to increasingly
high current densities. Under these conditions, elec-
tromigration can lead to the electrical failure of intercon-
nects in relatively short times, thereby reducing the cir-
cuit lifetime to an unacceptable level. It is therefore of
great technological importance to understand and control
electromigration failure in thin films.

Electromigration in crystalline metals proceeds by lat-
tice difFusion driven by the "electron wind, " and is now
relatively well understood. ' In polycrystalline metal
thin films at low temperatures, however, ionic transport
proceeds mainly by grain boundary diffusion. Typica11y,
the temperature in these films is to a good approximation
uniform, since they are in good thermal contact with the
substrate. In these circumstances, divergences in the
mass Row —and hence the formation of voids or
hillocks —occur at three different types of inhomo-
geneities. A nonzero divergence will occur at a bend in a
grain boundary, since the grain-boundary mobility de-

pends on the degree of misorientation at the boundary.
Similarly, mass Bow divergences occur at grain-boundary
triple points. Finally, an abrupt change in grain size be-
tween one region of the conductor and another will cause
a Aux divergence.

The grain structure determines the lifetime of a partic-

ular film, and its variation from sample to sample results
in a distribution of lifetimes. It has been found experi-
mentally that the time tso required for 50% of a large
collection of films to fail obeys the empirical relation

hE
t50= Aj "exp

B

where j is the current density and T is the temperature.
The parameters A, n, and hE are adjusted to fit the data.
The constant A is usually only weakly temperature
dependent. The exponent n may be taken to be 1 for low
current densities, but for larger J"s higher values of n are
needed, since Joule heating becomes significant in this re-
gime. Finally, to a good approximation hE is equal to
the activation energy for grain-boundary difFusion.

The first step in developing a theory of electromigra-
tion damage in polycrystalline metal films has been to
study damage at a single grain boundary. The two topics
that have received the most attention are the effect of
electromigration on grain-boundary grooving in a bicrys-
tal geometry ' and void formation at a grain-boundary
triple point.

These studies concern the formation and growth of a
void or hillock at a single crystalline defect. In a real
polycrystalline film there are many defects that may con-
tribute to electrical failure, and failure occurs only after
the growth and coalescence of many different voids. Ear-
ly attempts to deal with multiple defects were based on
classical nucleation theory. " This approach has recent-
ly been revived by Rodbell, Rodriguez, and Ficalora, '

who assume that circular voids nucleate and then grow
with constant velocity, preserving their circular shape.

The approach of Rodbell et al. is open to a number of
criticisms. Their work is purely phenomenological-
neither the nucleation rates nor the void growth veloci-
ties were calculated. More importantly, whenever a void
is formed in a film, the current is crowded on either side
of the void. The increased current density in these re-
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gions leads to an increased rate of electromigration, so
the void will become elongated in a direction normal to
the ambient current. Thus, the ad hoc assumption of cir-
cular voids that preserve their shape cannot be correct.
Experiments have in fact revealed that the void structure
is much more complex and that this assumption is a poor
approximation. ' ' The theory of Rodbell et a/. has also
been criticized on different grounds by Patrinos, Vankar,
and Schwarz. '

Failure of thin polycrystalline metal wires was studied
by Monte Carlo simulation by Attardo, Rutledge, and
Jack. ' In their model, the conductor was taken to be
made up of a series of short sections with different
lengths, each one grain across. The length of the sections
was randomly chosen according to the grain size distribu-
tion. Normal to the length of the conductor each section
was made up of randomly selected grains. The atomic
transport within a particular grain boundary was taken
to depend on the degree of misorientation and on the an-
gle between the current and the grain boundary. Finally,
the electrical current was assumed to be uniform
throughout the conductor. The time-to-failure for the
wire is then inversely proportional to the maximum Aux

divergence between two consecutive sections. The model
of Attardo, Rutledge, and Jack has been applied to very
thin wires with a "barnboo" grain structure by Schoen. '

The ad hoc assumptions made by Attardo, Rutledge,
and Jack on the grain structure of the conductor limit the
applicability of their study. Recently, Huntington
et a/. ' have improved on the approach of Attardo,
Rutledge, and Jack by employing a more realistic grain
structure in their simulations, and by taking stress-
induced grain boundary motion into account. The mod-
els of Attardo, Rutledge, and Jack and Huntington et a/.
both suffer from a serious failing, however: Current
crowding is entirely neglected. Clearly, as a real wire
nears failure, current crowding becomes increasingly
significant.

Current crowding was taken into account in a crude
fashion in the analytical work of Sigsbee. ' Sigsbee as-
sumed that line failure occurs by the propagation of a sin-
gle crack across the wire. The possibility of multiple
cracks was ignored, as was the fact that the crack tip may
split, leading to branching of the crack. Indeed, highly
ramified, irregular void structures have been observed in
polycrystalline Al films. '

Perhaps the most realistic simulations of electromigra-
tion carried out to date are those of Marcoux et al.
These workers explicitly took current crowding into ac-
count, and made realistic assumptions on the grain-
boundary structure. Moreover, they made no ad hoc as-
sumptions on the shape of the voids. Similar approaches
were used by Kirchheim and Kaeber ' and Smy, Winter-
ton, and Brett.

It has been known for some time that defects are cru-
cial in determining the electrical and mechanical strength
of materials. Recently, the ideas of percolation theory
have been applied to the problem of failure of disordered
materials, leading to important new progress in the
field. The simplest model that has been studied is
the random fuse network. In this model, each bond

of a square lattice is occupied with a fuse with probability

p and a perfect insulator with probability 1 —p. Each
fuse has a resistance of l 0 up to its load limit of l V. At
higher voltages, the fuse burns out and becomes an insu-
lator. The failure process is irreversible: Once the fuse
has blown, its resistance remains infinite even if the volt-
age across it later drops belo~ 1 V.

Initially a very small voltage is applied across the ran-
dom fuse network, and all the fuses are in their Ohmic
state. We assume that p ~p, so that conduction occurs.
As the voltage is increased, a fuse first blows at some
voltage V&. Further increases in voltage lead to addition-
al failures, and at a voltage Vb ~

V& conduction ceases
and electrical failure is complete.

The electrical failure of the random fuse network is an
example of a breakdown process in a random medium.
Other problems in this class include dielectric breakdown
in metal-loaded dielectrics, ' the onset of supercon-
ductivity in granular superconductors, 3 and the frac-
ture of brittle materials. In each case, the basic ele-
ments of the random network undergo an irreversible
change when an externally applied voltage (or stress)
passes through a critical value.

Electromigration-induced damage in a polycrystalline
metal film is an irreversible process, since the damage
cannot be repaired simply by reversing the current. In
this paper, we will develop and study a breakdown model
for the damage done to a polycrystalline metal thin film

by electromigration. Current crowding next to growing
voids is explicitly taken into account in our model.
Moreover, no ad hoc assumptions about void shape are
made.

Our model was inspired by the random fuse model, but
is fundamentally difFerent from it, since our model is tru-
ly kinetic, while the random fuse model is not. A kinetic
breakdown model has already been studied by Sornette
and Vanneste. ' The model of Sornette and Vanneste
reduces to ours in a certain limit, but their model was in-
troduced to describe failure of random fuse networks that
burn out due to Joule heating rather than electromigra-
tion damage.

Our model is similar in spirit to that of Marcoux
et a/. In both models, current crowding is taken into
account and no ad hoc assumptions about void shape are
made. However, we have chosen to concentrate on the
approach to the thermodynamic limit, since this is where
we expect universal behavior that is independent of the
model details. Accordingly, we employ a coarse-grained
description of the film in which the lower cutoff length is
large compared to the grain size. In contrast, a lattice
spacing smaller than the mean grain size was adopted by
Marcoux et al. Although their model is arguably more
realistic than ours, Marcoux et al. were only able to per-
form simulations. We are able to make considerable pro-
gress on our model analytically, in part because it is
simpler.

The paper is organized as follows: In the following
section, we introduce and motivate our model. In Sec.
III, we study the growth of a single crack in a film. Two
theories for the failure time of a film in which many de-
fects are present at t =0 are developed in Sec. IV. We
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describe the results of our Monte Carlo simulations of
electromigration damage to films with multiple defects in
Sec. V. These simulations provide tests of the theories
developed in Sec. IV. The failure of long, narrow wires is
studied in Sec. VI, and the predictions of the theory are
compared with experiment. Section VII contains our
conclusions.

II. THE MODEL

(2.1)

where X, is the atomic density, D is the diffusivity, Z e
is the effective charge, and E is the electric field strength.
The total mass flow out of the wire r is therefore propor-
tional to the magnitude of the current I:

r =x( T) ~I~ . (2.2)

We begin by developing our model of electromigration
failure of thin polycrystalline metal films. An atomistic
molecular dynamics approach is clearly impractical be-
cause of the prohibitively large computing time needed.
In lieu of this, we shall carry out a Monte Carlo study of
a semimacroscopic model. We will use a coarse-grained
description in which the small-scale structure is averaged
over and the continuous metal film is replaced by a
discrete lattice of wires. The grid spacing in our lattice is
taken to be large compared to the mean grain size but
small relative to the film as a whole. This approach will
simplify the calculations enormously without altering the
nature of large-scale phenomena occurring in the system.

As discussed in the Introduction, the lifetime of a poly-
crystalline metal thin film is greatly influenced by the
structural disorder present. We must therefore take into
account the random variations in the resistances of the
wires in our coarse-grained description of the system. In
principle, the probability distribution of the resistances
could be computed from a detailed knowledge of the
grain structure. The statistical distribution of grain sizes
and orientations depends strongly on both the material
and the method of preparation, however. Because the
type of disorder present is usually very complex and
poorly characterized, as a first step we will study elec-
tromigration failure in a system with a particularly sim-
ple type of disorder. Thus, to be specific, we consider a
regular square grid of points. Each nearest-neighbor set
of points in the grid is joined by either a conducting wire
with resistance R (with probability 1 —p) or by an insula-
tor (with probability p). This simple percolative disorder
is meant to mimic the disordered crystal structure in a
real polycrystalline metal film.

We must now take into account the fact that when a
current I passes through a particular wire, electromigra-
tion occurs and electrical failure eventually takes place.
In so doing, we cannot neglect the variation of I with
time, since failures elsewhere in the system may lead to
current redistribution.

