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Effect of the zero-point rotational motions on the quadrupolar glass order parameter
in solid hydrogen
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With the help of thermodynamic perturbation theory the quantum effects on the quadrupolar
glass order parameter of solid hydrogen are studied. It is shorn that due to the quantum nature of
the system, in the zero temperature limit the quadrupolar glass order parameter is reduced 50%%uo in
comparision with the case vrhen quantum effects are not taken into account implicitly.

In the past 15 years there has been considerable
experimental~ M and theoretical~~ zs studies, includ-
ing Monte Carlo simulationsz4'zs on the orientational
ordering of randomly distributed quadrupole-bearing
molecules of orthohydrogen (o-Hz) in a matrix of spher-
ical parahydrogen species (p —Hz) for concentrations X
of o-Hz molecules smaller than 0.55. For such concentra-
tions, no long-range order exists, and it is now believed
that solid ortho-para hydrogen mixtures for X ( 0.55
form a quadrupolar glass (QG), in which the local aver-
age orientation of o-Hz molecule vary randomly from site
to site without any long-range spatial correlation. In the
previous paper by the author and a collaboratorzs (here-
after cited as I) the exact orientational Hamiltonianzs
for electrical quadrupole-quadrupole (EQQ) interaction
has been reduced to some simplified one, which contains
only two com~uting components of the quadrupolar mo-
mentum operator, i.e.,

go„= 1 —-(J;.)
3 ~ 2

(lb)

related to the o-Hz molecule at the ith site, where the
operators J;, J,." and J;. denote the components of the
angular momentum operator J; and act in the manifold
of rotational states with the quantum number J = l.zs zr

Moreover, the orientation of each o-Hz molecule is spec-
ified to the local coordinate system chosen so as to coin-
cide with the principal axes of the molecular quadrupolar

I

momentum tensor. ~ s 2s The contribution due to the non-
commuting part of the full EQQ Hamiltonian has been
taken into account implicitly by the appropriate renor-
malization of the EQQ couplings (cf. I) . In the local coor-
dinate system only two intrinsic quadrupolar parameters
remain c . e . , i.e.,

&i= o,i T) (2a)

g' = (Q2, ')T, (2b)

where ( )T denotes a thermal average.
The local quadrupolar parameters o'; (2a) and rh (2b)

measure, respectively, the alignment of orthomolecule
along the local z; axis and eccentricity.

The temperature dependence of the quadrupolar glass
order parameter q = o;z+ rl, ,

»~ where [ ] „de-
notes an averaging over disorder, calculated in I is in
fairly good agreement with experimental datas except
for the range of very small temperatures where the value
of q calculated theoretically is approximately twice larger
than that obtained from an NMR experiment.

In the present article we will show that such a discrep-
ancy is caused by the zero-point rotational motions of
o-H2, which cannot be taken into account in the frame of
the model formulated in I. Specifically, we will show that
including, even by means of the thermodynamic pertur-
bation theory, the noncommuting part of the full EQQ
Hamiltonian gives considerable improving of the results
in the low-temperature limit.

Similarly, as in I, we decompose the exact EQQ Hamil-
tonian into two parts: the diagonal part Ho and nondi-
agonal (in the eigenstates of Hp) Hj defined as

Ho = ——) o;oo
~

4Jo Qoooo —4/ Jo Qo;Q, o j 4/~P—[f~oo, Q, oj + 3+'j Qo, 'Qoj).~2

H, = ——,
' ) ) J,.",."z;Sgx,.S,",

igj p, ,v=+1,—2

where x; denotes the occupation number equal to 1 and
0 for ortho and parahydrogen molecule, respectively,

S+1 — J+Jz+ JzJ++ J Jz+ JzJ1

)
(5-)

S;. '= ~'J,+J;+J;J+ —J,;J,' —J;J, ~, (5b)
)
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with

g—2 (5c)

with

Z„= TrT exp drdr'H(r, r')
0

where n denotes the replicas number and

The 25 parameters J,""entering Eqs (3) and (4) are sim-

ple linear combinations of EQQ couplings p,". .'" defined

in Ref. 26 (cf. also I). Similarly as in Refs. 22 and I we
decompose the averaging over the disorder [ ] „ into a
sequence of two stages: first one averages over directions
of the local coordinate system (the orientational averag-
ing) and next over configurations of o-H2 species. The
orientational averaging gives

H(r, r') = —) ) J,.', z;q,. (r, r')i, q, (r, r'), (10)
ij an I

where 0 & r, r' & P denote the imaginary times, T is
the time-ordering operator, and the replica indices o., n
run from 1 to n. The parameter J;z in Eq. (10) differs
from that entering Eq. (6) by the factor 4/25, i.e., the

change J;~ ~ 4/25J;~ has been made. The operator q;
in Eq. (10) is defined as

J,"," =0

and

J;",
"J,"," = (~*' ~~~'4. ~- + 4 ~*'~4- ~'-)A'"'- J"

where the coefficients A„and parameter J;~ are defined
in I.

