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A general theory on the transfer of perfect matching rules for a quasiperiodic tiling to perfect
matching rules for an atomic decoration of the tiling is presented. General conditions on the possi-
bility of such a transfer are discussed, and an upper bound on the range of the matching rules for the
atomic structure is derived. This range is identical to the range of interactions needed to stabilize
such a quasiperiodic ground state. The main tool in this analysis is the concept of mutual local
derivability. The general principles are then applied to two examples of binary tiling quasicrystals.
The 6rst one, based on the Tubingen triangle tiling, needs matching rules of a rather long range,
whereas the second example, which is a decoration of the Penrose rhombus tiling, has matching rules
of reasonable range. Finally, the concepts put forward in this paper are set into a broader context,
and we compare them with other theories for the propagation of quasiperiodic order.

I. INTRODUCTION

Since the experimental discovery of quasicrystals in
1984, a vast number of further quasicrystalline structures
have been found, among them several thermodynamically
stable ones, some of which are extremely perfect and well
ordered. It is still somewhat mysterious, however, how
the laws of nature can select these well-ordered, albeit
nonperiodic structures and favor them against other, pe-
riodic, or nonperiodic, but less well-ordered structures.
There are several mechanisms which help in the forma-
tion of quasicrystals, notably contributions &om the elec-
tronic energy (Burne-Rothery mechanism) and from the
high entropy of these nonperiodic structures at higher
temperatures. We believe, however, that the high per-
fection found in many of the thermodynamically stable
quasicrystals can only be explained if there is a fairly lo-
cal energetic mechanism present as well, which selects the
local neighborhoods that may occur in the structure. We
therefore propose to study local, finite range interactions
having a quasiperiodic ground state. With such interac-
tions, the global quasiperiodic order of quasicrystals is
enforced by their local order.

In a slight idealization, perfect quasicrystals can be
described as certain atomic decorations of quasiperiodic
tilings. Many such quasiperiodic tilings are known to
allow for perfect matching rules, which means that
they can uniquely be recognized by inspection of local
configurations only. One could therefore also call them
perfect local matching rules, but because we shall not
talk about matching rules other than local ones, we drop
the attribute "local" &om now on. It is important to no-
tice, though, that, in order to formulate these matching
rules, it is often necessary to introduce arrows and Bags
and other rather unnatural decorations of the tiles that

must match, ' ' and it is hard to see how atomic interac-
tions could mimic those decorations. Even worse, these
decorations sometimes require additional, nonlocal infor-
mation that is not contained in the bare, undecorated
tilings.

It is the purpose of this paper to investigate under
what circumstances perfect global order in quasicrystals
can be obtained by requiring local order only, and we
shall do this not only for quasiperiodic tilings, but rather
for the atomic structures themselves. The latter are local
decorations of quasiperiodic tilings, and the order is de-
fined by specifying which local neighborhoods an atom in
the structure may have. Our main technical tool will be
the concept of mutual local derivability, which had been
developed to classify tilings, but which also proves very
useful to transfer perfect matching rules between differ-
ent tilings, or between a tiling and an atomic decoration
of the tiling, providing a purely local characterization
of the atomic structure so obtained. Local derivability,
moreover, provides us with an upper bound on the range
of the interactions needed to produce a perfect quasicrys-
tal.

Our paper is organized as follows. In Secs. II and III,
the concepts of local derivability and of perfect matching
rules for tilings and atomic structures are reviewed. We
then explain in Sec. IV how matching rules can be trans-
ferred between tilings that are locally derivable &om each
other, and how the same mechanism can be used to trans-
fer matching rules for a tiling to an atomic decoration of
the tiling. We also discuss how local derivation can be
used to relate difFerent matching rules for the same tiling.
In particular, the question of the necessity of decoration
of the tiles is addressed, and how decoration may have
an inQuence on the range of the matching rules. These
ideas will then be applied to two examples, both from the
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class of binary tilings. Binary tilings, shortly reviewed
in Sec. V, allow for a very simple and natural atomic
decoration with two kinds of atoms. The first example,
presented in Sec. VI, is of a very simple structure, but
has only matching rules of a rather long range. In Sec.
VII, a second binary tiling example is presented, which
has a somewhat more complicated structure, but allows
for matching rules of considerably shorter range. In Sec.
VIII, we put our results into a broader context, and dis-
cuss how they apply to realistic quasicrystal models.