Let us suppose that a certain mass m, must leave the
wire before failure occurs. The mass flux j within the
wire is

The temperature-dependent constant of proportionality is

X,D
~( r)—: Z*ep,

k~T
(2.3)

where p is the resistivity.
In microelectronics applications, the substrate is sil-

icon, and Si has a high thermal conductivity. The Joule
heat generated in the wire is therefore rapidly conducted
away by the substrate. Accordingly, the temperature of
the wire T will be very nearly equal to the temperature of
the substrate To unless the current through the wire is

very large. Thus, we may ignore the effect of Joule heat-

ing and take T and To to be equal.
We now see that the lifetime of the wire t& is given by

I —= T (2.4)

Thus, once a charge Qo(T) has flowed through the wire,
it fails irreversibly and becomes an insulator. The charge
Qo( T) depends on the temperature. It has been found ex-

perimentally that the product DZ'e has an Arrhenius
temperature dependence: DZ'e ~ exp( hE/ks —T).
Typically, hE is comparable to the activation energy for
grain boundary diffusion. Since p is proportional to T for
metals at room temperature and E, varies slowly with T,
to a good approximation Qo( T) has an Arrhenius temper-
ature dependence as well. Thus, for a constant current I,
Eq. (2.4) reduces to Eq. (1.1) with n =1, which is the
empirical result in the low-current-density regime. Equa-
tion (2.4) is therefore an appropriate generalization of the
empirical law Eq. (1.1) to the more general situation in

which the current varies with time.
Note that the absolute value of the current appears in

our failure criterion (2.4). This is because electromigra-
tion damage to a conducting wire cannot be repaired sim-

ply by reversing the current. Indeed, ac currents lead to
electromigration failure in times comparable to dc
currents of the same magnitude.

In our model, we take the resistance of each wire to be
constant until it fails. In a real wire, the resistance de-
creases as a precursor to complete failure. This effect will

be neglected in the interest of simplicity. Note, however,
that the resistance of the network as a whole will vary in
time, so a precursor to total failure is present in the
behavior of the entire system. In our model the resis-
tance decrease that foreshadows complete failure is a col-
lective effect, which occurs as a result of successive
failures of the microscopic constituents of the system.

Consider the behavior of an N XN random network of
this type when subjected to a constant applied voltage
V,„,. Some wires —those in isolated clusters, for
instance —carry no current and so never fail. At some
time t, , one of the current-carrying bonds fails, and the
resistance of the network increases discontinuously.
More and more wires fail as time passes. At a time

Tf ~ t, , the last conducting pathway across the system
breaks and electrical failure is complete.

To perform a Monte Carlo simulation of this failure
process, KirchhofFs laws are solved to yield the distribu-
tion of currents in the network. The wire that carries the
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dT/dt =R ~I~" aT, — (2.5)

where a and b are nonnegative constants. The term R ~I~b

accounts for a generalized Joule heating of the fuse; for
real fuses b =2. The second term on the right-hand side
of Eq. (2.5) is the rate that heat is lost to the substrate.
When the temperature of a fuse reaches a given thresh-
old, it burns out irreversibly and becomes an insulator.

Clearly, for a =0 and b =1, the more general failure
criterion of Sornette and Vanneste reduces to ours if the
temperature T is replaced by the charge
Q(t}=fo~I(t'}~dt'. Note, however, that Sornette and

Vanneste did not actually study this case. As we shall
see, it is possible to make significant progress analytically
on this special case, and so it is of particular interest. In
addition, Sornette and Vanneste adopted a different prob-
ability distribution for the resistance R than we have
chosen, and did not apply their model to electromigra-
tion.

most current is the first to fail. After this failure,
Kirchhoff's laws are solved once more, and the second
wire to fail is identified using the failure criterion Eq.
(2.4}. This process of repeated solution of Kirchhofi's
laws is continued until conduction ceases. In our simula-
tions, the network conductivity and geometry were
recorded after each failure event.

In our model, current crowding next to voids is explic-
itly taken into account, since Kirchhoff's laws are solved
after each failure. In addition, no ad hoc assumptions
about void shape are needed —indeed, void morphology
and growth can be observed in the simulations and can be

compared with experiment.
The disorder in our model is admittedly very idealized.

However, it is known that many properties of percolating
systems are universal. We therefore expect that many of
the observations made for our simple model will carry
over to the more complex systems studied by experimen-
talists. At the very least, this approach is a natural start-

ing point for more realistic simulations of electromigra-
tion failure in disordered thin films. More general types
of disorder will be considered in our future work.

Our model is similar to the random fuse model in

several respects. To be specific, in both problems a ran-

dom resistor network undergoes irreversible electrical
failure. There is an important difFerence between the two

models, however: The random fuse model is not a kinetic
model, since failure occurs instantaneously when the ap-
plied voltage is suSciently large. In contrast, our model
is truly kinetic, since we can follow the breakdown pro-
cess as a function of time.

The fact that our model is truly kinetic sets it apart
from almost all previously studied models of breakdown
in random media and makes it worth studying from a
purely theoretical standpoint. A kinetic breakdown
model has been introduced and studied by Sornette and

Vanneste, ' however. Their model describes the failure
of fuse networks that burn out due to Joule heating. In
their model, the temperature T of a fuse with resistance
R carrying current I obeys the equation

III. GROWTH OF A SINGLE CRACK

In this section, we begin work on our model by study-

ing the growth of a single "crack" in a two-dimensional

grid. Using a continuum approximation, we obtain the
asymptotic behavior of the crack tip velocity in a net-

work of infinite size. We also perform simulations of the
growth of a single crack, and compare the results of these
simulations with our predictions. '

Consider a square grid with lattice spacing a. Let N„
be the number of sites in the x direction and let N„be the
number of sites in the y direction. Thus, the coordinates

(x,y) of the sites in the grid are (ma, na), where

m =0, 1, . . . , N„—1 and n =0, 1, . . . , N —1. Each bond

in the lattice is a conductor with conductance o.
We impose periodic boundary conditions along the
x direction, so that the columns with m =0 and m =N„
coincide. In addition, we place busbars on the rows

y =0 and y = (N„—1)a. A constant voltage difierence

Vo =(N„—1}vo is applied across these two busbars start-

ing at time t =0.
Clearly, all of the horizontal bonds in the grid carry

zero current. Each of the vertical bonds carries current
O. vo until failure occurs. All of the vertical bonds fail
simultaneously at time t =go/(o vo).

Now consider the next level of complexity: Suppose
that at time t =0 there is a single horizontal crack of
length 2loa in the center of the network. Specifically,
consider the row of vertical bonds with their centers at
height y = Y. Here Y is N~a/2 if N„ is odd and is

(N —1)a/2 if N„ is even. We assume that initially

210+1 consecutive vertical bonds in this row are "bro-
ken, " i.e., they have zero conductance. Since we have
imposed periodic boundary conditions in the x direction,
the horizontal placement of this crack is immaterial. For
definiteness, we shall assume that the x coordinates of the
broken bonds are X —loa, X —loa +a, . . . ,X+loa —a,
X+loa. Here X is N„a /2 if N„ is even and is

(N„—1)a /2 if N„ is odd. None of the other bonds in the
network are broken at t =0.

The current distribution is altered dramatically from
the uniform current distribution that prevails when there
is no crack present. For example, consider a resistor net-
work with N„=N =128 in which there is a crack of
length 12. Figure 1 shows the currents in the vertical
bonds with their centers at height y = Y, as well as the
currents in the horizontal bonds with height y = Y —a /2.
Clearly, the closer a conductor is to one of the crack tips,
the larger the current that flows through it. The current
enhancement is largest in the two unbroken vertical con-
ductors adjacent to the crack tips, and as a result, these
are the first bonds to fail. The subsequent behavior of the
crack is less obvious, since the failure process in our mod-
el is a cumulative effect. Our simulations show that at all

times, the next bonds to fail are the vertical bonds im-

mediately adjacent to the crack tips. Thus, the crack tips
propagate laterally until they meet and network failure is
complete. The vertical bonds with their centers at
heights yA Y and all of the horizontal bonds remain con-
ducting throughout the failure process. Our simulations
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FIG. 1. The current distribution in a resistor network with
N„=N~ =128 in which there is a crack of length 21o =12. We
have set o, vo, and a to 1. The currents through the vertical
bonds with their centers at height y = Y are shown with a full
curve. The dashed curve gives the currents through the hor-
izontal bonds with height y = Y —a/2. The x coordinate of a
horizontal bond is measured from its midpoint, and we have
adopted the convention that a horizontal current flowing to the
right is positive.

n —1

I (n, l)b, ti =Qo,
I lo

(3.1)

where n) 10. Equation (3.1) simply states that the nth
bond fails once the net amount of charge that has flowed

strongly suggest that these observations apply for all
values of N„, N, and lo. Although damage is done to all
of the bonds in the network, only vertical bonds with
centers at height y = Y accumulate suScient damage that
they fail before current ceases to flow entirely.

Let us consider the crack tip velocity as a function of
time. As the crack grows, the resistance of the network
increases. If the externally applied voltage Vu is con-
stant, the net current Iu flowing through the network will
decrease with the passage of time. Therefore, the crack
dynamics depends on whether Vp or' Ip is held fixed. As
we shall see, the fixed current problem is much simpler
than the fixed voltage problem, and all of the results ob-
tained in this paper pertain to the fixed current problem.
There is an additional motivation for studying the fixed
current case: In most of the experimental work on the
lifetime of current-carrying wires performed to date, the
external current was constant. For the remainder of the
paper, we assume that the total current Ip flowing
through the network is constant until the network as a
whole has failed.

We can readily write down an equation of motion for
the crack tips. Suppose that the crack length is 2la at a
given time. Let I ( n, l ) denote the current flowing
through the vertical bond that is a distance na to the
right of the crack center and that has its center at height
y = Y. Further, let t„be the time when this bond fails,
and we adopt the convention that tI =0. Finally, we set

At„= t„+&

—t„ for n ~ lp. The equation of motion is

Jpj (x,x')=
+1—(x'/x)

(3.3)

Here jp is the current density far from the crack.
Let v„(x,xo) be the speed of the crack tips when the

crack's length is 2x. (The initial length of the crack is

2xo. ) We will determine the behavior of v„(x,xu) for
x »xp. We first introduce the new variable of integra-
tion x ' =—x ( t ' ). Equation (3.2) becomes

f j~(x,x')[u„(x',xo)] 'dx'=qo .
xo

(3.4)

Since xp is the only length scale in the problem, it makes
sense to introduce the dimensionless widths w =x/xp
and w'=x'/xo. Applying these definitions and Eq. (3.3)
in Eq. (3.4), we obtain

f LU xpdw qp

u„(xow', xo)+1—(w'/w) Jo
(3.5}

The quantity qou„(x, xo)/(joxo) is a dimensionless
function of x and xp. Since xp is the only length scale in
the problem, qou „(x,xo)/( joxo) cannot depend on x and

xp separately: It can only depend on their ratio x/xp.
Thus, we have the scaling form

through it is Qo. Note that the direction of the current
through the vertical bonds never changes, and so it is not
necessary to write ~I(n, l)

~
in lieu of I(n, l) in Eq. (3.1).

