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Observation of the freezing line in a deuteron glass
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The phase diagram of the deuteron glass Rbq (ND4), DsPO4 has been determined experimen-
tally in the entire range of concentration z. A recently introduced temperature-frequency plot has
been used to analyze the shape of the dielectric relaxation spectrum, indicating that in the glassy
regime the longest relaxation time diverges according to the Vogel-Fulcher law. The corresponding
Vogel-Fulcher temperature has been identified as the static limit of the freezing temperature Ty.
The phase boundaries of the ferroelectric and antiferroelectric phases have been obtained in a stan-
dard manner by observing the peaks and breaks, respectively, in the temperature dependence of the
quasistatic dielectric constant. It is shown that in a broad concentration range the observed phase
diagram can be quantitatively described by a mean-field theory based on the static random-bond
random-field model of dipolar glasses. The absence of macroscopic polarization in the ferroelectric
region close to the glassy phase is probably due to the formation of microdomains in the pres-
ence of local random fields, however, recent NMR data suggest that a phase segregation between
ferroelectric and glassy regions may occur.

I. INTRODUCTION

The dynamics of the &eezing transition in spin glasses
and their electric analogues, namely, proton and deuteron
glasses, has remained one of the central problems in
condensed matter physics. In the latter category,
the mixed ferro electric-antiferroelectric solid solution
Rbq (ND4) D2P04 (abbreviated as DRADP-2:) has
probably been investigated more thoroughly than any
other glassy system, ~ 2 however, its (z, T) phase diagram
is still not completely understood. The main difBculty
is—like in any other glassy system —the extreme slowing
down of the relaxation process on approaching the freez-
ing temperature Tf, which is furthermore characterized
by many time scales. ' Typically, the observed splitting
between the 6eld-cooled and zero-6eld-cooled dielectric
constants yields a value for Tf which depends on the ex-
perimental time scale t,„~q, i.e., TI ——TI(t,„vq). Thus
a static value of Ty is not directly accessible and could
only be obtained by the appropriate extrapolation to in-
finite observation times, namely, TI ——TI(t,„~t ~ oo).
This, in turn, calls for better understanding of the relax-
ation process itself which might be gained by means of
a dynamic experiment such as the measurement of the
complex dielectric constant (~e) = e'(u) —ie"(~) in a
broad range of &equencies cu.

A common method to determine Tf &om the dielectric
data is based on the observation that both e'(u, T) and
e"(u, T) show a maximum as functions of temperature.
For example, the temperature T „(cu) at which the max-

imum of one of these occurs has been found empiricallye
to scale with u according to the Vogel-Fulcher (VF) re-
lation

ru = uo exp[ E/(T ——Tp)],

where uo, E, and To are parameters of the system. One
is obviously tempted to interpret To as the static limit
of the &eezing temperature Tf, however, there will be
in general two diHerent sets of parameters for the real
and imaginary parts of the dielectric constant and thus
the choice of TI is not unique. Besides, the physical
background of Eq. (1) remains unclear.

In a similar approach, one adopts a relation of the type
(1) for the relaxation frequency f = 1/r, where r is the
relaxation time. The underlying general idea is that the
complex dielectric constant can be written as a sum of
Debye relaxations,

' g(in')d(lnr)
1 + x4)7

where g(inn) is the distribution of relaxation times with
lower and upper cutouts ~q and ~2, respectively, and nor-
malization f ' g(in+)d(in') = 1. Furthermore, e'6 and

are the usual parameters for the limiting-&equency
values of the dielectric constant.

One then argues that for a sufEciently well-behaved
function g(in') and for frequencies in the interval rq &
1/~ & r2, the imaginary part of the dielectric constant
is essentially determined by the shape of the distribution
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function, i.e. ,

Assuming that each inverse relaxation time 1/7 obeys
a relation of the type (1) with fixed coo, g(inc) can be
uniquely represented by a distribution f(E) of activation
energies E, i.e. , g(lnv)d(ln~) = f (E)dE Th.us it follows
from Eq. (3) that the data for c"(u, T) can be mapped
in a broad &equency range onto a single curve the shape
of which is determined by f(T —To), again suggesting
that Tp should correspond to the static freezing temper-
ature. A closer examination reveals, however, that since
by assumption relation (3) is valid only in a range of fre-
quencies ur where the relaxation spectrum g(inc) varies
slowly, the resulting VF scaling between the &equency
and the temperature obviously excludes both cutoff re-
gions and hence the static limit ~ ~ 0. Thus it is not
surprising that the VF mapping for DRADP has been
found to break down already at frequencies below 100
Hz and above 10 MHz. For the same reason, one can-
not justify an analytic derivation of Eq. (1) based on the
asymptotic expansion of Eq. (3) in powers of 1/lure.

