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We apply the kinetic Bragg-Williams model, introduced recently, to coherent precipitation of ordered
phases. We show that the relaxation rate of the long-range order parameter (nonconserved) and of the
concentration (conserved order parameter) are coupled not only by the free energy as usually assumed,
but also by nondiagonal terms in the linear operator that connects the relaxation rate of both order pa-
rameters to the driving forces, i.e., the partial derivatives of the free-energy functional with respect to
the order parameters. Moreover, we show that the relaxation of the nonconserved order parameter may
occur by two routes, a homogeneous one (on site relaxation) and a heterogeneous one (migration of
domain boundary). All such effects are ignored by existing theories.

I. INTRODUCTION

In the classical theory of the relaxation of order param-
eters,! one assumes that close to equilibrium, the rate of
change of the order parameter (7) is proportional to the
corresponding gain of free energy #(7n):

dn /3t =—LEF /6 . (1)

Such a model (“model 4” in Ref. 1) has the virtue of
driving the order parameter to its equilibrium value, n*
defined by

57

57 =0. (2)

*
n

If the order parameter is globally conserved, as is the case
for the concentration field, n(r),

fn(r)dr=NB =number of B atoms in the alloy , (3)

the equilibrium concentration field # *(r) is such that 7 is
a minimum under the constraint (3):

5F
én(r)

=u . 4)

n*(r)

The ‘“‘chemical potential” defined as the variation of the
functional F with respect to the concentration field n(r),
8F/8n(r), is uniform at equilibrium and has the value u
defined by Eq. (3) applied to n*(r). It is then natural to
assume that the rate of relaxation of n(r) is such that it
flattens out the inhomogeneity in the chemical potential;
in a linear approximation (“model B” in Ref. 1):

on /3t=—V(—LVEF/bn) . (5)

Both .L’s in Egs. (1) and (5) are usually assumed to be
constants.

It should, however, be noticed that for nonconserved
order parameter also, the chemical potential is uniform at
equilibrium (and equal to zero). While Eq. (1) is certainly
valid for a uniform system, it is not clear why Eq. (5)
should not apply to nonuniform nonconserved order pa-
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rameters as well.

The two types of order parameter may enter the free-
energy functional:> Egs. (1) and (5) are then assumed to
govern the coupled relaxation of n and n (“model C” in
Ref. 1). Such a process is of great interest in metallurgy
where coherent precipitation of an ordered phase is a
common practice for obtaining high-strength alloys at
high temperature. The kinetics of this latter transforma-
tion is described by Egs. (1) and (5), which are solved nu-
merically with appropriate forms of the free-energy func-
tional &F.3~¢

As discussed in a previous work,’ the weakness of the
above formalism is to rely on a mobility coefficient, .L,
with no connection to the underlying thermodynamics of
the alloy. The purpose of this paper is to derive the ex-
pression for the relaxation rate of a nonuniform noncon-
served order parameter in a binary alloy treated in the
simplest mean-field approximation, the “kinetic Bragg-
Williams™ approximation introduced in Ref. 7. Such a
model turned out to be useful in providing an expression
for the mobility in the Cahn-Hilliard diffusion equation,
as well as for the atomic transfer coefficient across
coherent interfaces.”®

The main result is that, in a nonuniform alloy, the evo-
lutions of the long-range order parameter 7(r) and the
concentration n(r) fields (respectively the nonconserved
and conserved order parameter) are coupled not only by
the free-energy functional, as described by existing mod-
els, % but also by cross terms in the rate equations them-
selves. If ¢ is the two-dimensional order parameter
(m,n), we show that

Y/t =MV,F , ©)

where M is a nondiagonal operator. Equation (6) reduces
to Eq. (1) for alloys with a uniform concentration and to
Eq. (5) if the nonconserved order parameter relaxes much
more rapidly than the concentration field.