Although Eq. (3.1) is readily solved numerically for
finite grids, we have not succeeded in solving it exactly
for all times. We have been able to make progress analyt-
ically, however, using a continuum approximation to
study the growth of a crack in an infinitely large grid. If
the initial length of the crack is large, the discrete lattice
structure has little effect on the crack dynamics. Even if
the initial length of the crack is comparable to the lattice
spacing, the lattice structure becomes unimportant once
the crack has grown to suScient size. In both of these
circumstances, a continuum approximation to the equa-
tion of motion may be applied. To obtain such an ap-
proximate equation of motion, we let the lattice spacing a
approach zero, while keeping L„—=1V„a, L =1V a,
xo —= loa, and qo

=—Qo/a fixed. In this limit, the height of
the crack shrinks to zero. Equation (3.1) becomes

j x t,x t', L„,L t'=qp . (3.2)
p

Here 2x(t) is the length of the crack at time t, and

j (x,x', L„,L ) is the vertical component of the current
density at the point a distance x to the right of the crack
center when the crack has length 2x'.

Consider an infinitely large grid with a single crack of
initial length 2lpa. We assume that a constant external
current flows through the film and that the continuum
approximation (3.2} may be applied. For an infinitely
large grid, the current density

j (x,x'):j(x, x', L„—= ~, L = ~ )

can be calculated analytically in the continuum approxi-
mation and has the following form:
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Joxo x
v„(x,xp)= f

qo Xo
(3.6}

f (w)-Kw (3.7)

where f is a dimensionless function of x /xp.
To learn something of the scaling function f, we solved

Eq. (3.4) numerically using a finite difFerence approxima-
tion. In Fig. 2, log, p[qpv (x,xp }/(jpxp)] is plotted
against log, p(x/xp). The curve rapidly becomes linear as
x /xp is increased, showing that

4

2

p
0

1 I I I
i

I I I I
(

I I I I
(

I I 1 I
)

I I I I
(

I I I

/
/

for w »1. Here K is a finite, nonzero constant indepen-
dent of both x and xp. Figure 2 also shows that the ex-

ponent a is close to 2. A linear least-squares fit to the
curve for x/xp & 10 yields a=2.00120+0.00001. The
error quoted here does not take into account the fact that
the slope of the curve slowly decreases with log~p(x /xp }.
If the curve is fit for x/xp & 20, for example, a value of a
still closer to 2 results.

Inspired by these numerical results, we assume that Eq.
{3.7) is valid, and that 1&a&3. We shall now demon-
strate that once these assumptions have been made, it fol-
lows that a must be exactly equal to 2.

Let z =w'/w. Using Eq. (3.6), we can rewrite Eq. (3.5)
as follows:

-0.5 0.5 1 1.5

log(x/x )

2.5

FIG. 2. log, o[qou (x,xo)/( joxo)] plotted vs log~o(x /xo) (solid

curve). The dashed line has a slope of 2.

w [f(w)] '= g A„w
n=0

(3.9)

for all w &1. Note that Ap=1/K. Inserting Eq. (3.9)
into (3.8), we have

1 w z

wz 1 —z
(3.8) w' g A w "f

n=0 »~z +" 1 —z' (3.10)

We cannot simply replace f {wz} in this integral by
Kw~z~ because wz is not large throughout the range of
integration. Corrections to the asymptotic scaling form
(3.7) must therefore be taken into account. By assump-
tion, w [f ( w) ] ' tends to a finite constant K ' as w

tends to infinity. For large but finite w, there will be
corrections to this leading-order behavior. These correc-
tions will become increasingly important as w is de-
creased. It is therefore natural to assume that

We now analyze the integrals that appear on the right-
hand side of Eq. (3.10). Using our assumption that
1&a&3,we obtain

w a+n —1d +C (a)+O(w-+ -2}
~ z~+ "QI—z a+n —1

(3.11)

for w&&1. Here

[n/2, )

c„(a)—=J —g ( —1)'
+I—z t=p

—1/2 [n/2)
z2l z + y ( 1)l

1=0

—1/2
1 21 +1 a n——52I+1 n n, P}——(3.12)

is a constant. In Eq. (3.12), [x] denotes the smallest in-

teger greater than or equal to x and the Kronecker delta
5 „ is 1 if m =n and is zero otherwise. Note as well that
for the special case a+n =3, the correction term of or-
der w +" in Eq. (3.11) must be replaced by a term of
order 1n w.

Substituting the asymptotic form {3.11) in Eq. (3.10},
we Snd that

oo

+ ApCp(a}w' +O(w ~)=1 {3.13)
0 a+n —1

for w » 1. Here P is the smaller of a and 2. We see that
we must have

ce

0 a+n —1
=1

and that

{3.14)

Cp(a) =0 . (3.15)

Cp(a) is an increasing function of a for 1&a&3, and
Cp(2) =0. Thus, Eq. (3.15) has a single root on the inter-

Equation {3.15}uniquely specifies the value of a, as we
shall now demonstrate. Explicitly,

dz 1Cp(a)—: —1
V'I —z z a —1
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val 1 (a & 3, and this root occurs at a=2. We conclude
that a is exactly 2, and that for x »xp,

Kjp
u„(x,xp)—= x

qpXp
(3.16)

In our model, the crack tips accelerate as the length of
the crack grows. Initially, the crack tips do not move as
damage accumulates in the network. The crack tips
move with increasing speed after the first bonds are bro-
ken. This acceleration occurs because the current crowd-
ing at the crack tips becomes more marked with the pas-
sage of time, and because the damage to the bonds is cu-
mulative.

We handled the lower limit of integration with special
care in our analysis of our equation of motion [Eq. (3.4}].
Care was needed because when x »xp, the dominant
contribution to the integral comes from x' close to xp.
This can be understood both from a mathematical and
from a physical standpoint. We begin with the formal
demonstration. The integrand in Eq. (3.11) has a nonin-
tegrable singularity at z =0. As a result, the dominant
contribution to this integral comes from z close to 1/tu,
that is, from x' close to xp. The same is also true of the
equation of motion (3.8}. We now turn to our heuristic
explanation. Because the crack tips move slowly at first
and then accelerate, most of the charge needed to break a
bond Bows through it while the crack tip is still far away.
We again conclude that the dominant contribution to the
integral on the left-hand side of Eq. (3.4) comes from x'
relatively close to xp.

The value of the constant E = Ap
' in Eq. (3.16) is

determined by Eq. (3.14). Since the value of E depends
on all of the A„'s with n & 1, we have not been able to
determine its value. However, this is of little concern be-
cause we have been able to determine how the crack tip
velocity grows with increasing crack length.

Now that we know the asymptotic behavior of
u„(x,xp), we can integrate to find the time dependence
of the tip location x for x »xp. Clearly,

takes a defect-free film to fail, and so the presence of the
crack does not reduce the lifetime of an infinitely large
film. For a finite-sized film, of course, the lifetime will al-
ways be reduced by the presence of a crack. What we
have shown is that this reduction tends to zero in the lim-
it that the film dimensions become large compared to the
initial length of the crack.

To test Eq. (3.16), we carried out simulations of the
growth of a single crack in a square grid with
N =N~=X and a =1. We shall briefly describe how
these simulations were performed. Consider the situation
at the time t =t„. The conjugate gradient method was
first used to solve the Green's-function formulation of
Kirchhoff's laws. This yielded the currents in the un-
broken bonds. The exact equation of motion (3.1} was
then solved to give the time interval ht„, and hence t„+,.
In all of our simulations, the total current Ip passing
through the network was held constant. Finally, we set
Ip/N to 1 to facilitate comparisons between networks of
different sizes.

In Fig. 3, logtp[qpu (1 lp N)/( jplp ) ] is plotted vs

logtp(1/lp) for N =100, 200, 400, and 600. In each case,
lp=7. For 1 in the interval 2lp &1 &N/3, the function
log ~p[ u ( 1 lp N) ] is close 'to being hnear in log to( 1 /lp ) ~

This lends further support to our supposition that
u„(x,xp) grows as a power of x for x »xp. When 1 is

small, the discrete lattice structure increases the slope of
the curve. The slope of the curve also increases as 2l ap-
proaches N, when finite-size effects become important.
This suggests that the best estimate of a for a given value
of X is obtained by computing the minimum slope of the
curve. Let this slope be a(N). Our data for a(N) are
shown in Fig. 4. We extrapolated our data to 1/N =0 by
fitting to the form a(N)=ap+a&N '+a2N and so ob-
tained an estimate of a corrected for finite-size effects.
Our estimate a=2.003+0.004 is in excellent agreement
with our prediction that a is exactly 2.

dX

xo u„(x',xp)
(3.17)

7

Inserting Eqs. (3.6) and (3.9) in (3.17) and using the result
a=2, we obtain

n+1
Xp

X

Xp jpt

qp

For x )&xp, this becomes

jpt

qp 1
O

3

~. 2

0

where we have employed Eq. (3.14) and the fact that
a =2. Finally, we have the desired result: For x »xp

I i i I i I

log (1/j. 1

Xp
x =-X

1 —jpt/qp
(3.18)

FIG. 3. log, o[qov(l, lo, &)/(jolo)] plotted vs log, o(l/lo) for
W = 100 (curve 1), 200 (curve 2), 400 (curve 3), and 600 (curve 4).
In each ease, ID=7.

Interestingly, Eq. (3.18) shows that the time to failure in
the presence of the crack is qp/jp. This is the time it
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2.05

daries, however, finite-size corrections to this result be-
come increasingly important. Therefore, the failure time

T& is not given by the integral f„v '(x', xo)dx'. For-
0

tunately, it is a simple matter to determine the exact
value of T&. The total number of vertical conducting
bonds that fail is N —(2lo+1}. This is the number of
conducting bonds that are in the same row as the crack at
time t =0. The total charge that must flow through this
row for all of these bonds to fail is [N —(2l~+1)]Qo.
Thus, the failure time is given by

IoTy = [N (21o+ 1 )]Qo (4.1)

0.002 0.004 0.006 0.008 0.01 0.012

N

FIG. 4. Plot of a(N) vs 1/N (open circles). The fit to the
data is shown using a solid curve.