One can, of course, always try to fit the dielectric data
by a suitable choice for g(lnr) using appropriate numer-
ical techniques to evaluate the integral in Eq. (2). It
turns out, however, that some prior knowledge about the
shape of the relaxation spectrum is needed, and this in-
formation should be extracted from the data before an
adequate ansatz for g(inc) is written down. In a recent
work, 5 it was shown that the required information about
the behavior of the relaxation spectrum can readily be
gained by representing the real part of the dielectric con-
stant in the form of a so-called temperature-frequency
plot. This technique should be regarded —similar to the
well-known Cole-Cole plot —as a graphic representation
essentially independent of the detailed shape of g(inc).
One can decide by mere inspection of the plots whether
one of the relaxation cutoffs diverges in a given temper-
ature range. The problem then essentially reduces to
(i) the choice of a pair of suitable empirical expressions
for the temperature dependences of 7q and w2, modeled
according to the observed profiles of the highest and low-
est curves, respectively, in the plot, and (ii) the selec-
tion of a simplest possible functional model for g(inc)
bearing the observed asymmetry of the spectrum. Fi-
nally, the &ee parameters entering these expressions can
be determined by a best-fit analysis of the data. In
this way, it has been shown for the case of DRADP-0. 60
(Ref. 5) that the longest relaxation time 7z diverges ac-
cording to the Vogel-Fulcher law, whereas the lower edge
of the relaxation spectrum vq follows a standard Arrhe-
nius behavior. Since the general expression (2) remains
valid in the entire frequency range including the static
limit, it is safe to identify the VF temperature Tq with
the static limit of the freezing temperature Ty. It should
be noted that the basic idea relating the divergence of
the longest relaxation time 72 to the freezing tempera-
ture is not new, however, an unambiguous procedure
to identify ~2 &om the data has not been described until

recently, and the temperature-&equency plot essentially
provides the missing step.

In the present work we use the above technique to de-
termine the freezing temperature Ty(x) and hence the
phase boundaries between the ergodic and nonergodic
glassy phases in the (x, T) phase diagram of DRADP-x.
To obtain the complete phase diagram, the analysis must
be complemented by the standard procedure known &om
the studies of ferroelectric and antiferroelectric systems,
namely, the observation of peaks and breaks, respectively,
in the temperature dependences of the low-&equency di-
electric constant.

Having thus determined all phase boundaries, one may
try to apply the results of the static theories of dipolar
glasses and test their predictions. Most theoretical con-
siderations have so far been based on the infinite-range
random-bond random-field (RBRF) Ising model, which
is an extension of the Sherrington-Kirkpatrickio (SK)
model of spin glasses to proton and deuteron glasses. For-
mally, the link between magnetic and electric glasses is
provided by assigning an Ising pseudospin to the two-
state dipole moment of a proton or deuteron bond. In
physical terms, however, there is an important differ-
ence between the two types of glasses, namely, the ex-
istence of local electric fields in the dipolar case, which
are modeled by a set of Gaussian random fields of vari-
ance 6 in addition to the usual random interbond in-
teractions. Random Gelds induce a nonzero value of the
Edwards-Anderson order parameter qEg at all temper-
atures, thus smearing out the classical pseudospin glass
transition. ' This then creates the need for a more gen-
eral definition of the freezing transition. In the static
picture, the freezing line in the (T, b, ) plane separates
the region above the line, where qE~ is a scalar quantity
measuring the amount of noncooperative glassy ordering,
from the true cooperative glassy phase below the line,
where qEA is given by the limiting value of the Parisi
order parameter function q(x), i.e. , qE& = q(1). By anal-
ogy with spin glasses, this line is usually referred to as the
Almeida-Thouless (AT) line, is which can be calculated
in a straightforward manner within the framework of a
mean-Geld theory of spin glasses. The conceptual link
with the previously discussed dynamic picture of a &eez-
ing transition is now established: The longest relaxation
time diverges as one approaches the AT line from above,
implying a transition from an ergodic pseudospin glass
phase into a nonergodic one. Since in deuteron glasses
the random-field variance 6 is concentration dependent,
the AT line, and hence the corresponding phase bound-
ary, becomes experimentally accessible.