The paper is organized as follows: we first introduce
the “kinetic Bragg-Williams model,” then derive Eq. (6)
with an explicit form for the elements of the operator M,
namely the operators M7, M"7, M, /M™, and finally dis-
cuss some consequences of the latter expressions.
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II. THE MODEL

In Ref. 7, we proposed a mean-field description of
diffusion fully compatible with Cahn’s thermodynamics
of inhomogeneous systems. It is assumed that diffusion
proceeds by direct exchanges between neighboring sites,
that the activation energy for the process is a saddle-
point energy minus the binding energy of the pair of ex-
changing atoms to its environment, and that the attempt
frequency for atomic exchanges is independent of the al-
loy configuration. The configuration is defined by averag-
ing the occupation number of lattice sites: the averaging
can be performed among several identical systems,
defining the concentration on each site, or among the
sites of an atomic row, defining the concentration in the
row, or among the sites of a plane normal to a given
direction, defining the concentration in the plane.

To be more specific, we deal in the following with a
binary alloy (A4-B), and restrict to a one-dimensional
problem, i.e., we consider a set of identical lattice planes
labeled 1,...,p,...P; each plane contains () atomic
sites, sheared among two sublattices with a proportion w;
of sites belonging to sublattice i (i=1,2). The
configuration of the alloy is defined by the set of concen-
trations n,ﬁ of B atoms in plane p (p =1 to P) on sublat-
tice i (i =1 or 2). The corresponding A concentration is
nlji=1—ni. The configuration can alternatively be de-
scribed by two other fields: (i) the overall concentratlon
in plane p: n,=wn, +a)2n (ii) the *““degree of order”

plane p: 1, =n)—n}?

n,=0.

pA free-energy functional F(B)=Qf(B) can be written
where B is a 2P dimensional vector with components
(Qo;n, '). It can be written in terms of the internal energy
&(B) and an entropy 8(B). &(B)=Qe(B) where the
internal energy per site e writes

._ze

=n?and

in the disordered state, n >

pr

e(B)= 1)+ surface term (7)

and &(B)=QJ(B), where the entropy per site s writes

3(B)=kpg 2 3p (n np nt '2)+surface term (8a)

P=

P’

with

3, =n;ln(npl)+n1;11n(n,;1)+np21n 2H-n 2n(n ’2)

(8b)

Depending on the range of interatomic interactions, e, in
Eq. (7) implies concentrations in planes p+k, k =1 or
more.

For the sake of simplicity, we assume that the atomic
exchanges occur among nearest-neighbor pairs of sites
only, and that all such neighbors are either in the same
plane or in nearest-neighbor planes. We introduce the
partial coordination numbers 21;{1 as the number of
nearest neighbors a site (i,p), i.e., on sublattice 7 in plane
D> has on sublattice j in plane q.

For describing the kinetics of such a model, we intro-
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duce the “forward” current of B atoms from one site (,p)
to one site (j,q), along one single link between such sites:

_ 36 a8
P Qw;dn, Qw;dn,’

b =vn)njexp—PB |E, 9)

Jpq

In Eq. (9), v is the attempt frequency, B the inverse tem-
perature (1/kgT) and E, the saddle-point configuration
energy (assumed to be a constant). The partial derivative
of the internal energy with respect to n; is to be taken
keeping n[;’ constant. The net current of B atoms from
site (i,p) to site (j,q) is the difference between the for-
ward and backward current along the link (i,p;j,q):
FL=ji—jli=f—b . (10)

Since f and b are both positive, Eq. (10) can be sym-
metrized as

FI=Vfb X[Vf/b —Vb/f]. (11)
Introducing expressions (9) and (10) into Eq. (11) yields
#=Vfb X[sinhB(ul —pl)] . (12)

In Eq. (12), the local chemical potential y!, has the fol-
lowing definition:
, n,

Hy= [n—"y . (13)
! P P
p,;, is the derivative of the free energy of the alloy with
respect to the B concentration on the sublattice i in plane
p. Finally, the total flux of B atoms between sublattices i
and j from plane p to plane g is given by the right-hand
side of Eq. (12) times the number of appropriate links per
site, L J

ij =
I5

Ly Xd3, . (14)
For the sake of simplicity, we assume the structure to be
centrosymmetric, i.e., L} =L‘{;. When the alloy is in an
equilibrium state, the net flux along any link is zero, i.e.,
the local chemical potential has a unique value on both
sublattices in all planes. It is easily shown that this value
is nothing but the chemical potential p introduced in Eq.
(4).