IV. THEORY OF THE FAILURE TIME
FOR FILMS WITH MULTIPLE CRACKS

The time that it takes a film to fail is probably the most
obvious quantity we can choose to study in our model of
electromigration failure. Moreover, it is the quantity of
greatest interest in microelectronics applications. Ac-
cordingly, in this section we will study the failure time of
networks with nonzero values ofp.

As we saw in the preceding section, even the growth of
a single crack is complex. The dynamical behavior of a
film with many cracks must be complicated indeed, since
the cracks interact and fuse as they grow. It is therefore
quite surprising that analytical results can be obtained on
the dependence of the failure time on p and I., as we shall
show.

A. Lifshitz-type theory

In a series of important papers, Duxbury and co-
workers developed a theory governing the failure voltage
of a random fuse network in which the defects are
initially dilute. Duxbury et al. argued that the most crit-
ical defect in two dimensions is a line defect oriented per-
pendicularly to the direction of the ambient current.
They then used a continuum approximation in which this
line of insulators was replaced by an elliptical defect to
find voltage required to initiate failure. Finally, the result
of this calculation was combined with an estimate of the
size of the largest defect present in the system to give the
breakdown voltage. The predictions of this "Lifshitz-
type" theory are in accord with the results of Monte Car-
lo simulations.

The success of the Lifshitz-type theory in explaining
the behavior of random fuse networks suggests that it is a
natural starting point for a theory of electromigration
failure. In this short subsection, we develop a Lifshitz-
type theory for the failure time.

%'e begin by determining the failure time for an N XN
network with a single crack of initial length 2x0=2loa.
If a «xo «1., the crack tip velocity will be given by Eq.
(3.16}initially. As the crack tips approach the film boun-

Note that a simple expression of this kind does not hold
when the applied voltage is held fixed, since the current
flowing through the network changes as a function of
time in that case. This is why it is easier to develop a
theory for the behavior of networks with fixed applied
current.

Now consider an NXN network that has a fraction

p «p, of insulating bonds at time t =0. In our approxi-
mate Lifshitz-type theory, we ignore interactions between
cracks in the dilute limit p «p, . In this approximation,
each of the cracks grows horizontally, and network
failure is complete when the tips of a crack meet. (Recall
that periodic boundary conditions apply in the x direc-
tion. ) Equation (4.1) shows that the crack whose growth
leads to failure of the network is the one that is longest
initially. Let the number of broken bonds in the longest
crack at t =0 be v,„. The mean failure time ( TI ) is
then

(4.2)

Equation (4.2) relates the mean failure time to a relatively
simple geometrical quantity, the mean number of bonds
in the longest eraek (v,„). It is not difficul to deter-
mine the behavior of (v,„}in certain limits. For exam-

ple, for a given value of p &p„ the average value of vm, „
grows as

(v,„)-a (p)lnN, (4.3)

as N +00. Here a (p—) is a constant that tends to zero as
~lnp~

' as p~0.
The result of our Lifshitz-type theory [Eq. (4.2)] ap-

plies only when the fusion of two cracks to form a single
larger crack is unlikely. As we shall show, this means
that the Lifshitz theory is a good approximation only
when pN «1. Our Monte Carlo simulations (which are
described in detail in Sec. V} do agree with Eq. (4.2) for
p «N '. However, for larger values ofp, the prediction
of the Lifshitz theory differs markedly from the (TI)
values obtained in the simulations. This is because crack
fusion grows more probable with increasing p, and it can-
not be neglected as it is in the Lifshitz theory.

To take crack-crack interactions and the fusion of
cracks into account, we need to employ a different ap-
proach. This is the subject of the next and subsequent
subsections.
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B. Heuristic estimate of the failure time

T~=min(n„n2)rp . (4 4)

Note that the assumption that the rows are sufficiently
far apart is needed to ensure that the cracks grow hor-
izontally. If the rows are too close together, some hor-
izontal bonds could be broken, and our result (4.4) may
not apply.

These examples suggest how we may generalize to an
arbitrary initial configuration of insulating bonds C. Let
I be a closed self-avoiding path defined on the dual lat-
tice (Fig. 5). I may be any closed self-avoiding path that
wraps around the lattice once before closing. For con-
venience, in what follows we will refer to such a self-
avoiding path as simply "a path. " We now assign a
"length" n (1 } to I: We let n (1 ) be the total number of
conducting bonds that cross the path I at time t =0.
The path with the sinallest value of n (the "shortest
path") will be denoted I, .

Once the network has failed, there exists a path that is
crossed only by insulating bonds. We will call such a
path a critical path. In general, there will be more than
one critical path. In the examples studied so far, the crit-
ical path is unique, and is simply a straight line traversing
the network from left to right. For an arbitrarily chosen

We have seen that the failure time can be computed ex-
actly when there is a single crack present initially. In the
following, we successively generalize this observation.

Suppose that initially there are N —n insulating verti-
cal bonds in one row of the lattice, and that there are no
other insulating bonds at time t =0. In general, the insu-
lating bonds will not be contiguous, and multiple cracks
will be present. Failure is complete once a total charge
nQp has flowed through the row that contains these
cracks. The failure time is therefore TI =nto, where the
constant tp—:Qp/Ip has units of time. Notice that al-

though this result is readily obtained, the task of actually
determining how the cracks grow and fuse would be
daunting indeed.

Let us next contemplate a slightly more complex prob-
lem: Suppose that at time t =0 there are N —n, broken
vertical bonds in one rom and that there are N —n2 bro-
ken vertical bonds in a second row. We assume that no
other bonds are broken initially, that the distance be-
tween the two rows is much larger than a, and that
n, An& For.initial configuration of this kind, we expect
that the current will flow downward through each of the
conducting vertical bonds in rows 1 and 2 throughout the
failure process. This was true for all of the initial
configurations we studied, and we assume it to be gen-
erally true. Since the distance between the two rows is
large, the cracks all grow laterally until all of the bonds
in one of the rows are insulating. The time needed for all
the conducting bonds in the ith row to fail is T,. =n, tp,
where i =1,2. This result holds provided that the
current How is not interrupted before the ith row fails.
For example, if row 1 fails first, the second row will never
fail. We conclude that T& is the smaller of n, tp and n2tp,
1.e.,

Ip

Ip

FIG. 5. The initial configuration of a 7X7 network. Con-
ducting bonds are shown in full lines, and insulating bonds are
shown with bold full lines. A closed self-avoiding path I on the
dual lattice is shown with dashed lines. The length of the path
is n (1 ) =12. Note that periodic boundary conditions apply in
the x direction, and so the columns to the far left and right coin-
cide.

initial configuration C, the critical path could be much
more complex and may not be unique.

In our example in which bonds are initially broken in
two rows, the critical path lies in the row with the small-
est value of n; Thus. , the critical path I, is the shortest-
path I „i.e.,

n (I', ) & n (I'}

for all paths 1 . In addition, the failure time is

T~=n(I, }tp .

(4.5)

(4.6)

Equations (4.5) and (4.6) also hold in our first example.
This suggests the following speculation: Perhaps the

critical path I', is a shortest path 1, for an arbitrary ini-
tial configuratio C, and perhaps the failure time is al-
ways given by Eq. (4.6). Actually, this speculation is not
quite correct, but it is close to being right. We shall ar-
gue that the length of the critical path n ( I', ) is almost al-

ways close to the length of the shortest path n(I, }.
Moreover, we will show that for any initial configuratio
C, the failure time T& is never greater than n(I, }tp
Most significantl, we argue that the mean failure time
( Tf ) is very close to being equal to ( n (I, }) tp (The an-.
gular brackets denote an average over initial
configurations C.)

Before giving arguments for these assertions, let us dis-
cuss their value. Simulations of our model of electromi-
gration are extremely time consuming, since KirchhofF's
equations for the network must be repeatedly solved.
However, if we are content with knowing the approxi-
mate failure time, KirchhofPs equations need never be
solved: It is sufficient to compute the shortest-path
length, and this can be done easily and with great speed.
Moreover, as we discuss in Sec. IVE, much is known
about the mean length of the shortest path in certain lim-
its, and this knowledge can be directly applied to our
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Tf =t(I, ) .

Moreover,

(4.7)

model. Our speculation relates the time that a complex
dynamical process comes to an end to a simple geometri-
cal quantity, the length of the shortest path through the
initial configuration.

We now present a heuristic argument for the specula-
tion that Eqs. (4.5) and (4.6) are correct for arbitrary ini-
tial configurations C. (Later we will give a more precise
treatment, but the heuristic argument is instructive, and
so we will give it.} Consider an arbitrary path I that
traverses a given initial configuration C. We shall assign
a failure time t(I ) to this path. Physically, t(1 ) is the
time that it would take for all of the conducting bonds
that cut I to fail if the current flow through this path
were not interrupted by the failure of bonds elsewhere in
the network. We define t(1 } formally as follows. At
time t =0, the current flow begins and, after a time, con-
ducting bonds begin to break. The network as a whole
fails at time t =Tf. If all of the bonds that cut I are in-
sulators at this time, t (I') is set equal to Tf. Otherwise,
all of the bonds that do not cut I are replaced by conduc-
tors with unchanging conductance 0. The bonds that cut
I are unaltered. The current flow is then restarted, and
conducting bonds that cut I again start to fail. Ultimate-
ly, the last conducting bond that crosses I breaks at a
time we define to be t (I ). Note that by definition,

tive current. Let us index the conducting bonds that cut
I at time t =0 by the integers k =1,2, . . . , n(I ). Be-
cause charge is conserved, for any time t & Tf we have

n(I )

g ik(t)=Io .
k=1

(4.10)

Here ik(t} is the current passing through the kth bond at
time t, and has the appropriate sign. Taking the absolute
value of this relation and setting I =I „we obtain

n(I, )

k=1
(4.11)

Let t' =n—(I, )to. If the network fails before time t', our
assertion is proved. Therefore, we suppose that this is
not the case, and consider the situation at time t'. In-
tegrating Eq. (4.11) from t =0 to t ', we obtain

n(I, )

g f lik(t)ldt ~Qon(r, ) . (4.12)
0

Since a conducting bond fails once a charge Qo has
flawed through it, f 0 lik(t) ldt & Qo for all k. Equation
(4.12} shows that the only way that this can be so is for

f 0 lik(t) ldt to be equal to Qo for all k. This means that
the network fails at time t '. We conclude that
Tf & t ' =n (1,)to, and our result (4.9) is proven

t(r, ) t(r) (4.8)
C. Variation formulation

for all paths I .
To complete our argument, we must estimate t ( I ).