II. THE CONCEPT OF MUTUAL LOCAL
DERIVABILITY

The concept of local derivability had been introduced
to bring some order into the formidable zoo of quasiperi-
odic tilings. ~2 When classifying quasiperiodic tilings one
faces a situation somewhat similar to that with ordi-
nary periodic crystals, where the choice of a unit cell
is rather ambiguous. In fact, there are infinitely many
ways to choose a unit cell, although one might reduce
this ambiguity by choosing a symmetric unit cell, such
as the Wigner-Seitz (or Voronoi) cell. From a fundamen-
tal point of view, however, there is no preferred choice:
tilings by unit cells, with just different choices of a unit
cell for the very same structure, should be considered
equivalent in most contexts. With quasiperiodic tilings,
the situation is similar, but somewhat more complicated,
since quasiperiodic tilings are typically built &om two
or more types of tiles. Again, the choice of these tiles
is not unique, and, furthermore, there is nothing like a
preserved fundamental volume. As an example, one may
consider the Penrose tilings, of which there exist several
variants, ~ such as the Penrose kite and dart tilings, Pen-
rose rhombus tilings, and Penrose tilings by Robinson
triangles. All these variants, although looking quite dif-
ferent from each other, are equivalent and have the same
basic structure: they can be locally derived from each
other.

Let us now give a more formal definition of local deriv-
ability. We shall formulate the definition for tilings, but,
in fact, the same definition can be used also for more gen-
eral discrete structures, constructed &om translations of
a finite number of (bounded) objects. In the case of a
tiling, these objects are the tiles, but later on we shall
consider also discrete structures whose constituent ob-
jects are atoms, and one might think of still other kinds
of objects forming discrete structures to which it makes
sense to apply the concept of local derivability. The only
requirement we shall impose on these discrete structures
is that they are locally finite. This means that for any
d ) 0 (and up to translations) the number of difFerent
configurations of diameter d occurring in the structure
is finite, where configurations are supposed to consist of
entire objects.

Let RR q denote the ball of radius R around q. The
restriction of a tiling to this ball is defined to consist
of all (entire) tiles which touch the ball. Suppose now
that two tilings, 7j and 72, are given. If there exists a
superposition of the two tilings, possibly after rescaling

and/or rotating one of them, such that for any ball BIt q

tiling 7j restricted to this ball is uniquely determined by
tiling 72 restricted to the larger ball BJ4,+~ q, with a
value of R2& which is uniform in R and q, then tiling
7j is said to be locally derivable from tiling 72. R2q is
called the derivability radius (for the direction 2 ~ I).
We remark that it is even sufhcient to require this re-
lationship between local neighborhoods for R = 0, from
which the corresponding relations for general R follow

immediately. If, for the same superposition, tiling 72
is also locally derivable from tiling 7j, with a derivabil-
ity radius Rq2 which may be different from R2q, we say
that the two tilings are mutually locally derivable, or lo-
cally derivable from each other. In other words, if two
tilings are mutually locally derivable, then there exists
a unique, local correspondence between local neighbor-
hoods in the two tilings. If this correspondence between
local neighborhoods moreover preserves the symmetry of
these neighborhoods, then the local derivability is called
Symmetric. In the following, we shall drop the term sym-
metric, implying that we always mean symmetric local
derivability. It may happen that local derivability exists
only in one direction, but not in the other. In this case,
two situations have to be distinguished: there may be
real loss of information in the derivation in one direc-
tion, so that it cannot be inverted, or there may be no
loss of information, but loss of local information, so that
the information is still present, but can not be accessed
in a local way. In this latter case we may say that one of
the two derivability radii is infinite.

Mutual local derivability is an equivalence relation be-
tween tilings [or, more generally, between local isomor-
phism (LI) classes of tilings; see below]. It has been
widely used to classify tilings into groups of equivalent
ones. We have already mentioned the diferent vari-
ants of Penrose tilings, which are all mutually locally
derivable. 2 Other examples include a class of dodecagonal
tilings~s s containing very many, astonishingly difFerent-
looking variants, which nevertheless are all equivalent to
each other. Similarly, such classes can be built from oc-
tagonal tilingss and from decagonal tilings, as well as
&om icosahedral tilings.

An interesting application of local derivability concerns
the question of decoration with arrows and other markers
of certain tilings. For example, it can be shown that the
well-known decoration with arrows of the Penrose rhom-
bus tilings does not introduce any new local informa-
tion: the decorated and the undecorated Penrose rhom-
bus tilings are locally derivable &om each other. There
are other decagonal tilings whose decoration is redundant
in the same sense: it can be recovered from the undec-
orated tiling in a local way. For many octagonal and
dodecagonal tilings, the situation is diferent: their dec-
orations, needed for formulating the matching rules (see
below), cannot be locally recovered from the undecorated
tiling, and are thus not redundant. ' Nevertheless, in the
octagonal and dodecagonal cases also it is possible to
construct simple, undecorated tilings containing all the
local information of the aforementioned decorated ones
already in their vertex set. But even if the decoration
can be locally derived &om the undecorated tiling, the
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derivability radius xnay be rather large, so that the dec-
oration may code local information that was dispersed
over much larger regions in the undecorated tiling. We
shall return to these questions when we discuss perfect
matching rules.