Obviously, random dipolar interaction in DRADP and
related systems are not infinitely ranged, thus raising
some questions about the applicability of mean-field ar-
gurnents to real systems. Consider, for example, the free
energy of a glassy system, which is commonly described
as a rugged surface in the multidimensional space of local
polarizations, characterized by a set of local minima sep-
arated by high potential barriers. If the interactions are
infinitely ranged, the barrier heights become infinite at
the freezing temperature, and aH relaxation times char-
acterizing the transitions between these minima diverge.
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In a system of finite-range interactions, however, only a
fraction of these barriers are expected to become infi-

nite, implying that only the longest relaxation time will

diverge at the transition, in agreement with the dynamic
picture of dielectric relaxation. Another indication of
the existence of finite barriers below Ty in real systems is
the fact that remanent polarization continues to decay in
the &ozen phase, clearly indicating that the bulk of the
relaxation spectrum remains active. One may thus con-
clude that the static equations of the infinite-range xnodel
can only provide an approximate description of the phase
boundary, and its predictions need to be tested for each
particular system. So far, the static RBRF model has
proven its validity in a variety of experimental studies
and its application to the present problem thus seems
justified.

In Sec. II of this paper we describe the experimen-
tal technique, and in Sec. III the temperature-f'requency
plots used in data analysis. This is followed in Sec. IV by
a determination of the phase diagram based on the equa-
tions of the random-bond random-field model. Finally,
in Sec. V we summarize our results.

II. EXPERIMENT

The complex dielectric constant was measured along
the tetragonal a axis of DRADP-x platelets with vari-
ous ammonium concentrations. Crystals of DRADP-z
grown from aqueous (DzO) solution were cut and pol-
ished to get samples having typical dimensions 5 x 5 x 1
mm with planparallel surfaces normal to the tetragonal a
axis. The electrodes were made using the Degussa silver
paint. The concentrations of the saxnples were deter-
mined by chemical analysis and NMR. The temperature
of the samples was stabilized and monitored to within
+0.1 K in the temperature range &om 5 K up to 300 K
by an Oxford Instruments continuos Bow cryostat. The
dielectric constant measurements were always performed
on slowly cooling (= 1 K/min) the system.

The complex dielectric constant was measured in the
&equency range &om 1 mHz to 1 MHz, which was cov-
ered by two different techniques: (a) Low-frequency mea-
surements &om 1 mHz to 1 Hz were performed via the
Sawyer-Tower bridge technique. In this technique the
external ac electric field is applied to the sample. The
polarization charge, i.e., the corresponding voltage, was
measured on a serial capacitor with known capacity by
means of an electrometer. The amplitude and the phase
of the voltage signal, which are proportional to the real
and imaginary parts of the complex dielectric constant,
respectively, were extracted by the least-squares method
using a computer as a digital phase detector. (b) High-
&equency measurexnents &om 20 Hz to 1 MHz mere car-
ried out by using a HP 4284A Precision LCR meter. Both
techniques coxnplexnented each other and were used suc-
cessively on the samples in the ammonium concentration
range 0.21 & x & 0.65 in order to study the tempera-
ture behavior of the dielectric relaxation spectrum which
in turn contains information about the critical slowing
down in the glassy regime.
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FIG. 2. Temperature dependence of s'(v, T) at v = 1 kHz
for m = 0.70.
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FIG. 1. Dielectric constant s'(v, T) at v = 1 kHz as a func-

tion of temperature in DRADP-z (z = 0.15).