We assume that once a charge has crossed I, it never re-
crosses this path. Thus, we neglect the possibility that
the current flow "backtracks" across I. With this as-
sumption, we have Iot(I )=n(I')Qo or t(I )=n(I )to.
This is because all charges that are injected into the net-
work cross I once, and because a charge Qo is required
to break each of the conducting bonds that cut this path.
Equation (4.8) then shows that n (I', ) & n (I') for all paths
I. This means that the critical path I, is a shortest
path. Furthermore, Eq. (4.7) becomes Eq. (4.6).

This argument does not yield exact results because
backtracking was neglected in estimating t(I'). Note,
however, that if backtracking does occur, it reduces the
value of t(I') below n(I )to. This is because charges that
backtrack damage three or more conducting bonds that
cut 1, not just one. Thus, Eq. (4.6) may overestimate the
failure time. Formally, we have

Tf & n ( I', )to . (4.9)

Although we have given a somewhat intuitive argu-
ment for the inequality (4.9}, we can give a rigorous
demonstration of its validity as follows: Consider an ar-
bitrary path I at time t. We walk along the path from
left to right, and each time we arrive at a new bond we
assign a sign to the current in the bond. If the current
passing through the bond goes from left to right across
the path, it is a positive current; otherwise, it is a nega-

In this section, we will develop a variational formula-
tion of our problem. This will allow us to improve upon
the simple heuristic arguments given in the preceding
section. Ultimately, we will use the variational formula-
tion to argue that ( Tf ) is to a good approximation equal
to (n(r, ))t,.

Consider a path I that traverses a given initial
configuration C. We divide the bonds that are initially
conducting and that cross I into three groups. Group 1

consists of the bonds that carry nonnegative currents at
all times, while group 2 contains the bonds that always
carry currents that are negative or zero. (If a conductor
never carries any current, we place it in group 1.) The
bonds that carry both positive and negative currents be-
fore time t =Tf make up group 3.

Let n +
( I', t) be the number of bonds in group 1 that

are still conducting at time t, and define n (I', t) and
n (I,t) analogously. We number the bonds in group 1 as
follows: The bonds that never break are labeled by the
integers 1,2, . . . , n+(I', Tf ). (The ordering of these
bonds is unimportant. } The ith bond in group 1 to break
is assigned the number n+(I', 0}—i+1. The bonds in
groups 2 and 3 are numbered in the same way. Finally,
let n (I,t) be the total number of conducting bonds that
cross I at time t, so that

n(I, t}=n+(I,t}+n (I,t)+n (l, t) . (4.13)

Note that n (I',0)=n (I ).
Let ik+(I, t }, ik (I,t), and ik(I, t} denote the current in

the kth conductor in groups 1, 2, and 3, respectively. By
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charge conservation, the total current passing through
path I" at time t is equal to Ip..

n+(r, t) n (l, t) n (I, t)g' i„+(r,t)+ g' i„-(r,t)+ y' t„'(r, t)=I, .
k=1 k=1 k=1

(4.14)

If a bond in group 1 is broken before time T&, the net
charge that passes through it is Qo. Thus, if
k &n+(I, Tg},

TfJ i„+(r,r)dr=go . (4.15)

In the same way, if k & n (I,T&), then

T

J 't„(-r, r)d~= g—, . (4.16)
0

The situation is more complicated for bonds in group 3.
If the kth bond in group 3 breaks before time T&, the net
charge that passes through it is less than Qo and greater
than —Qo. We define Qz+(I ) to be the total charge that
Rows through the kth bond when the current is positive.
Similarly, let —

Qz (I ) be the total charge that passes
through the kth conductor when the current is negative.
The failure criterion (2.4) becomes

li„'(r, ~)ld~=g„+(r)+Q„(I ) =Q . (4.17)
0

Integrating Eq. (4.14) from time 0 to time t and using
Eqs. (4.15) and (4.16), we obtain

where

n +(I, t) n (I, t) n (I, t)
+ g q&+(r, t) gq—i, (r, t)+ g q&(r, t),

k=1 k=1 k=1

and

qz+(r, t) = J i&+(—r, v)dr,
0

tq„(I,t)—:—
it, (r, ~)dr,

0

0qz(r, t)= i„(r, )d
0

Iot =Qo[n+(I, O) n+—(I,t}]—Qo[n (I,O) n—(I, t)]+
n (I,O)

k =n (I, t)+1
[g„+(r}—g„-(r)]

(4.18)

(4.19a)

(4.19b)

(4.19c)

We now divide qz(r, t) into two parts. The first part is the charge that flows through the kth bond in group 3 when the
current is positive, q f, '+( I,t). The second part is the charge that flows through this bond when the current is negative,
—qz' ( I, t) With thes.e definitions, we have

q„'(r, t) =q„'+(r, t) —q„' -(r, t) .

Using Eqs. (4.13), (4.17), and (4.20), we may rewrite Eq. (4.18) as follows:

n +(I, t) n (I, t) n (I, t)
F(I', t) I t = g—[Qo q„(I,t)]+ g— [Qo —q„(l,t)]+ g [Qo —q„+(I,t) —

qi, (I,t)],
k=1 k=1 k=1

where

(4.20)

(4.21)

and

F(I,t) =Qon (I,O) —2Q (r, t) (4.22)

n (I,O)

g -(r, t) =— y' g, +
k =n (I,t)+1

n (I,P)

k =n (l, t)+1

n (I, t) n (I, t)

g~ (I")+ g q& (r, t)+ g q&' (r, t} .
k=1 k=1

(4.23)

Let us pause to discuss this result. The sums on the
right-hand side of Eq. (4.21) run over all the conducting
bonds that cross I at time t, and the quantity on the
right-hand side is just the total charge that must still How
through these bonds for them all to be broken. Now con-
sider the left-hand side of Eq. (4.21). Qon (I,O) is the to-
tal amount of charge that is needed to break all of the

t

conducting bonds that cross I at time t =0. Q (I, t} is
the total amount of charge that recrosses the path I be-
fore time t, i.e., it is the charge that has crossed I due to
negative "backtracking" currents. [Note that charges
that return to the region above I twice contribute twice
to g (l, t).] Each time that a charge returns to the re-
gian above I, it damages conducting bonds twice —once
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We now set t to the failure time T& in this result. This
gives

I T~+F(I,T~) . (4.25)

Because all the bonds in the critical path are insulating at
time T&, the right-hand side of Eq. (4.21} vanishes for
t =T~ and I =I,. Thus

I Tg=F(I'„Tg) .

Substituting this into Eq. (4.25), we find that

F(I „T&)+F(I', T&)

(4.26)

(4.27)

for all paths I .
Equation (4.27) shows that the critical path is the path

I that minimizes the functional F(I,T& ). Once the criti-
cal path has been found, the failure time can, in principle,
be computed using Eq. (4.26}. This is the variational for-
mulation that we sought to derive.

Physically, F (I, t) Iot is just —the charge that must
still cross the path I after time t in order for all the con-
ducting bonds that cut the path to fail. Clearly, then,
F(I „T&) IOT&=0 and —F(I,T&) IOT& &0 for —any
path I that is not critical. This is the basic physical con-
tent of the variational formulation.

It should be kept in mind that the currents fiowing
through the conducting bonds and the failure time T& de-
pend on the initial configuration C. To avoid confusion,
from this point on we will explicitly display the depen-
dence of the functional F(I,T&) on C. To this end, we
set

when it backtracks, and again when it returns to the re-

gion beneath I. Thus, at time t the total amount of
charge that has done damage to the bonds crossing I' is

Iot+2Q (I', t}. The first term in this expression is the
total charge that flowed across I for the first time, and
the second is the remaining charge that flowed across the
path before time t. We conclude that the left-hand side
of Eq. (4.21) is the charge needed to break the remaining
conducting bonds that cross I, and so the two sides of
the equation indeed coincide.

All of the terms in brackets on the right-hand side of
Eq. (4.21} are nonnegative. Thus, we have the following
inequality, valid for any time t and path I:

(4.24)

The functional F(I,C) is given by

F(I', C)=gon(I', C)—2Q (I,C) . (4.33)

In the heuristic theory developed in the preceding sec-
tion, the effects of negative currents were neglected. If
we simply set Q (I,C) to zero in Eqs. (4.31)—(4.33), we
recover the approximate results (4.5) and (4.6). Actually,
the critical path does not necessarily minimize the length
n(I, C). Instead, it minimizes the more complex func-
tional F(I,C).

The functional F(I,C) contains two parts. The first is
the charge that must pass through I in order for all the
conducting bonds that cross it at time t =0 to be broken.
This term is proportional to the length n(I, C) of the
path, as defined in Sec. IV B. The second term
[2Q (I,C}]is twice the charge that crosses I' due to the
presence of negative currents. The critical path mini-
mizes the functional F(I', C), and represents a compro-
mise between the eFects of these two terms. The first
term favors short paths. The second term, on the other
hand, favors paths with large negative currents passing
through them. Typically, these will be paths that are
rather long. For example, when p is zero, paths I that
cross a vertical line three or more times have appreciable
values of Q (I', C). These are paths with "overhangs. "
The larger the overhanging portions of the path are, the
larger the value of Q (I,C) will be. When p is small but
nonzero, paths with large overhangs will usually have
large values of Q (I,C), just as they do when p =0.

Our variational formulation is not useful in numerical
studies. This is because if we are to compute the func-
tional F(I, T&), we must find the currents through all of
the bonds in the network for all times t ~ T&. Once these
currents have been calculated, both the failure time and
the critical path are known, and there is no need whatso-
ever for the variational formulation. The real importance
of the variational formulation is that it allows us to devel-
op upper and lower bounds on the failure time. This is
the subject of the next subsection.

D. Upper and lower bounds on the failure time

Using our variational formulation, we can readily ob-
tain upper and lower bounds on the time to failure T&.
From Eqs. (4.31}—(4.33), we have

IOTA Qon (I,C)—2Q (I,C)

F(I,C) =F(I,T~) .

For much the same reason, we write

(4.28) for all paths I . In particular, this inequality holds for
I =I „and so

(4.29)
I Ty~g n(I „C)—2Q (I'„C}. (4.34)

and

n (I,C):—n (I, t =0) . (4.30)

This upper bound on T& is an improvement on our earlier
result (4.9), since Q ( I'„C)& 0. To obtain a lower
bound, note that

In our new notation, Eqs. (4.27) and (4.26) become

F(I „C)~F(I,C), for all paths I

and
I T& F(I'„C) . —

IpTy =go&1 (I C) 2Q (I C)

(4 31) Since n (I „C)+ n (I „C),we have

IOT~ Qon (I „C)—2Q (I „C) .