III. MATCHING RUI ES FOR TILINGS AND
ATOMIC STRUCTURES

Perfect matching rules for quasiperiodic tilings are con-
straints on the local neighborhoods allowed in a tiling,
which, when satisfied everywhere in a given infinite tiling,
ensure that the tiling is perfectly quasiperiodic and be-
longs to a unique LI class (to be defined below). These
matching rules should not be confused with growth rules,
which would allow one to successively grow a tiling by
adding tiles according to the rules. Local growth rules
usually do not exist without leading to potential contra-
dictions. The matching rules considered in this paper
only allow one to check whether an infinite tiling, after
it has been built, is a perfectly quasiperiodic one.

First we give some formal definitions. We shall essen-

tially use the formulation of Levitov, 5 which appears to
be best suited for our purposes. The set of all tiles in a
tiling which overlap with a ball BR ~ is called an R-map
of the tiling. Note that for any given R & 0, only finitely

many difFerent R-maps can occur in the tiling (we as-

sume here that there are only finitely many prototiles).
All R-maps together constitute the R-atlas of the tiling.
Two tilings for which the R-atlases agree for all R & 0
are called locally isomorphic. This means that any finite
subset of one tiling occurs also in the other tiling, and
vice versa. The set of all tilings which are locally isomor-

phic to a given one is called its loccI, isomorphiam class,
or LI class for short. Particularly interesting LI classes of
tilings are those for which it is not necessary to specify
all the R-atlases, but only R-atlases up to some given,
finite R „. It can then be checked by local inspection
of all R „-neighborhoods whether a given tiling belongs
to such a LI class. Tilings with this property are said to
be locally charncterizable. The corresponding matching
rules, or the local characterization, consist of the R
atlas of the LI class, and R „is called the range or radius
of the matching rules.

It should be emphasized that the kind of matching
rules described above, which enforce tilings Rom a sin-

gle LI class, are the strongest matching rules possible.
Such matching rules have been called perfect matching
rules by Ingersent, extending an earlier hierarchy of
matching rules given by Levitov. We also note that the
concept of perfect matching rules does not only apply to
quasiperiodic tilings. It is, in fact, a very general con-
cept: perfect matching rules just are required to enforce
tilings from a single LI class, which xnay be a LI class
of any kind of tilings. In this paper, however, we shall
restrict ourselves to quasiperiodic tilings, and we shall
consider only perfect xnatching rules, which are the only
ones which can be transferred to other tilings by means
of local derivation (see next section). The proof that an
R-atlas completely specifies a unique local isomorphism

class is usually done by making use of the self-similarity
present in many quasiperiodic tilings.

We remark that from the definition of LI classes it
follows that, if two tilings from difFerent LI classes are
locally derivable from each other, then the local deriv-
ability can readily be extended to the whole LI classes
of the two tilings, providing a bijection between the two
LI classes. This bijection assigns to each tiling in one
LI class a unique partner tiling in the other LI class,
such that the two tilings are locally derivable from each
other. Local derivability therefore not only is an equiva-
lence relation between tilings, but, in fact, an equivalence
relation between LI classes of tilings.

All the concepts introduced above, such as the for-
mulation of matching rules in terms of a finite R-atlas
completely characterizing a LI class of tilings, can eas-
ily be extended to more general discrete structures. In
fact, these concepts apply to any locally finite discrete
structure, consisting of finitely many types of bounded
objects. In particular, for the constituent objects of the
discrete structure, which play the roles of the tiles, we
can take atoms, thereby obtaining a very natural charac-
terization of an atomic structure in terms of an R-atlas
of local neighborhoods of atoms. It then makes perfect
sense to ask whether a finite R-atlas already fixes the lo-
cal isomorphism class of an atomic structure, and what
the minimal radius of such an atlas is.

IV. MUTUAL LOCAL DERIVABILITY
AND MATCHING RULES

Local derivability can now be used to transfer perfect
matching rules for one tiling to other tilings in the same
local derivability class. Suppose two tilings, 7i and 7z,
are given, which are locally derivable from each other,
with derivability radii Riz and R2i, and ass»me that
tiling 7z allows for perfect matching rules with radius
R2. The idea then is to pull this local characterization
back to 7i. Recall that any (Rii+ R')-map of 7i uniquely
determines the corresponding R'-map of 72 centered at
the same point. If we choose R' & Rz, then every tiling

7 containing only (Rim + R')-maps from 7i can locally
be transformed into a tiling in which only R2-maps from