With the help of the replica method taking into ac-
count Eqs. (6) and (7) we obtain:

1—/3F = lim„p —ln Z„,
n

= )::„(r);, *(r')
p, =0,2

+— ) S," (r)S.,
"

, (r') . .
@=+1)—2

A formal dependence of the quadrupolar operators on
imaginary time has been introduced in order to treat
them as c numbers. 2s Taking into account the complexity
of the problem, we will calculate the QG order parameter
within the replica symmetric mean-field approach. After
a Sherrington-Kirkpatrick type of procedure (cf. Ref. 29)
generalized to the quantum spin, one obtains in the
limit n m 0 the following result:

PF = — NzX J—q+ —XzX J drdr'p (r —r') —lim„~p —ln TrT
0 n

xexp NzX J q 7 r'j; r, r' + r r'pr —r' j
aga a

(12)

where N, z = 12, X and J denote, respectively, the total number of molecules, the coordination number for hcp
lattice, concentration of o-H2 species, and the parameter J;z for the nearest neighbors (cf. I). Furthermore, in Eq.
(12) q is the QG order parameter and p(7' —r ) denotes the parameter diagonal in the replica indices, which is equal
to

). (T Q, '(r) , '(r ))&

@=0,2
(T S," (r) S," , (r'))7. .

3+ )-
av 8 SV

Note that for the simplicity in Eq. (12) the sums like P,. . . has been replaced by NzX
In the static approximation, which will be used, p(r —r') = p. Thus we get finally for the &ee energy the following

formula:

PF P' 2 2 P'
NX 4

= ——zXJ q + —zXJ p4

1 1 . 2
- 1 - —- 1

dz„exp( ——) x ) 1e dy„exp( ——) y )'Deep(PdzXR)

with

& = ):(*~«+~~V'p —q)R (14)

where R„ is Q„and S" for p = 0, 2 and p = +1.—2, respectively, and the operator R„refers to an arbitrary site
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occupied by the o-Hz molecule. The parameters q and p can be calculated from the stationary conditions:

=0 (15a)

and

F
(15b)

The solution of Eqs. (15a) and (15b) is an extremely tremendous numerical problem, and we will not perform it
there. Our aim is to show with the help of simple analytical method, i.e., the thermodynamic perturbation theory
that the treating the non-diagonal part Hq (4) of the full EQQ Hamiltonian as a perturbation leads to the significant
decreasing of the QG order parameter q at T ~ 0 in accordance with experimental data.

Thus we decompose 'R (14) into two parts:

'R = Ro+'Rg

where

'Ro = ) (*~+a+w~g» —q)Q~
p=0, 2

and

). (&u&~+ v~v'p q)~"—
p, =+1,—2

which is generated by Hq (4). The free energy (13) is approximated as follows:

PF PFo PFi
NX NX NX '

where Fq is the second-order correction with the respect of 'Rq (18). After tedious but straighforward calculations
one obtains

/3FO / 2 2 P 2 2 ~ 2

NX 4 4
= ——zXJ q + —zXJ p ——zXJ (p —q)2

dj~dgexp[ —~~(( + rl )] ln 1+2exp( —3pJzX+qf/2) cosh(QSpJzXrI)]
(2s)

and

Fg 3 z s ~q~,x drI ~ a+s
' ( J

JzXpem~ —' e ~ ~ +"
/ exp gzxq(( —4r3r»)

P/2
x dvexP z7 J zX(P —q) —sz7 J/zXq((+ r»/+3)

—P/2
P/2

+exp ~ &' ~~ drexp 7. J zX(p —q) -—rJ/3zXqrj
—P/2

(PJ P/2
+ exp QzXq((+ +3rl)

l ) —P/2
d7 exp ~7 J zX(p —q) —~7 J/zXq(f —r»/+3)

x e~ +' ~+2e ~ +' ~cosh PJ/zXqrl( 3
2

(21)

The integration over ~ can be reduced to the error func-
tion, for the imaginary argument, defined as erfi(u) =
2/~n. Jo" d7 e, where in our case the variable u is pro-
portional to the inverse temperature P. In the limit
T ~ 0 we use this function in the asymptotic form
for large u. Taking into account the leading terms in the
limit T -+ 0 in Eq. (21) we obtain surprisingly simple
result:

PF Pz JzzX Pz JzzX
NX 4 4

Pz JzzX 2p
(»

—q)—
2 p —

Q

With the help of Eq. (22), Eqs. (15a) and (15b) take the
form:
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and

This gives

and

4T2 p
J'zX (p —q)' (23a)

4T2
p —1—

J2zX p

1 4T2 1+—
q J2zX p —

q

4T2«-»'= J.X (24a)

4T p+
( )

——0 . (23b)

shown that at T = 0 q = p = 1. There is no reason
that taking into account 'Rr as the perturbation q dif-
fers &om p. Moreover, &om Eq. (24a) it follows that
for T = 0 one of the solutions (23) satisfies the relation

q = p. Taking this into account we obtain &om (24b)
q = p = I/2. The extrapolation of q to T = 0 &om
NMR data measured by Meyer and Washburns gives that
q = 0.40, 0.55, and 0.64 for the orthohydrogen concen-
tration X = 0.25, 0.39, and 0.45, respectively. There-
fore, it is seen that the effect of the non-diagonal part,
of the EQQ Hamiltonian responsible for the zero-point
rotational motions gives even in the &arne of the pertur-
bation approach, the result towards experimental datas
extrapolated to T = 0.
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