Combining Eqs. (4.9) and (4.36), we have

(4.35)

(4.36)
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Qon(I „C)—2Q (I „C}~I&Tf ~ Qon (I „C) . (4.37)

Equation (4.37) shows that Tf is close to n(1„C)to
provided that Q (I „C) is small. Thus, ifbacktracking
through the critical path is negligible, Eq. (4.6) is close to
being correct. This is an important conclusion, since it
means that for Eq. (4.6) to be a good approximation,
backtracking does not need to be negligible for all paths.
Instead, it is enough for backtracking across the critical
path I, to be small.

In Sec. IV B we gave a heuristic argument for Eq. (4.6).
In estimating the failure time t(I ) for a path I', we as-
sumed that backtracking across I can be neglected. This
assumption is definitely not valid for an arbitrary path I:
Isolated bonds can be present even in the initial
configuration C. Moreover, backtrack currents across
certain types of paths can be substantial, as we have al-
ready noted. Our equality (4.37} shows that the assump-
tion made in the heuristic treatment is much stronger
than necessary, however: All that is needed is for back-
tracking across I, to be small.

It is possible that Q (I „C) is not negligible for cer-
tain special initial configurations C. To be precise, we
shall argue that Q (I'„C) is small on average This. will

allow us to conclude that

(4.38)

We have not been able to prove rigorously that
( Q ( I „C)) is small. However, it is possible to argue
convincingly that the effect of backtracking is modest for
p «p, and for p close to p, . Let us first discuss the limit
of small p. If p «N, in all likelihood there will be ei-
ther zero or one broken bond in the network at time
t =0. If there are no broken bonds initially, all of the
vertical bonds break simultaneously. The critical path
can therefore be taken to be any horizontal straight line
that traverses the network. Since all of the vertical bonds
carry the same positive current for t & Tf, we must have

Q (I „C)=0. If there is a single broken bond initially,
on the other hand, the critical path is the horizontal
straight line that contains this bond. A horizontal crack
is nucleated by the broken bond, and the crack tips prop-
agate laterally until they meet and the failure of the net-
work is complete. Clearly, the currents flowing across
the critical path are always positive, and again
Q (I „C}=0.

The situation is more complex ifp is small compared to
p, but is not small compared to X . In this case, there
are many broken bonds in the network at time t =0, al-
though the broken bonds are initially dilute. At early
times, cracks begin to grow laterally from the broken
vertical bonds (Fig. 6). The broken horizontal bonds may
nucleate cracks at somewhat later times, and the tips of
these cracks also propagate horizontally. As the cracks
grow larger, they begin to interact through the current
flow, and at still later times, cracks may fuse. If two
cracks are in the same rom, their tips may meet, leading
to the fusion of the two cracks and to the formation of a
single larger crack. If two cracks are in adjacent rows, on

(d)

(c)

(b)

FIG. 6. The final and initial configurations of a 64X64 net-
work with p =0.01. The bonds dual to bonds that are insulat-

ing in the final state are shown with solid lines. The critical
path itself is shown with bold solid lines. Bonds that were bro-
ken at time t =0 are circled, and the busbars are shown with
thick solid bars at the top and bottom of the network. The ver-

tical bond (a) is broken initially, and leads to the formation of a
crack whose tips propagate laterally. The horizontal bond (b) is

insulating at time t =0, and it also nucleates a crack whose tips
propagate laterally. Two cracks in the same row fused at point
(c). A bridge between cracks in adjacent rows was formed at
point (d).

the other hand, their tips normally pass one another trav-
eling in the opposite direction —the cracks do not fuse
when their tips are one lattice spacing apart. Instead, if
the cracks do fuse, they do so through the formation of a
"bridge" between them. A bridge is created when a sin-
gle horizontal bond fails between the two cracks. Our
simulations indicate that, almost invariably, two cracks
fuse only if they are separated by at most one lattice spac-
ing in the vertical direction (Fig. 6). Thus, the critical
path I, is composed of long, straight horizontal seg-
ments joined by an occasional vertical step of unit height.

Is backtracking across I, ever important? Clearly, for
early times it is not. In this instance, backtracking is ab-
sent if the broken bonds are remote from one another,
just as it is when there is a single broken bond initially.
Backtracking can only occur at early times if there are
several nearby broken bonds, and this occurs with negli-
gible probability. At late times, on the other hand, the
current flow is constricted to flow through the few nar-
row apertures that remain in I,. When the current flow
is constricted in this way, it is most unlikely to backtrack.
We conclude that, on average, negative currents across
the critical path will be negligibly small for p «p, .

Now consider the situation at the percolation thresh-
old p =p, . In most initia1 configurations C, there is a
conducting bond whose removal disconnects the two bus-



THEORY OF ELECTROMIGRATION FAILURE IN. . . 12 481

bars, a so-called "singly connected bond" (SCB). Up
until time T&, the SCB carries all of the current. The
SCB is the only bond to break, and once it has broken,
network failure is complete. In configurations of this
kind, the critical path crosses only one conductor (the
SCB},and there is never any backtracking. If there is no
SCB in the initial configuration, it is practically certain
that the simultaneous removal of two conducting bonds is
sufBcient to interrupt the Sow of current. These bonds
are called "doubly connected bonds. " In all but rather
unusual initial configurations, the critical path crosses
only two conductors, the doubly connected bonds. If this
is the case, there is never any backtracking across the
critical path. We conclude that at the percolation thresh-
old & Q (I'„C)& is small.

Ifp is close to but less than p„we must distinguish twa
cases. If L is much smaller than the correlatian length g,
the behavior of the network is essentially the same as if p
were equal to p„and backtracking is again negligible.
Suppose, on the other hand, that L »g. In the approxi-
mate nodes, links, and blobs picture, the conducting
backbone of a percolation cluster is compased of a net-
work of quasi-one-dimensional "strings" or links that join
a set of nodes whose typical separatian is g. For simplici-
ty, we shall take these nodes to form a square array.
Each string consists of several sequences of singly con-
nected bonds in series with thicker regions called
"blobs, " where there are two or more conducting bonds
in parallel. The mean number of singly connected bonds
in a string diverges as (p, —p) ' as the percolation
threshold is approached. The first bonds to fail are those
on the hattest string. Once these have failed, the current
increases in the vertical strings adjacent to the broken
string, and these strings are likely to be the next to fail.
In analogy with the behavior of a single crack in an oth-
erwise defect-free network, we expect that the failure pro-
cess of the disardered network will consist of the lateral
propagation of a linear "crack."This crack is made up of
a sequence of broken vertical strings, and its tips propa-
gate until they meet. Thus, at least in the nodes, links,
and blobs picture, there will be no backtracking.

We have argued that backtracking is negligible close to
the percolation threshold p =p, and in the dilute limit

p «p, . The simulations described in Sec. V support
these conclusions, and, in addition, show that the efFects
of backtracking are small throughout the entire range of
p values. Thus, Eq. (4.38) provides a good estimate of the
time to failure for all values ofp and N.

It remains for us to argue that the lengths of the criti-
cal and shortest paths are usually close to being equal.
We must have n (I'„C)&n(I „C). On the other hand,
Eqs. (4.34) and (4.35) show that

n(I'„C)&n(l"„C) +2 Qo'[Q (I „C)—Q (I „C)] .

We now have the desired result:

n(I „C)&n(I„C)&n(I'„C)+2Q (I „C)/Qo .

We have argued that &Q (I „C)& is negligible. We
therefore conclude that

as claimed.

The first passage time constant p, (p) is positive for p &p,
and is zero for p &p, . As the percolation threshold p, is
approached from below, p, (p) tends to zero as
p(p)-(p, —p)'. The exponent v is exactly ~4 in two di-
mensions. At the percolation threshold,

& n (I'„C)&
-k lnL (4.40)

as L ~~. Here k is a constant. These predictions are
consistent with scaling theory. 56

Let us now consider the predictions of the shortest-
path theory. For a given p &p„ the mean failure time
grows as &Tf &-p(p)t LOas L~oo. The failure time
tends to the constant p(p)QO/jo if the current density
jo=IO/L is held fixed as L graws large. If p is not
greater than p, but is close to it, we may use Eqs. (4.39)
and (4.40}and the scaling hypothesis to yield

to lnL for a «L «g,
(p, p) ~ toL f—or L&&g. (4.41)

Naturally, the failure time is zero for p &p, .
An approach that is somewhat similar to our shortest-

path theory has been developed in the theory of dielectric
breakdown. ' In their study of a continuum model
for dielectric breakdown in metal-loaded dielectrics,
Gyure and Beale assigned each path P that spanned the
system from busbar to busbar a "gap" x(P}.3 ' The
value of x (P) is equal to the length of the path that lies in
the dielectric. Gyure and Beale noted that the path with
the smallest gap tends to be close to the actual path that
led to breakdown. Their Monte Carlo simulations also
suggest that the breakdown field is approximately pro-
portional to the minimum gap. Antecedents to the ideas
of Gyure and Beale appear in Refs. 32 and 57.

V. SIMULATIONS OF FILMS
Wl j.H MULTIPLE CRACKS

In this section, we present the results of our simula-
tions of electromigration in films with multiple cracks.
We begin by demonstrating that the behavior of our mod-
el differs markedly from that of the random fuse network.
We then test the Lifshitz-type and shortest-path theories
developed in Sec. IV.

E. Predictions of the shortest-path theory

Equation (4.38) relates the mean failure time to
& n {I „C)&, the average length of the shortest path that
traverses the initial configuration of the network. Ac-
cordingly, we shall call the approximate theory that is ob-
tained by neglecting backtracking across the critical path
the "shortest-path theory. "

Much is known about the behavior of & n (I'„C)&. It
has been proven that as the size of the network L tends to
infinity,

(4.39)
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A. Comyarison of the breakdown model of electromigration
and the random fuse network

Cg C2

C3

Ep

FIG. 7. The three cracks cl, c&, and c3 present in the initial
configuration Co. The bonds dual to bonds that are insulating
in the initial state are shown with solid lines.

As we noted in Sec. II, our model of electromigration
differs from the random fuse model because it is truly
kinetic. In this section, we will show that our model
differs from the random fuse model in three other impor-
tant respects. In the random fuse network, the bond that
carries the greater current (the so-called "hottest" bond)
is always the next to fail. We shall show that in our mod-
el, the next bond to fail is usually not the hottest bond.
In both the random fuse network and in our model, a
critical path of broken bonds traverses the network once
the network has failed. However, even if the initial
configurations are the same in the two models, the criti-
cal paths are, in general, different. Finally, when the
value of p is not small, the damage is much more widely
distributed throughout the network in our model of elec-
tromigration than it is in the random fuse model.