72 occur, and which therefore, since the LI class of 72 is

completely characterized by its Rq-atlas, must be locally
isomorphic to 7q. This is, however, not yet suHicient, in
general, to ensure the tiling 7 to be in the same LI class
as 7i. In fact, the derivation from 7 to 72 might not be
one to one, or its inverse might not be local, so that we

might have lost information or local information during
the process. In order to avoid this we really need lo-

cal derivability in both directions, and we have to require
that R' is not only larger than R2, but also strictly larger
than R2q, the derivability radius in the inverse direction.
If we do so, every (Ri2 + R')-map &om 7i gives rise to
a unique R'-map from 72, which in turn maps back into
a unique R-map f'rom 7i of some positive radius, which,
due to the»n~queness of all the processes, is a submap of
the one we started with. In other words, we need that 7
is uniquely mapped to 72, which in turn uniquely maps
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back to 7 . A more detailed analysis (which we shall skip
here) reveals that under some circumstances one has to
increase R' still further, so that we arrive at the follow-

ing final result: there exists a finite radius Rq ——Ry2+ R'
such that the Rq-atlas of 7q completely determines its LI
class, and we have an upper bound on the matching rule
radius Rq of 7q.

Rg & max(R2, R2g, d2) + Rg2,

where d2 is the maximal diameter of the tiles in 7q. A
local characterization of a tiling can therefore be trans-
ferred to all members of its local derivability class, and
for each case an upper bound for the matching rules can
be obtained. This bound need not be optimal, however,
which can already be seen &om the fact that the upper
bound (I) always increases under local derivation.

Local derivation has been used in several cases to trans-
fer matching rules between tilings, or to prove the equiv-
alence of known matching rules for different tilings. ~4 ~s

In particular, simple octagonal and dodecagonal tilings
have been constructed which are completely locally
characterized by their vertex set alone. These tilings are
in the same local derivability class as the decorated tilings
constructed earlier, ' ' the decorations of which are non-
local and thus not redundant. Local derivation may also
be used to relate matching rules for the same tiling, but
using different decorations, or matching rules with and
without decoration of the tiles. As an example, we may
consider again the Penrose rhombus tiling, the matching
rules of which are usually formulated in terms of arrows
on the tile edges that must match. As explained in Sec.
II, this arrow decoration is redundant: it can be locally
recovered &om the undecorated tiling, and therefore the
undecorated Penrose rhombus tiling is locally character-
izable as well. To locally characterize the undecorated
Penrose tiling, it is sufficient to require that only the
seven vertex neighborhoods of the Penrose tiling occur,
and to give some further constraints on the environment
of two of these vertex neighborhoods, which are labeled
K and S4 by de Bruijn. More precisely, if a vertex is
of type K, its nearest-neighbor vetices which are located
between two thick rhombs must be of type D, and if a
vertex is of type S4, its nearest-neighbor vertices between
two thick rhombs must be of type J. These vertex types
are forced in the Penrose tiling. Other constraints are not
needed. It is then easy to check that any rhombus tiling
satisfying the above constraints can always consistently
be arrowed, and thus is a genuine Penrose tiling.

Although local derivability gives only an upper bound
on the new matching rule radius, this bound gives a hint
that the range of matching rules may greatly vary be-
tween diferent decoration schemes. For instance, a dec-
oration may code in a very local way information that
was dispersed over rather large regions, so that with the
decoration the range of the matching rules may be fairly
small. Although the decoration may be redundant, in
the sense that the decorated and the undecorated tiling
are locally derivable &om each other, a high price might
have to be paid in terms of a much longer range of the
matching rules if one wanted to do without decoration.

The range of the matching rules therefore sensitively de-

pends on the decoration scheme, which must be kept in
mind when talking about the range of matching rules.

As explained in Sec. II, the de6nition of local derivabil-
ity applies not only to tilings, but also to more general
discrete structures. One just has to replace the tiles by
the constituent objects of these structures. In particular,
an atomic decoration of a tiling may be considered whose
constituent objects are atoms, comprising their positions
and the assignment of a chemical species for each atom.
Therefore the tools described in this section can equally
well be used to transfer a local characterization of a tiling
to an atomic decoration of the tiling, provided the two
are locally derivable &om each other.

V. BINARY TILING QUASICRYSTALS

Binary tilings~s'~r are tilings by the two Penrose
rhombs, but subject to certain conditions on the ver-
tex neighborhoods that may occur. These conditions are
chosen in such a way that binary tilings allow for a very
simple and natural decoration with atoms of two different
sizes. More specifically, small atoms are placed on acute
corners of thick rhombs and on obtuse corners of thin
rhombs, and big atoms are placed on all the remaining
corners (Fig. I). The matching condition then is that at
any given vertex only rhomb corners decorated with the
same atom type meet. For what follows, we note that any
binary tiling and its vertex set, divided into positions of
big and small atoms, are trivially locally derivable from
each other. This derivability is so local that in the fol-
lowing we shall not always distinguish between the binary
tiling and its atomic decoration.