Close to equilibrium, ,u;, depends both on i and p, but
departs only slightly from u; B fluxes take place accord-
ing to Eq. (12) which can be expanded to first order in the
deviation from p:

T =mghBluh—pl) , (15)
where the mobility coefficient is given by

m;{1=vL" \/n n”n’n’f

n a6 4 96
¥ Qodn  Qwdn

Xexpg —2E

4 96 4 aé .
Qw;dn] Qo;dn,

(16a)

Since Eq. (15) results from a first-order expansion of Eq.
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(12), the above mobility must be evaluated to zeroth or-
der in the deviation from equilibrium: All concentration
dependent terms in Eq. (16) must be given their equilibri-
um value (1), so that, taking advantage of detailed bal-
ance, we get

_ T 06
m;{]—vL;{l ;' q’expB Eg,+ Qo.on!
ionp
496 (16b)
Qmjanéf

It is now a simple mater to establish Eq. (6): this is done
in the next section.

III. THE COUPLED RELAXATION OF THE FIELDS
OF CONCENTRATION AND OF DEGREE OF ORDER

The rate of change of the degree of order and of the
overall concentration in plane p is obtained from the rates
of change of the concentrations on each sublattice in the
latter plane. The latter write

dt" =JEATI T =T TR (17
Indeed,
dn, dn! dn? dn, dn! dn?
P P p _ % 4%
@ “Var to, dt and dt dt dt 18
Simple but tedious algebra yields the following results:
dm, af af
P — ym +mom ,
dt P dnp‘l 4 dnp_l
(19)
dn df df
p
_=Mn7]___ +Mﬂn__ s
dt 7 dn,_, P dn,_,

where the .MgB’s are linear operators with the following
definition:

M= 2(010) [—4m)2+D[(m,L,,+m;2,,)D-]

—S[(m2L,, +m,2,,)8:1],

n_ 1
M ZED[(mp”-lp s2ip)D0 ]
| (20)
M= e [[(m _1p+m L)
—(m _1p+m —lp)]D.] ’

M =—D[[ mi2 +mll )+ (m2l,, +m2 p)ID-],

In Egs. (20) the operators D- and S- have the following
definition:

Du, _=u,—u,_; and Su, =u,+“u,_ ;. 21

It is interesting to notice that

D[Du, _,]=u, tu,,—2u,, (22a)
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and corresponds to the curvature of u at site p,

S[Du, _,]=D[Su, ]=u,+1—u,_;, (22b)
and corresponds to the derivative of u at site p, and
S[Su, ;]=D[Du, ,]+4u, (22¢)

For deriving Eq. (20), the following relationships had
to be used:

af

T=w1wz<#},*#§) ;

(23)
af _ 1
d——,u'p +p’p ’

and

augFagu,=;l(a,+ag)u,Fug)

+lag—ag)ugtug)] .

Equations (19) and (20) with the mobilities given by Eq.
(16) describe the coupled relaxation of the nonconserved
and of the conserved order-parameter fields close to equi-
librium; we state once more that the mobilities are to be
evaluated giving all quantities in Eq. (16) their value in
the equilibrium state in the vicinity of which the relaxation
is being described. In the particular case where the equi-
librium state is uniform (i.e., invariant by translation per-
pendicular to the plane p), the mobilities are independent
of p and can be factorized in the operators .M,‘,‘B [Egs.
(20)].

IV. DISCUSSION

Several new interesting features are revealed by Egs.
(19) and (20).

(1) The relaxation of the fields of concentration and of
degree of order in an alloy are coupled; indeed, the nondi-
agonal terms .M,;‘H (a#P) of the operator M are nonzero
in the general case. This coupling is ignored by the avail-
able theories of precipitation of ordered phases.2 ¢ The
reason for this omission is that the mobilities in the exist-
ing theories are introduced in an arbitrary way, the con-
sistency of which, with the underlying thermodynamics,
is not proven. In most theories, the mobilities are taken
as constants.’® The concentration and the degree of or-
der are not the eigenmodes of the problem. Neither are
the concentrations on each sublattice.