We begin by comparing the breaking processes in the
two models for a particularly simple initial configuration
Co. Suppose that at time t =0, there are three horizontal
cracks, c&, c2, and c3, in an N„XN grid. The ith crack
consists of v; adjacent broken vertical bonds for i = 1,2, 3.
Further, suppose that cracks cI and ez are in the same
row and that crack c3 is in a different row than these two
cracks (Fig. 7). Let the former row be denoted R, 2 and

let the latter be R3. For simplicity, we consider the case
in which N »N„and assume that the distance between
rows R, z and R3 is much larger than the width of the
network N„a. With these assumptions, the current flow

around the crack c3 will be the same as if the other
cracks were not present for t & Tf. Similarly, the current
fiow around the cracks c, and c2 will be the same as if the
crack c3 were absent. Finally, we choose the v s so that

v3 & v2 ~
v& and v, +vz & v3. Since v3 is greater than v,

and v2, the hottest bonds will be adjacent to the tips of
crack c3 at time r =0. (Actually, if the cracks c, and c2
are very close together, the hottest bond could lie be-
tween them. We assume that this is not the case. )

Consider the breaking process that results from this in-

itial configuration in the case of the random fuse model.
The hottest bonds are the two vertical resistors adjacent
to the ends of c3. These bonds are therefore the first to
fail. Once these bonds have failed, the hottest bonds are
still at the tips of the crack c3. Thus, the tips of this
crack simply propagate laterally until they meet. The
other two cracks (c, and cz) do not grow at all, and the
hottest bond is always the next to fail.

Now consider the time evolution in the breakdown
model of electromigration that ensues from the initial
configuration Co. Since the vertical distance between
R

& 2 and R3 is large, the currents in the vertical conduct-
ing bonds in these two rows are all directed downward.
The special case in which v& =0 was already discussed in
Sec. IVB. Arguing in precisely the same way, we find
that since v, +v2) v3, the critical path is the horizontal
line lying in row R, z. The crack c3 does grow to some
extent, because initially the hottest bonds are adjacent to
its tips, and these bonds are the first to fail. However, the
hottest bond is not always the next to fail —if it were, the
crack c3 would simply grow laterally until its tips met,
and the critical path would lie in the row R3.

To bring these conclusions into sharper focus, we per-
formed simulations of the fuse model and the electromi-
gration model in a 128 X 128 network. (Simulations with
N »N„would be prohibitively time consuming. ) In
both models, we used the same initial configuration bear-
ing three cracks. Cracks c, and c2 were initially com-
posed of seven broken vertical bonds, and were centered
at the points (32,84.5) and (96,84.5), respectively. (We set
a =1.) The third crack was centered at (64,42.5) and had
v3 13. In the case of the fuse model, only vertical bonds
with height y =42.5 were broken during the simulation,
and the critical path was a horizontal line containing the
crack c3. This is what we would expect on the basis of
the preceding discussion. In contrast, the three cracks
grew concurrently in the electromigration model. The
number of broken bonds in the row R, 2 grew more rap-
idly than the number of broken bonds in the row R3,
however (Fig. 8). After cracks 1 and 2 had fused to form
a single crack, this crack grew still further, and ultimate-
ly its growth led to failure of the network as a whole. Of
the 200 bonds that failed, only 85 were the hottest bond
at the time they failed. Finally, although the critical
crack was in row R.

& z, a total of S2 bonds were broken in

row R3 during the electromigration process.
Let us also compare the behavior of the random fuse

model and our model of electromigration when the insu-
lating bonds are initially randomly distributed. We gen-
erated a random initial configuration with p =0.07 for a
64X64 network, and then performed simulations of the
failure process in the two models starting from this
configuration. Figure 9 shows the final state in the ran-
dom fuse network. Note that all of the broken bonds lie
on the critical path. Figure 10 shows the final state in the
breakdown model of electromigration. In this case, many
bonds are broken that do not lie on the critical path, and
there is extensive damage throughout the network. The
critical path itself differs markedly from that found for
the random fuse model, despite the fact that the initial
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FIG. 8. The number of broken bonds in row R& 2 (curve A)
and R3 (curve B) plotted vs the total number of insulating
bonds.
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con6guration was the same in the two simulations. Dur-
ing the simulation of the electromigration model, each
time we deduced which bond would break next, we
recorded the current Ib passing through this bond before
breaking it. We also recorded the current Iz passing
through the hottest bond in the network at that time.
Figure 11 shows the ratio I& /II, as a function of the total
number of broken bonds. Initially, I&/Iz was equal to
one. However, at later times, the next bond to fail as usu-

ally not the hottest bond. There is an overall downward
trend in the values of II, /II„although even at the latest
times it occasionally jumps up to 1. Of the 843 bonds
that broke, only 11 were the hottest bonds at the time
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FIG. 10. The final and initial configurations of the break-
down model of electromigration for a 64X64 network with

p =0.07. The initial configuration is the same as in Fig. 9. For
the meaning of the various symbols, see the caption for Fig. 9.

they failed. In contrast, the hottest bond is always the
next to fail in the random fuse model, and II, /Iz is always
equal to 1.

B. Tests of the theories of the failure time

1.2 I I I
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To test the approximate Lifshitz-type and shortest-
path theories developed in Sec. IV, we performed simula-
tions of our breakdown model of electromigration. In-
stead of solving Kirchhoff's equations directly, the
Green's function formulation for the resistor network
was solved using the conjugate gradient method. This
algorithm is an especially powerful means of finding for
the current distribution in a resistor network, and is
much more eScient than solving KirchhoFs equations
directly using the conjugate gradient method. The failure
times were determined for a range of p values between 0

FIG. 9. The final and initial configurations of a 64X64 ran-
dom fuse network with p =0.07. The bonds dual to bonds that
are insulating in the final state are shown with solid lines. The
critical path itself is shown with bold solid lines. Bonds that
were insulating at time t =0 are circled, and the busbars are
shown with thick solid bars at the top and bottom of the net-
work.

225 450 675
number of broken bonds

900

FIG. 11. I&/Iz as a function of the total number of broken
bonds for the same simulation as in Fig. 10.
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FIG. 12. The dimensionless failure time (j0a/~0)~
s with error bars), (n(I'„C))/N (open circles), and(crosses wit error a

~1/2 for a1 —(v,„)/N (solid curve) are plotted vs p for 0 p / or a
64 X 64 network.

and p, =
—,'. The grids studied had N„=N„=N and

N=8, 16, 32, and 64. For each value of p and N, an
average over Q(N) configurations was made. 0 was 5000

N =8, 1000 f r N = 16 and 50 for both N =32 and
64. The current density jc=In/L and the charge Qc a
the same values in all of the simulations.

To test the Lifshitz theory prediction,

jo~

Q
f

we computed the value of v,„for a 64X 64 network for a

results for the10000 configurations was made. Our results
mean dimensionless failure time (jo /QQ f
1 —(v )/N are plotted vs p in Figs. 12 and 13 for thevmax

~ ~ ~ ~

sonable64X64 lattice. The Lifshitz theory is in reasona e
agreement with the results of the simulations when p is
small, but diverges widely from the ( Tf ) values obtaine
in the simulations for larger values ofp.

As we saw in Sec. IVD, two cracks are likely to
coalesce to form a single crack on y

'
yl if the are in the

same or adjacent rows. Thus, fusion and bridging are
' 'bl 'f N «1. Since the possibility that these

events occur is neglected in the Lifshitz-type theory, t is

but not for larger values of p. This is in complete accord
with the results shown in Figs. 12 and 13.

S th t could compare the simulation results with
the redictions of the shortest-path theory, we compu et e pre ic ions
the mean length of the shortest path nh, n(r C)) that
traversed the 64 X 64 network. The shortest-path lengths
were calculated for the same set of initial configurations
C as were used in our simulations of the electromigration
process. Ihese lengths were then averaged to yield an es-
timate of (n(. .C)). For a given configuration C, the

h f the snortest path was determined using a
straightforward modification of the "burning a go-

The computed values of (n (I „C))/N are isp aye
. Thein Fig. 12, along with the dimensionless failure time.

values of (j ac/Q )o( T& ) and ( n (I'„C)) /N are virtually
indistinguishable throughout the entire range of p values.
Our results therefore provide strong support to our c aim
that Eq. (4.38) is a good approximation.

Although Eq. (4.38) is an excellent approximation, it is
not exact. The relative error

( n ( I'„C)) to
—( Tf )

R =
( )

we make in adopting Eq. (4.38) is not zero for 0(p (p,
N =64 (Fi . 14). However, R never exceeds 0.7%,

. All ofand is still smaller for p values close to 0 and p, .
our R values are nonnegative, and this is consistent with
the inequality ( Tf ) (tc(n (I „C)) we obtained in Sec.

ation forThe shortest-path theory is a good approximati
N =64, but this is no guarantee that it remains a goo
approximation for larger values of ¹

'g.. In Fi . 15, we have
plotted our results for R vs I/log, oN p = .for =0.15 and 0.4.
For both values of p, the data can be fit to straight lines,
yie ing ex

' ld' trapolated values of R in the infinite size limit.
For p=0. 15, we find R(N= oo)=0.0074+0.000, w i e
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FIG. 13. The dimensionless failure time (j0a /~~0 )

(crosses with error bars), and 1 —~d l —(v )/N {solid curve) are
plotted vs p for 0&p ~0.005 for a 64X64 network.
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FIG. 14. The relative error R is plotted vs p for X =64.



50 THEORY OF ELECTROMIGRATION FAILURE IN. . . 12 485

0 008

0.007

0.006

0.005

subjected to a constant current Io. All of the wires had
the same thickness h and were subjected to the same con-
stant current density Ic/(L„h).

AAI found that if L becomes large while L„ is held
fixed,

K 0.004 (6.1)

0.003

0.002

0.001

0.2 0.4 0.6

1/log(N)

0.8 1.2

for p =0.4, we obtain R (N = ~ )=0.0024+0.0002. In
both cases, the extrapolated relative errors are less than
1%. Thus, although R does increase with system size, it
seems to asymptote to small values.

In Sec. IV D we argued that

( n (1 „c)& =—( n ( r„c}&. (5.1)

For the 64X64 network,

FIG. 15. R vs I/log, oN for p =0.15 (crosses with error bars)

and 0.4 (open circles with error bars). The straight lines are
least-squares fits to the data.

where a and P are positive, increasing functions of L„.
They also observed that the variance of the distribution
of Tf values decreased with the length of the wire L . In
this section, we will use the shortest-path theory to ac-
count for the observations of AAI.