The matching conditions just described are not very
restrictive. There is an enormous number of tilings al-
lowed by them, among them quasiperiodic, periodic, and
completely disordered ones. If the interactions between
the two types of atoms are sufficiently short range, so
that only nearest neighbors interact, it can be shown~
that atomic structures based on any binary tiling are
all exactly degenerate. For this reason, binary tilings
have been used as a very attractive example of ran-
dom tilings, ' in which the random tiling hypothesis
is backed by the underlying atomic decoration.

In this paper, we show that appropriately chosen inter-
actions of somewhat longer range can select much more
restrictive classes of binary tilings. It is, in fact, possi-
ble to find 6nite range interactions for the two types of

FIG. 1. Decoration scheme for the thoro binary tiling rhombs.
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atoms which enforce a quasiperiodic ground state within
a single LI class, i.e., one can find quasiperiodic binary
tilings with perfect matching rules.

Before we present examples of binary tilings with
matching rules we remark that binary tilings have suc-
cessfully been used by Burkov to model thermody-
namically stable decagonal Al-Gu-Co quasicrystals. In
Burkov's model, fairly big, partially interpenetrating
clusters of atoms are placed on the vertices of a binary
tiling. Since decagonal Al-Cu-Co quasicrystals are very
perfect it seems unlikely that they can be explained by an
underlying random binary tiling. On the other hand, the
range of the matching rules we shall present is, taking
into account the size of Burkov's clusters, not so short
either that this would present a reasonable range of in-
teratomic interactions. More recently, Burkov has pre-
sented a refined model, which directly decorates the
Tubingen triangle tiling, with a decoration that en-
forces the matching rules of that tiling.

VI. MATCHING RULES FOR A BINARY TILING
BASED ON THE TUBINGEN TRIANGLE

TILING

The decagonal Tubingen triangle tiling, or simply
triangle tiling, which is naturally obtained by dualiza-
tion &om the A4 root lattice, gives rise to a binary tiling
in a very simple way. Because of the simplicity of its
atomic surfaces, we shall call it here the standard binary
tiling. The vertex set of the triangle tiling, whose atomic
surface is a regular decagon (Fig. 2), is identical to the
set of big atom positions in the binary tiling. The posi-
tions of the small atoms are then easily obtained as the
circumcenters of the large triangles. These small atoms
give rise to two further atomic surfaces, two pentago-
nal stars (Fig. 2), which are located at positions of Ds
site symmetry, and which form together one orbit under
the decagonal point group. Compared to the Penrose
tiling, the decagon. occupies the lattice nodes which are
left empty in the Penrose tiling, whereas the pentago-
nal stars occupy the positions of the small pentagons of
the Penrose tiling. While the standard binary tiling can
be easily obtained from the triangle tiling, in the way
just described, as a very local decoration of the triangle
tiling, the derivation of the triangle tiling &om the bi-
nary tiling is much more diKcult and less local, although
possible. We first; observe that by connecting neighbor-
ing big atoms we can derive a tiling made by triangles,

trapezoids, and pentagons. In order to recover the trian-
gle tiling, the latter two tiles have to be split into big and
small triangles, which can be done in several ways. The
right choice can be determined by inspecting a rather
large, but uniformly bounded region around the tile to
be split.

Binary tilings based on the triangle tiling are interest-
ing because the triangle tiling allows for perfect matching
rules. Such matching rules have been described for a ver-

sion of the tiling where tiles are decorated with arrows,
in which case it is enough to specify the allowed ver-

tex neighborhoods in order to enforce quasiperiodicity.
Since the arrows are locally derivable &om the undeco-
rated tiling, matching rules exist also for the undeco-
rated tiling. Their range is somewhat larger in that case,
since one has to look at the second shell of tiles to de-

termine the arrows from the undecorated triangle tiling.
When one passes on to the binary tiling, however, even

more local information is lost, so that rather large regions
have to be inspected in order to recover the triangle tiling
&om the binary tiling.

The bound on the range of the matching rules so ob-

tained is thus rather large, and it is, unfortunately, a
nearly optimal bound. This can be seen by using an ar-

gument due to Levitov. We have to look at the phason
Hips that occur when physical space cutting the atomic
surfaces is moved in perpendicular space. When physi-
cal space is moved so that it leaves an atomic surface,
then it enters at the same time another atomic surface,
so that the atom belonging to that surface does not dis-

appear, but just jumps to a nearby place. This is due to
the closedness condition24 satisfied by many quasiperi-
odic tilings, among them the triangle tiling. Since the

FIG. 2. Atomic surfaces for the standard binary tiling. The
decagon is for the big atoms, the pentagonal star for the small

atoms. The pentagonal star occurs at thoro positions, in tvro

di8erent orientations.