The paraelectric-ferroelectric (z = 0) and paraelectric-
antiferroelectric (z = 1) transition temperatures as well

as the transitions horn the ergodic glassy phase to the
glassy ferroelectric phase (z ( 0.30) and the glassy anti-
ferroelectric phase (z ) 0.70) were determined by mea-

suring the peaks and breaks, respectively, in the temper-
ature dependences of the quasistatic dielectric constant
at 1 kHz. Figures 1 and 2 show s'(I kHz) as a function of
temperature for axnmonium concentrations x = 0.15 and
x = 0.70. On moving away &om x = 0 and x = 1 the
peaks and/or breaks become more rounded and a glassy-

type dielectric dispersion appears at low temperatures.
The measurements at z = 0.21 (Fig. 3) and z = 0.24
(Fig. 4) in particular show the rounding of the static
s' and a shift of the frequency-dependent dielectric con-
stant towards lower temperatures, indicating a possible
coexistence of ferroelectric and glassy regions. It is in-
teresting to note that a coexistence of an antiferrolectric
behavior and a low-temperature glassy behavior is also
seen on the antiferroelectric side of the phase diagram at
x = 0.70. As shown in Fig. 5, in addition to the breaks
in the dielectric constant at 115 K demonstrating the
ergodic glass-antiferroelectric glass transition one finds
here also a small peak in the dielectric absorption and a
slight change in the shape of the temperature dependence
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FIG. 3. Temperature dependence of the static

zero-field-cooled dielectric constant szpo (+) for x = 0.21.
Also shown is s'(v, T) at various frequencies v: 1 MHz (D), 1
kHz (o), 1 Hz (Cl), 1 mHz (o).

of the real part of the dielectric constant at 65 K, indi-
cating glassy behavior. Namely, a similar temperature
behavior of the complex dielectric constant measured at
1 kHz was found in the central "glassy" region of the
phase diagram.

The glassy behavior is most pronounced in the region
0.3 & x & 0.65. Here the static dielectric constant 8'p-
i.e., cFc or e'zpc in the long time limit —slowly varies with
temperature and saturates as T ~ 0 (cf. Fig. 6), while
s'(v, T) shows a pronounced glassy dispersion. s Figure
7 shows a set of typical Cole-Cole diagrams where E;" is
plotted as a function of e' for four diKerent temperatures,
obtained on the sample with x = 0.50. At low temper-
atures the dielectric relaxation is strongly polydispersive
and asymmetric, however, with increasing temperature
the degree of polydispersivity is gradually diminishing
and the dielectric dispersion becomes nearly monodisper-
sive. Similar temperature behavior of the glassy dynam-
ics was found in all measured samples with ammonium
concentrations up to z = 0.65. Solid lines in Fig. 7 were
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FIG. 5. Temperature dependence of s' (~ ) and s" (o) at v
= 1 kHz for z = 0.70.

obtained by numerical fit to a linear model for the distri-
bution of relaxation times g(ln r), which will be discussed
in more detail in Sec. III. The temperature dependence of
the static dielectric constant eg obtained in this manner
was independently verified by a set of zero-field-cooled
polarization charge measurements, which were performed
in the time domain as described previously. It has
been found that the field-cooled and zero-field-cooled
static susceptibilities match on the experimental time
scale t,„pt in which the polarization charge is accumu-
lated after switching on the electric field.

III. TEMPERATURE-FREQUENCY PLOT

The standard Cole-Cole plots described above give a
clear indication that the relaxation spectrum of DRADP
in the glassy regime is polydispersive and asymmetric,
and furthermore its asymmetry increases strongly on low-

ering the temperature. In order to analyze the dielectric
dispersion quantitatively one needs a specific model for
the relaxation spectrum g(ln v ) containing the above gen-
eral features. As already mentioned, the choice of g(inc)
is greatly facilitated by introducing the temperature-
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(z = 0.50) at four temperatures, as indicated. Solid lines
are Sts obtained with a linear expression for the relaxation
spectrum.

&equency plots and we will here describe in some detail
the essential steps of this method.