(2) Even if we ignore the nondiagonal element /17", the
relaxation of the degree of order (the nonconserved order
parameter in our problem) does not obey Eq. (1): indeed
M]" is the sum of three terms [Eq. (20)], the last two of
which contain a contribution of the nonuniformity in
df /dm,. In other words, if the system is not uniform,
the nonconserved order parameter relaxes via two paths:
homogeneous relaxation [properly described by Eq. (1)],
which corresponds to intraplane exchanges between the
sublattices, and migration of domain boundaries (de-
scribed by the two last terms in J#]"), which corresponds
to interplane exchanges between the sublattices. ThlS
latter contribution is ignored in the classical treatments.'
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(3) The relaxation of the conserved order parameter
(the concentration field) is well described by an equation
similar to Eq. (5). It is however also coupled to the relax-
ation of the nonconserved parameter by the operator
M7, One example of such a coupling is the change of
concentration induced at an antiphase boundary by a
wetting transition. This coupling is overlooked by classi-
cal treatments.

(4) It may be assumed that the nonconserved order pa-
rameter relaxes much more rapidly than the concentra-
tion field [the validity of this hypothesis might not be
consistent with the actual values of the mobility
coefficients in Eq. (20)]. Then df/dn,=0, and we are
left with the contribution of M to the relaxation rate of
7, and of M ;" to that of n,. We recover Eq. (5) for the re-
laxation of the conserved order parameter.

(5) If the equilibrium state towards which the system
relaxes, is a fully disordered uniform solid solution, the
concentrations on all the sublattices in all the planes are
thg same, so that m —m;,’l, but in the most general case
m;:ﬁﬁm” for topologlcal reasons. Under such cir-
cumstances, the elements of M are written as follows:

= 12
M= Zwlw [—4(m2+m, —lp)
+(m _]p+m _lp—Zm _IP)DZ‘] ’
Jl’t""=—-(m oL —mi D%, (24)
nn— 2 DZ Mmm s
M 2(01 (m —lp lp) W10y
1
m""=3(m Lyptm2,+2m)2 D> .

The transformation of Eq. (19) into a continuum theory is
straightforward in this case:

2
an(x,1) /3t = — L 5F /6n +L1%(857/817)
X
aZ
+£, (8% /8n) , 25)
ox

2 2
B (x,0) /0t =L ;-2 (86F /) +.L 2= (6F /) .
ox ox

In a recent paper,'© it was argued that the Laplacian
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terms in Eq. (25) are artificially introduced, that the L,
term is the only one to contribute to the relaxation rate of
the nonconserved as well as of the conserved order pa-
rameter. The present model shows that this is not the
case and moreover that Laplacian terms do also enter the
relaxation rate of nonconserved order parameters.

Finally, it is worth mentioning that the model we used
has been solved numerically prior to linearization, to
study coherent ordered phase separation in binary alloys
with the bcc structure, in particular in the presence of
external forcing like shear under plastic deformation or
ballistic mixing under irradiation.!' ~!* It is worth using
this technique to explore the range of validity of the
linear approximation we used in the present work. Work
is in progress in this direction.

CONCLUSION

We applied the kinetic Bragg-Williams model’ to the
coherent precipitation of ordered phases. We show that
the relaxation rate of the long-range order parameter
(nonconserved) and of the concentration (conserved order
parameter) are coupled not only by the free energy as
usually assumed,' but also by nondiagonal terms in the
linear operator which connects the relaxation rate of both
order parameters to the driving forces, i.e., the partial
derivatives of the free-energy functional with respect to
the order parameters. Moreover, we show that the relax-
ation of the nonconserved order parameter may occur by
two routes, a homogeneous one (on site relaxation) and a
heterogeneous one (migration of domain boundary). All
such effects are ignored by current theories. It must be
acknowledged that the “kinetic Bragg-Williams” approx-
imation used in this paper is very crude indeed and ex-
cludes the possibility of exploring the effect of long-range
fluctuations on the kinetics in the vicinity of critical
points. Such questions could be addressed using a more
sophisticated thermodynamical description (e.g., pair ap-
proximation).'*
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