FIG. 3. Standard binary tiling. The large atoms which

must jump simultaneously in a phason Sip are marked. In
such a Hip, the interiors of octagons made of three thick and
three thin rhombs are rearranged.
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boundaries of the atomic surfaces are straight and par-
allel to rational directions of the decagonal module in
perpendicular space, there is not only one atom that
jumps on that occasion, but a whole row of atoms, a one-
dimensional quasicrystal in fact. Such rows are usually
called worms. " In the case of the Penrose tiling, such a
worm is formed by a continuous row of tiles. In general,
the density of this one-dimensional quasicrystal of atoms
which jurnp simultaneously is determined by the length
of the boundary of the atomic surface which is crossed.
In the case under consideration, the row of large atoms
which jump simultaneously is rather sparse. In Fig. 3,
a large piece of a standard binary tiling is shown, where
the big atoms which are about to jump are marked. Note
that big and small atoms are tightly coupled: with each
big atom, two small ones jump as well. These three atoms
are in the interior of octagons made of three thick and
three thin rhombs. As can be seen &om Fig. 3, there are
large distances between such groups of atoms, and their
jumps must be correlated. In order that the matching
rules can enforce this, their range must be at least half of
the largest distance between two such groups of atoms,
This defines a lower bound on the range of the matching
rules, which in the present case is about equal to the up-
per bound obtained &om local derivability, so that the
true range of the matching rules is fairly well known.

sible choices for the position of the additional big atom
in the interior, but for difFerent rhombs these choices are
not independent of each other: in two adjacent rhombs
sharing an acute corner, not both additional atoms may
be near that corner. Once a choice has been made for
the big atoms, the positions of all the small atoms are
completely determined.

In this paper we are interested in a decoration which is
as local as possible. We therefore base our choice of the
positions of the additional big atoms on the vertex neigh-
borhoods to which a thick rhomb belongs. The simplest
choice appears to be the one depicted in Fig. 5. There
are four vertices shown in Fig. 5, together with their as-

VII. MATCHING RULES FOR A BINARY
TILING BASED ON THE PENROSE TILING

Since the matching rule radius for the standard binary
tiling presented in the last section is rather large, we have
to look for other such structures, having shorter range
matching rules. Good candidates appear to be binary
tilings which are decorations of the Penrose tiling, be-
cause the Penrose tiling itself has extremely short range
matching rules. As mentioned earlier, Penrose tilings
are completely specified by local patches which go only
marginally beyond vertex neighborhoods. Several kinds
of binary tiling decorations of Penrose tilings have ap-
peared in the literature. In one of these decoration
schemes, the Penrose vertices are taken as positions of
big atoms, and one more big atom is placed on the long
diagonal of each thick Penrose rhomb, dividing it in the
ratio ~:1. The positions of the small atoms are then fixed
(Fig. 4). For each thick rhornb there are thus two pos-

FIG. 4. The decoration of Penrose tiling rhombs with big
and small atoms.

FIG. 5. On the left side, the acceptance domains of the
Penrose tiling are shown, with their subdivision according to
the vertex type. The four vertex types which are decorated
with further big atoms are shown, together with the corre-
sponding snbwindows (vertices are not necessarily in the right
orientation). The new, enlarged acceptance domains for the
big atoms are shown on the right. The two triangles indi-
cated in the big Penrose pentagon together form a spike, ten
of which form the stellated decagon occurring at the position
left empty in the Penrose tiling. The big Penrose pentagons
remain as they are, whereas to every face of the small Penrose
pentagons a crown is added. This crown is formed by trian-
gles from the small Penrose pentagon. Note that two copies
of the smaller one of these triangles are added, since the cor-
responding vertex is decorated with two additional atoms.
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sociated subwindows of the Penrose tiling. Some of the
thick rhombs in these vertex neighborhoods are marked
by an additional big atom. The rule is that whenever
a thick rhomb occurs in a vertex neighborhood in a po-
sition pxarked by an additional atom, then a big atom
is added at the marked position. No atoms are added
for vertex types not shown, or for rhombs not marked—
these rhombs get their additional atom from a different
vertex. Since every rhomb belongs to four vertex neigh-
borhoods, this rule has to be checked for consistency: we
have to make sure that every thick rhomb is decorated
with exactly one atom, no more and no less. For the rule
shown in Fig. 5, this is easy to check.

A binary tiling obtained according to this rule, with
and without the original Penrose tiling superimposed, is
shown in Figs. 6 and 7, respectively. We observe that
the number of vertex types occurring in this tiling is six,
three for small atoms and three for big atoms. There
are thus fewer vertex types than in the standard binary
tiling, where there were seven. The smaller number of
local neighborhoods makes the tiling appear more homo-
geneous.