I et us therefore return to the general expression (2).
Introducing a new integration variable z = ln(u 7),
where u is just an arbitrary unit &equency, we can write
for the real part of the dielectric constant

g(z)dz
1+ / )"p(2)&1

In the next step, we define a reduced dielectric constant

E'

)
&S —&oo

so that Eq. (4) can be symbolically rewritten as

b' = I(~,T),

where I(td, T) represents the integral in Eq. (4). The
crucial idea is now to regard b as an experimentally ad-
justable parameter: By holding b Sxed at some selected
value one has the possibility of investigating the behav-
ior of I(~, T) as a function of frequency v = ~/(2x) and
temperature. As one scans e' between eg and e, b will

vary between the values 1 and 0. For each fixed value
of b one obtains a characteristic temperature-&equency
profile in the (T, v) plane, the set of which is referred to
as the temperature-frequency or (T, v) plot. Some typi-
cal (T, v) plots for samples with various concentrations z
are shown in Fig. 8. Since the value of I(u, T) is deter-
mined solely by the relaxation spectrum g(z) including
its cutofFs zi and zz, the (T, v) plots are expected to pro-
vide insight into the temperature variation of the various
segments of g(z).

To see that more clearly, let us examine qualitatively
the behavior of the integral I(u, T). The steplike filter

FIG. 8. Temperature-&equency plots for several Sxed val-

ues of the reduced dielectric constant b of DB.ADP-z at (a)
z = 0.21, (b) z = 0.24, (c) z = 0.50, and (d) z = 0.65. The
solid lines are calculated from Eqs. (4) and (12). The values
of b are, top to bottom, (a) 0.06, 0.10, 0.20, 0.35, 0.50, 0.65,
0.80, 0.90; (b) and (d) 0.05, 0.10, 0.20, 0.40, 0.60, 0.80, 0.90,
0.95; (c) 0.03, 0.05, 0.10, 0.25, 0.50, 0.75, 0.90, 0.95, 0.98,
0.99.

represented by the factor 1/ 1+ (~/~ ) exp(2z) in the
integral in Eq. (4) efFectively suppresses the contributions
due to values of z larger than z (ur) = 1n(ur /u). Thus
the value of the integral is approximately

1n(~ /~)
I(~, T) = g(z)dz .

&1

(7)

z, (T) = z,o + E/T . (8)

This, in turn, implies an Arrhenius-type behavior of the
shortest relaxation time, namely,

r, = ~ioexp(E/T) . (9)

Clearly, for small values of b only the part of g(z) near zi
will contribute, and thus the filter will probe the shape of
the relaxation spectrum near its lower cutoff. In particu-
lar, the temperature dependence of I(ur, T) will be mainly
determined by the behavior of zi (T). On the other hand,
for b close to 1, the filter will scan the function g(z) near
its upper cutofF, and I(u, T) will mirror the temperature
behavior of z2(T) .

The point we wish to emphasize here is that the above
qualitative conclusions remain applicable if instead of the
approximate relation (7) one considers the exact value of
I(ur, T). The latter can, of course, be gained by eval-
uating the integral in Eq. (4) numerically with a trial
function g(z). Therefore, a mere inspection of the plot—
before any calculated curves have been drawn —should
provide a reliable qualitative description of the tempera-
ture variation of the relaxation cutofFs zi(T) and z2(T).
For example, in the plots presented in Fig. 8 the data cor-
responding to the smallest value of b appear to be lying
nearly on a straight line, suggesting a linear relationship
between zi and 1/T of the type
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In contrast, the lowest curves for b close to 1 fall off
dramatically as the temperature is lowered, indicating
a possible divergent behavior of zz(T). An appropriate
ansatz should therefore be written as

and hence of b—which may seem to be required in
order to generate the (T, v) plot. A practical solution
is to group the raw data around a set of suitable val-
ues of b and then use a standard numerical interpolation
procedure to obtain the corresponding fixed b points.

z2(T) = zzo + U/(T —To)~, (10)

leading for P = 1 to a Vogel-Fulcher behavior of wz, i.e. , IV. PHASE DIAGRAM OF DRADP

T2 —'rz o exp [U/ (T —To )]

The paraxneters rxo, 7zo, E, U, To, and P are to be
determined by a best-6t analysis of the data based on
the exact numerical evaluation of I(ur, T). For DRADP
the best 6t at all concentrations was obtained with the
following asymmetric linear ansatz for g(z):

Z2 Z
g(z) =2, zi ( z ( z2,

Z2 Z]
(12)

which does not contain any additional parameters. The
solid lines in Fig. 8 were obtained by fitting I(u, T) evalu-
ated numerically for the above function g(z) to the (T, v)
plots. It turns out that P —1 in all the cases investigated.
The values of the remaining parameters are summarized
in Table I.