Consider the time to failure T& of a rectangular net-
work with fixed p (p, and L »L„»a that is subjected
to a constant current density J'c=Ic/L„. According to
the shortest-path theory, Tf =N, tc, where N, is the
length of the shortest path that traverses the wire. We
now partition the wire into v=L /L„square segments,
each having sides of length L„. Let n, ; be the
length of the shortest path that traverses the ith seg-
ment, while remaining within the segment. Clearly,
N, +min(n, &, n, 2, . . . , n, „) In .fact, since L„»a, to an
excellent approximation we have N, =min(n, „n, 2,

, n, „).. Let P(n„L„)be the probability that the length
of the shortest path that traverses a square of side L„ is

n„nad let F(n„L, ) =gk' cP(k, L„)be the correspond-
ing cumulative distribution function. According to the
asymptotic theory of extreme order statistics,

(F(N„L„)&
-=—1 (6.2)

was less than 0.032 for all values ofp we studied, and was
still smaller for p close to zero and p, . For all of the
values of p we examined, the length of the critical path
was precisely equal to the length of the shortest path in
more than half of the samples. Our simulations therefore
are in good agreement with Eq. (5.1), and with the predic-
tions of the shortest-path theory as a whole.

VI. FAILURE OF LONG CURRENT-CARRYING WIRES

So far, we have concentrated on the failure of square
films. Unfortunately, experiments have not been per-
formed yet with this type of geometry, and so the predic-
tions made in Sec. IV E cannot be compared with experi-
ment. All experiments done to date have been concerned
with the lifetime of long, narrow wires. This is natural,
since this is the issue of greatest practical importance in
microelectronics. For this reason, in this section we will
study the failure of long, narrow films with L »L„»a.

The most complete experimental results on the lifetime
of polycrystalline metal wires were obtained over two
decades ago by Agarwala, Attardo, and Ingraham
(AAI). 5 AAI used photolithography to make polycrys-
talline aluminum stripes of varying lengths Ly and widths
L„. The stripes were examined under a light microscope
at a magnification of 500X, and were discarded if "mac-
roscopic defects like notches" were observed. AAI deter-
mined the lifetime of each of the remaining stripes when

for v»1.
To determine the behavior of ( Tf & for v=Lr /L„»1,

we need to know the form of the cumulative distribution
function F(n„L„) when n, is small. We are currently
studying the distribution of shortest-path lengths, and we
hope to determine the behavior of ( Tf & for
Ly »Lz »a. However, that work will not yield agree-
ment with the experiments of AAI. This is because the
values of (N, & and (Tf & for the rectangular network
tend to zero as Ly~~. In contrast, AAI found that
(Tf & tends to a nonzero constant as the length of the
wire becomes large.

This apparent discrepancy between theory and experi-
ment arises because samples with macroscopic notches
were discarded by AAI. This screening removes the most
severe defects, and leads to substantial changes in the
asymptotic behavior of (Tf &. The screening procedure
employed in the experiments was rather subjective and
was not described in detail. To estimate its e6ect, let us
suppose that a sample was discarded if it had a crack of
width w, or greater in it. The threshold width w, is a
constant independent of both L„and L„, since all of the
samples were examined with the same magnification.
Suppose that a crack of width w was observed in a partic-
ular wire. The length of the shortest path traversing the
wire (N, ) would then be approximately equal to
A,(L„—m }, where A, ( 1 is a constant of proportionality.
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P n, L 0 for n(n (6.3)

Here A is a normalization constant; to be explicit,
A = [1 F(n„—L„)] '. Let F(n„L„)be the new cumula-
tive distribution function. Equation (6.2) is replaced by

(F(N„L„)) =-—1 (6.4)

When n, is close to n, but is still greater than
it, F(n„L„}—= A (n, n, )—, where A =P(n„L„)[1

F(n„—L„)] . Now when v is large, in all likelihood

N, will be close to n, . Thus, for L »L„, Eq. (6.4}
reduces to A ((N, ) n)=-—llv or (N, )—= A 'L„/L»
+n, Sin.ce ( T& )-=(N, ) to, we have at last

w,(z'f)=— .
' x 1 — ' +

jo L Ly
(6.5)

for L„»L,»a.
Equation (6.5) is of precisely the form (6.1) found by

AAI. In particular, the theory predicts that ( Tf )
asymptotes to a nonzero value as L~ ~~, and that the
correction to the asymptotic value of ( T~) falls to zero
as L» '. Comparing Eqs. (6.1) and (6.5), we obtain

QOA,
a(L„)=

jo

w1—
L„

(6.6)

and

Qo 1 F(n„L„)—
~Lx ~ P( L }

(6.7)

Thus, a and P are increasing functions of L„,as observed

by AAI.
As we have noted, AAI found that a is an increasing

function of L ~ Actually, Agarwala, Attardo, and Ingra-
ham went further and suggested that a(L„}~ L„Unfor-.
tunately, there is too much scatter in their data to distin-
guish between this form for a(L„) and ours, or to permit
a detailed test of Eq. (6.6).

According to the asymptotic theory of extreme order
statistics, for v » 1

var[F(N„L„)]—=—,1

V
(6.8)

where var(x) denotes the variance of the random variable
x. For L »L this reduces to var(N, ) -=( A v)
Hence, for Ly »L~ &&a,

var(Tf }—=
[Q,
joA L

(6.9)

Thus, roughly speaking, a metal stripe would have been
screened out if the length of the shortest path traversing
it was less than a cutoff length n, =A,(L„w—, ).

As a result of this screening process, P(n„L„) is re-
placed by a new probability distribution P(n„L„) given

by

AP(n„L„) for n, &n,

Equation (6.9}shows that the width of the distribution of
failure times decreases as the length of the wire grows
large. This is again in agreement with the observations of
AAI. The data of AAI have too much scatter to allow a
detailed test of the predicted form of the decrease, how-
ever.

In sum, the shortest-path theory is able to satisfactorily
account for the observations of AAI. It would be desir-
able to have further experiments done in the future in
which the wires were not screened before life testing,
however. Experiments of that kind would permit a more
detailed comparison with the shortest-path theory. Im-
proved tests of the theory would also become possible if
the statistical errors in the experimental results were re-
duced by increasing the number of samples tested.

VII. CONCLUSIONS

In this paper, we introduced a kinetic breakdown mod-
el for the damage done to a polycrystalline metal thin
film by electromigration. In our model, the metal film is
represented by a regular grid of "wires. " Initially, a frac-
tion 1 —p of these wires are conductors and the
remainder are insulators. As current passes through a
conductor, it is damaged by electromigration. A con-
ducting wire fails irreversibly once a charge Qo has

passed through it. Thus, wires that carry a heavy current
load fail sooner than those that do not.

Our model was inspired by the random fuse model but
is fundamentally different from it. The random fuse mod-
el is not a kinetic model, since failure occurs instantane-
ously when the applied voltage is suf5ciently large. In
contrast, our model is truly kinetic, since we can follow
the breakdown process as a function of time. Our model
was shown to differ from the random fuse model in
several other important respects as well.

We began work on our model by studying the growth
of a single crack oriented perpendicularly to the direction
of the ambient current. As the crack length 2x grows
large, the velocity of the crack tips u scales as u(x)-x'
in an infinite network. We argued that the value of the
exponent a is exactly 2, and this result is in excellent
agreement with our numerical work.

As a first attempt to construct a theory of the failure
process when multiple cracks are present, we developed a
Lifshitz-type theory for our model. We were encouraged
to do so because the Lifshitz-type theory of Duxbury and
co-workers is quite successful in predicting the
failure voltage of a random fuse network. Our Lifshitz-
type theory is in good agreement with the results of our
simulations of electromigration failure when p &&X
but for larger values ofp, an entirely different approach is
needed. This is because the interaction and fusion of
cracks can only be ignored if the defects in the film are
initially dilute.

We began our development of a theory of the failure
process for arbitrary p by assigning a length n(I ) to
closed self-avoiding paths I that wrap around the lattice
once before closing. The failure time T& is never greater
than n (I „C)to, where n (I „C} is the length of the
shortest path that traverses the initial configuration C.
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We then argued that, on average, the failure time Tf is in

fact very close to being equal to n (I'„C)te .We also ar-

gued that the length of the critical path n (I „C) is al-

most always close to the length of the shortest path
n (I'„C).

Our arguments were based to a large extent on a varia-
tional formulation of our problem that allowed us to con-
struct upper and lower bounds on the time to failure. In
the variational formulation, the critical path I, for an in-

itial configuration C minimizes a functional F(I', C}. If
backtracking is neglected, this functional reduces to
Qon (I,C}. The critical path is just the shortest path in

this approximation. We refer to this approximate theory
as "the shortest-path theory. "

Simulations of our model of electromigration damage
are extremely time consuming, since KirchhoFs equa-
tions for the network must be repeatedly solved. Howev-

er, if we are content with knowing the approximate
failure time, KirchhoFs equations need never be solved:
It is sufficient to compute the shortest-path length, and
this can be done easily and with great speed. The
shortest-path theory relates the time that a complex
dynamical process comes to an end to a simple geometri-
cal quantity, the length of the shortest path through the
initial configuration.

Using the approximate shortest-path theory, we
showed that the mean failure time of an L XL network
tends to the constant p(p)Q /jeief the current density

je=Is/L is held fixed as L grows large. This constant
tends to zero as (p, —p) ~ as the percolation threshold is

approached.

We also used the shortest-path theory to account for
the experimental results of Agarwala, Attardo, and In-
graham. AAI determined the lifetime of polycrystalline
metal wires of varying lengths L and widths L„when
subjected to a constant current density. We argued that
sample screening had an important effect on the experi-
mental results. When this screening is taken into ac-
count, we find that the mean failure time and the width of
the distribution of failure times depend on the length and
width of the wire in a fashion consistent with the data of
AAI. In particular, we found that ( Tf ) asymptotes to a
nonzero value as L —+ ~, and that the correction to the
asymptotic value of ( Tf ) falls to zero like L

In the future, we intend to study networks with more
general forms of disorder than the simple percolative dis-
order employed here. However, we expect that results
similar to those reported in this paper will still apply. We
will also study the probability distribution of failure
times, the lifetime of long unscreened wires, and the
effects of Joule heating. Finally, we are currently investi-

gating the possibility that variants of the shortest-path
theory can be successfully applied to other models of
breakdown in random media.
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