Since this Penrose binary tiling is locally derived from
the Penrose tiling, its atomic surfaces can also be derived
from those of the Penrose tiling. This is shown in Fig.
5. We see that, compared to the standard binary tiling,
the single decagon for the big atom positions has been
differentiated into 5 different atomic surfaces. The two
pentagonal stars for the small atoms will split into ten
different atomic surfaces, which are all congruent, but oc-
cur in ten different orientations, forming one orbit under
the decagonal point group. This implies that the Pen-
rose binary tiling can be viewed as a superstructure of
the standard binary tiling. By additional ordering, its
translation symmetry (in higher dimensional space) has

FIG. 6. Penrose binary tiling, with the underlying Penrose
tiling superimposed.

FIG. 7. Penrose binary tiling.

been broken to a sublattice of index five. It should be
noted that the new atomic surfaces (Fig. 5) are heavily
stellated and have long boundaries.

Let us also remark that the tiling derived by Landon
and Billard ' " is very similar to the Penrose binary
tiling presented here. Landon and Billard have added the
additional big atom in the thick Penrose rhombs near the
corner which is farthest from the diagonal of the rhom-
bic icosahedron which serves as acceptance domain for
the Penrose tiling in five dimensions. In their decoration
scheme, the decagonal atomic surface is, in contrast to
ours, not stellated. Instead, the stellation triangles fill

some of the wedges in the other atomic surfaces for the
large atoms. The atomic surfaces for the small atoms
change accordingly. We have chosen a difFerent decora-
tion scheme because the locality of that of Landon and
Billardis was not immediately evident. Judging &om the
atomic surfaces, however, we conclude that their decora-
tion is also local, although possibly with a larger deriv-
ability radius, and the resulting tiling definitely looks
somewhat more complicated.

In order to make sure that our Penrose binary tiling
possesses perfect matching rules, and to determine the
radius of these matchi. ng rules, we have to be able to
recover the Penrose tiling used for its construction in a
local way. We do this in two steps. We first observe
that the vertices where ten or seven thin rhombs meet
form the vertices of a big Penrose tiling (Fig. 8). This
is not the Penrose tiling we started with, but its second
in8ation. Since in6ation and de8ation are local processes
for the Penrose tiling, we can then recover the original
Penrose tiling in a local way, so that we have proved
the existence of perfect matching rules. In order to de-
termine the range of these matching rules it is easier,
however, to directly consider the binary tiling as a dec-
oration of the in8ated Penrose tiling. This decoration
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FIG. 8. Penrose binary tiling, with the doubly in6ated Pen-
rose tiling superimposed.

had earlier been considered2s in a different context. The
matching rule radius R „ then basically is determined
by the requirement that the inspection of R „-patches
allows to check whether the binary tiling can be com-
posed to a unique tiling of big Penrose rhombs, and that
these Penrose rhombs form a Penrose tiling. To recon-
struct a tiling of big Penrose rhombs, we need R to
be at least the edge length of the Penrose tiles, and to
make sure that the big rhombs so constructed actually
form a Penrose tiling, R „needs to be just marginally

FIG. 9. Penrose binary tiling, with marks on big atoms
jumping simultaneously.

bigger. The reason is that the additional constraints on
neighboring vertex types for the Penrose tiling can be
checked very locally in the binary tiling. In the case of a
Penrose vertex of type K, the neighboring Penrose ver-
tices whose vertex type is constrained must be touched
by exactly 7 binary thin rhombs, whereas in the case of
a Penrose vertex of type S4, the corresponding neighbor-
ing vertices must be touched by 10 binary thin rhombs.
This leads to a matching rule radius slightly bigger than
the edge length of the big Penrose rhombs, which is con-
siderably shorter than the matching rule radius of the
standard binary tiling. We note that the above reason-
ning leads to a smaller matching rule radius than a naive
application of the bound (I).

As for the standard binary tiling, we can derive a lower
bound on the matching rule radius for the Penrose binary
tiling. In Fig. 9 we have marked the big atoms which
have to flip simultaneously, because physical space leaves
their respective atomic surfaces simultaneously when it
is moved. We see that the longest distance E between
two such atoms is nearly twice the matching rule radius
derived above. A closer analysis shows that the lower
bound l on twice the matching rule radius is not yet
enough to ensure quasiperiodicity, since flipping only one-
half of the "worm" does not lead to a configuration whose
incorrectness could be detected in patches of diameter E,
so that 8 has to be increased slightly, which leads again
to the upper bound derived above.

VIII. DISCUSSION AND CONCLUSION

We have presented a general theory on how and under
what conditions perfect matching rules for a quasiperi-
odic tiling can be transferred to an atomic decoration of
the tiling, and an upper bound for the range of these
matching rules has been derived. The general principles
have then been illustrated with two examples from the
class of binary tiling structures. Binary tilings seemed
particularly interesting for this purpose because they
have so far always been considered as the ideal example
for a random tiling system. ~ ~ Our work shows that, if
the interactions are allowed to have a sufBciently long,
yet still Suite range, they can in principle be chosen in
such a way that they can stabilize a quasiperiodic ground
state at zero temperature —though it might not be easy
to realize such interactions explicitly.