The same linear model (12) has been used to draw the
solid lines appearing in the Cole-Cole plots in Fig. 7 and
has in general produced very good results, in particular in
the low-&equency range. In the present analysis we have
explicitly focused on the upper, i.e., long time part of the
relaxation spectrum, which shows divergent behavior and
hence contains information about the freezing process.

It should again be stressed that the (T, v) plots were
introduced in order to obtain a qualitative description of
the asymmetric behavior of the relaxation spectrum, in-
cluding its cutoffs. The essential information supplied by
these plots is that only the upper cutoff scales according
to the VF law, not each part of the relaxation spectrum,
as already pointed out in the Introduction following Eq.
(3). In fact, one can show that if in evaluating I(~,T)
one assumes a VF scaling of each relaxation time in the
spectrum, the resulting (T, v) profiles will all diverge at
the same temperature Tp, in obvious disagreement with
the data. Since v „=~2 diverges as T m Tp, the present
method clearly suggests that the fit parameter Tp corre-
sponds to the static or equilibrium value of the &eezing
texnperature Tf (t,„~t —i oo), which would in principle be
observable on an in6nite time scale only.

Finally, we note that in any actual experiment one can-
not measure the dielectric dispersion at a fixed value of
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The phase diagram of DRADP-x obtained by the
method outlined in Secs. II and III is shown in Fig. 9.
The squares represent the transition temperatures de-
termined from the peaks and breaks in e'(T), the open
circles the VF temperatures Tp, and the solid circles the
transition temperatures determined by NMR. 5 It is in-
teresting to note that the freezing temperature To(z) is
nearly independent of the ammonium concentration z in
the entire glassy regime 0.3 ( z & 0.65 where we find
Tp ——33 +0.5 K.

The solid lines in Fig. 9 have been calculated &om
the static random-bond random-6eld model of deuteron
glasses. As already pointed out in the Introduction, a
mean-6eld theory based on the in6nite-ranged RBRF
model can only provide an approximate description of
the &eezing transition in a system with finite-range in-
teractions. In the present problem, we want to address
the crucial question whether the freezing line To = To(z)
could be interpreted as the Almeida-Thouless (AT) line
separating the ergodic glassy phase &om the nonergodic
one in the temperature random-field variance (b„T)
plane. Namely, the To ——To(z) line can be related to the
AT line Ty = Ty(6), as a variation in the ammonium
concentration z induces a variation in the random-field
variance A. Thus we assume that the To = Tp(z) line is

x TO

(K)
0.21 27.5 + 2
0.24 31.4 + 1
0.50 32.9 + 1
0.60 32.9 + 0.5
0.65 31.7 + 1

710
(10 )
6.3 + 4.0
5.9 + 3.5
3.7 + 1.4
5.6 + 1.8
3.2 + 1.0

U

(K)
850 + 100
760 + 100
780 + 100
770 + 70

950 + 100

T20

(10" )
2.4 + 1.2
5.0 + 5.0
3.0 + 1.8
1.8 + 0.7
2.8 + 1.6

(K)
940 + 150
800 + 150
1060 + 150
980 + 70

1100+ 150

TABLE I. Fit parameters as functions of ammonium con-
centration x. FIG. 9. Phase diagram of DRADP-x system exhibiting the

various phases, labeled as E (ergodic), N (nonergodic), G
(glass), F (ferroelectric, P g 0), F' (ferroelectric, P = 0), A

(antiferroelectric, P g 0), A" (antiferroelectric, P = 0).
transition temperatures determined from the peaks and/or
breaks in e'(T); o, Vogel-Fulcher temperature To obtained
from the divergence of 7 „; ~, transition temperatures mea-
sured by NMR (Ref. 15). Solid lines are calculated from the
static RBRF model.
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describable by the static RBRF model