For our first example, the standard binary tiling, the
range needed for the interactions is certainly unrealisti-
cally big, whereas for the second example it is perhaps
rather big, but still within reasonable limits. Neverthe-
less, the list of patches that have to be energetically fa-
vored against all other configurations even in this case
grows rather long, so that fairly complicated and finely
tuned interactions will be needed. Some of these inter-
actions might also involve several atoms at a time, i.e.,
they might not be pure two-body interactions. It should
be kept in mind, however, that our examples, which are
two dimensional and thus only a caricature of real qua-
sicrystals, are not meant to be realistic models. They are
rather meant for the laboratory of the theoretician, to il-
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lustrate how the general principles work. On the other
hand, it is well known that in complicated intermetal-
lic compounds, such as quasicrystals, interactions are
complicated. For instance, interatomic potentials have
a rather long range and typically show oscillatory behav-
ior (Friedel oscillations), and the electronic contribution
to the energy, which is of a rather nonlocal nature, is
believed to be of vital importance for these structure,
so that our picture with complicated and relatively long
range interactions appears not too unreasonable.

A closer analysis of the standard binary tiling shows
that most of the structure is determined by much shorter
range matching rules. There are only very few, in-
&equent local configurations whose correctness can be
checked only by inspection of a neighborhood with the
true matching rule radius. This means that by impos-
ing much shorter range matching rules one could en-
force a structure which is perhaps not perfectly quasiperi-
odic (and certainly not restricted to a single LI class
anymore), but which has a very low density of defects
and thus could hardly be distinguished from a perfectly
quasiperiodic state. By construction, such a structure
would look perfect on all scales up to the radius of the
matching rules used. For the Penrose binary tiling some-
what shorter range matching rules still might lead to a
tiling of big Penrose rhombs. This tiling, however, would
not be a Penrose tiling anymore, but rather some random
tiling. Since the Penrose tiles are large, the randomness
on the length scale of the binary tiling would still be
rather small and not so easy to detect.

This leads us to a picture of a hierarchy of match-
ing rules: for each radius R there are matching rules
M ~ which enforce that all clusters of radius up to R are
among those which occur in the perfectly quasiperiodic
tiling. With increasing R, the matching rules M~ become
more and more restrictive, enforcing structures which ap-
proximate the ideal, quasiperiodic structure better and
better, until, at some critical radius —the radius of per-
fect matching rules —they finally enforce the perfect
structure. In order to obtain a structure that is prac-
tically indistinguishable from the perfect structure one
possibly need not go that far, however. Such a hierar-
chy of matching rules would interpolate between a pure
random tiling picture and a perfect matching rule pic-
ture. The degree of perfection of the structure that is
obtained could be tuned to a large extent by the range
of the matching rules that are imposed. On the other
hand, such concepts could also be used to estimate the
deviation of a given, defective structure &om the ideal,
quasiperiodic one. 2~ The smaller the scale at which a

defect can be detected, the higher is the importance of
this defect, and the bigger is the violation of the perfect
matching rules. Such a classification of defects makes
sense in particular for structures which are nearly per-
fect.

Another important question is how structures must
look if they should have short range matching rules.
There are some necessary requirements in order that a
structure allows for 6nite range matching rules at all,
but in addition to the mere existence of matching rules
these moreover should be of short range, so that interac-
tions enforcing them need not be too complicated. If we

go through the many examples of quasiperiodic tilings
for which matching rules are known, we see that many of
them, in particular those with simple rules, have several
atomic surfaces, i's's'i 's and for some the atomic surfaces
are stellated. The latter is the case for Danzer's tiling,
which has particularly simple and short range rules, and
the Penrose binary tiling presented in this paper, which,
moreover, is a superstructure of a similar, but simpler
tiling. It thus appears that short range matching rules,
which means a simple structure in physical space, call for
more complicated atomic surfaces, i.e., a more refined or-
dering of the structure. The empirical fact that atomic
surfaces with long boundaries and with boundaries in
many directions help make short range matching rules
possible can be understood intuitively. It is again Levi-
tov's argument which comes into play: the longer the
boundaries of the atomic surfaces, the more atoms must

jump simultaneously in a phason Hip. If the maximal dis-
tance between correlated phason Hips is small, then mis-
takes in the correlation of these Hips can be detected at
small scales, which is necessary for short range matching
rules to exist. Unfortunately, such complicated atomic
surfaces are very difficult to determine experimentally, zs

so that it might prove impossible to confirm them in ex-
periment. This then would leave us in the uncomfort-
able situation that we cannot decide whether the atomic
surfaces are sufficiently complicated to support xnatching
rules of reasonably short range, or whether we need to
find another explanation for the perfectness of quasicrys-
tals.
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