H= ——) J SS, —) fS;,

+oo
P = Dz tanh [h, (x)/Tf (x)],

q= Dztanh 6, z Tf x (14)

where the pseudospin 8, = kl refers to the two equilib-
rium deuteron positions in the ith 0 —D - . .0 bond. The
random bonds are assumed to have a Gaussian probabil-
ity distribution with a incan Jp/N and variance J /N,
while the random fields f; are distributed according to an
independent Gaussian distribution with mean zero and
variance b, . Formally the phase boundary Tf(x) which
separates the ergodic glassy phase &om the nonergodic
one—i.e., the AT line —is obtained &om the coupled self-
consistent equations which determine the values of the
spin glass order parameter q and the single-domain po-
larization P in the ferroelectric case, or the sublattice
polarization P in the antiferroelectric case, and the sta-
bility condition for the replica symmetric solution. For
the case Jp ——0 (i.e., P = 0) these equations are explic-
itly given in Ref. 9 and can easily be generalized to the
more general case discussed here, Jp = Jp(z) P 0. To
facilitate further discussion and possible applications to
related systems we write down these generalized equa-
tions:

T~(z) = Jp(z)(1 —q [T~(z)]) (17)

together with Eq. (14) for q(Tc) with P = 0. Here
P = 0 since the spontaneous polarization vanishes at
each of these boundaries. It is interesting to note that the
observed ferroelectric and antiferroelectric phase bound-
aries cannot be described by the usual linear concentra-
tion dependence of Jp(x), which is appropriate for "lin-
ear" solid solutions, but require in the case of DRADP-x
a cubic polynomial of the following form:

[r, (w)/d(e))' = f azeezh '(h, (z)/r, (z)), (id)

where Dz—:dz exp( —z /2) eed h (z)—:d(z)z/q+ rh+

]Jp(x) ~P. We may assume, as usual, that J(x)
J gz(1 —z) and 6 = 6 „gx(l —z), so that b, =
6,/ J2 is independenent of the concentration z.

The phase boundaries which separate the ergodic glass
&om the ergodic ferroelectric and antiferroelectric glassy
phases are obtained for

~
Jp(z)

~

& J(x) from the condition
for the divergence of the corresponding susceptibilities,

Jp(z) = (1 —z)TpE —xT~pE —2x(1 —x) ((TpE —T/)pE)/2 — (1 —z)TpE —* /)pE ) .AB AB

An expression of this general type can be derived
by considering all relevant pairwise interactions among
deuteron bonds in a solid solution of two constituents
A and B. The parameters TFE and T~FE correspond to
the ferroelectric and antiferroelectric critical temperature
Tc, respectively, for the two pure cases z = 0 (C = FE)
and z = 1 (C = AFE). These are independently known
&om earlier experiments, i.e., TFE ——217 K and T~FE
= 242 K. The values of the remaining two parameters

TFE and T&&& will be determined &om the phase dia-
gram, as described below.

For J(x) )
~
Jp(z)~, P is identically zero and the AT

line separates the ergodic glass phase &om the noner-
godic glass phase. This line is practically independent of
the ammonium concentration x as indeed observed (Fig.
9) in the interval 0.3 & x & 0.65. For J(x) & ]Jp(z) ~,

on the other hand, the polarization P on the ferroelec-
tric side and the sublattice polarization P on the an-
tiferroelectric side are nonzero for a single-domain state.
The AT line which separates here the ergodic ferroelectric
and ergodic antiferroelectric glassy phases from the cor-
responding nonergodic ones is concentration dependent.
For J(z) & ]Jp(z)], on the other hand, one would expect
according to the usual mean-field ar~Iments that P is
nonzero and should be given by the solution of Eq. (15).
However, it is well known that a single-domain state can-
not be sustained in a random-field system which has been
cooled &om the unpolarized high temperature phase.

Rather, the system may break up into microdomains of
opposite orientations implying that effectively P = 0.
Thus the stability limit of the ergodic spin glass phase
within the "ferroelectric" region can be estimated by ex-
trapolating the AT line for P = 0 into the region z & 0.3.
This is shown as a solid line in Fig. 9. Also indicated is
the single-d. omain stability limit formally obtained by the
solution of Eqs. (14)—(16). The two experimental points
at x = 0.21 and x = 0.24 agree rather well with the pre-
dicted P = 0 freezing line. An alternative picture would
be that a phase segregation between "ferroelectric" and
"glassy" regions occurs for 0.2 ( x ( 0.3, as suggested by

Rb NMR measurements, 5 again implying that P = 0
at the freezing transition. At present we cannot decide
which of the above arguments —or perhaps a combina-
tion of both —is applicable to the system under study.
In each case, however, the AT line has to be calculated
at P = 0 as in fact borne out by the experimental data.
Further experiments, including a search for spontaneous
polarization at various concentrations, are needed in or-
der to discriminate between the above possibilities. On
the antiferroelectric side, the AT line is unobservable by
dielectric spectroscopy as the critical dispersion occurs
at the Brillouin zone boundary rather than the zone cen-
&,er. It should be noted that Takashige et al. were the
first to observe the coexistence of antiferroelectric and
glassy phases on an undeuterated DRADP-x sample with
x = Qw75, which they attributed to reentrant behavior.
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The phase boundaries between the nonergodic ferro-
electric and/or antiferroelectric glassy regions with P = 0
and the nonergodic glassy region where P = 0 have
been derived from Eq. (17) with q being replaced by the
Parisi one-step approximation for the order parameter
function. All phase boundaries in the phase diagram
in Fig. 9 have been thus obtained &om the static RBRF
model with the following set of parameters: 6 = 0.93+
0.05, J „= 164.8 + 5 K, TAPE

——290 6 10 K, and
TFF ——270 6 10 K. It is particularly interesting that the
experimentally determined points on the &eezing tran-
sition line Tp = Tp(z) perfectly agree with the AT line
evaluated &om the static RBRF model.

V. SUMMARY

The &equency-dependent complex dielectric constant
of the deuteron glass Rbi, (ND4), D2PO4 (or DRADP-
z) has been measured and analyzed as a function of
temperature and ammonium concentration x. A re-
cently introduced technique based on the temperature-
frequency or (T, v) plots indicates that in the glassy
regime the maximum relaxation time diverges according
to the Vogel-Fulcher (VF) law. The corresponding VF
temperature To has been identified as the static limit of
the freezing temperature Tf, thus yielding the freezing
line in the (z, T) phase diagram of DRADP-z.

The results have been analyzed in terms of the static
random-bond random-field (RBRF) model of dipolar
glasses. According to this model, the &eezing line

Tp = To(z) corresponds to the Almeida- Thouless (AT)
line Tf = Ty(b, ) in the temperature random-field vari-
ance (T, b, ) plane separating the ergodic pseudospin
glass phase &om the nonergodic one. The phase dia-
gram of DRADP-z in the entire range of concentration

x has been calculated &om the equations of the static
RBRF model including the x-dependent mean value of
the random-bond distribution Jo(z). It follows that all
boundaries can be well described by the RBRF model if
one takes into account the nonlinear character of Jo(z).
The phase boundary between the ergodic and noner-
godic glass phases of DRADP-x thus obtained shows a
rather weak x dependence. The boundaries of the er-
godic ferroelectric and antiferroelectric phases agree well
with earlier results obtained by NMR experiments. It
should be noted that it has been widely held so far-
particularly in the case of magnetic spin glasses —that
the AT line cannot be determined experimentally in view
of the extremely long relaxation times occurring on ap-
proaching the &eezing transition. The present work ex-
plicitly demonstrates that the static limit can be made
accessible by a suitable extrapolation of the temperature
dependence of the maximum relaxation time.

The observed glassy dynamics within the ferroelectric
region suggests the absence of macroscopic polarization
for concentrations 0.2 ( x ( 0.3. This is tentatively in-
terpreted as being due to the formation of microdomains
in the presence of random local fields. Alternatively, a
phase segregation between nanosized "ferroelectric" and
"glassy" regions may be occurring, again implying the
suppression of long-range ferroelectric order in this con-
centration range. Further experiments including a search
for spontaneous polarization are required.
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