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Minima, transition states, and rearrangement pathways have been calculated by eigenvector following

for model face-centered-cubic solids. Results are reported for systems bound by three empirical poten-

tials representing Au, Ag, and C6O. Various vacancy and interstitial diffusion processes are investigated,

and diffusion constants, formation energies, and migration energies are compared between the different

systems. In addition to these generally localized mechanisms, several highly cooperative rearrangements

were found, and the possible significance of these results, and of the effects of lattice relaxation, is dis-

cussed.

I. INTRODUCTION

Finding atomic configurations which correspond to lo-
cal energy minima is usually not difficult given a model
for the energy as a function of the coordinates. To dis-
cuss dynamics, however, one needs to characterize transi-
tion states, which correspond to structures of highest en-

ergy on lowest-energy pathways between pairs of minima.
In recent years considerable progress has been made in
finding transition states and rearrangement mechanisms
in progressively larger systems. The purpose of this pa-
per is to show how such methods can be applied to ex-
tended systems with periodic boundary conditions
representing bulk material or surfaces.

The results presented in this paper are all for face-
centered-cubic systems and employ empirical potentials.
The solids in question are Ag and Au, represented by
different forms of a many-body potential due to Sutton
and Chen' (SC), and C60, represented by an intermolecu-
lar potential due to Girifalco. The functional forms are
given in Sec. III and the optimization method used to lo-
cate all the minima and transition states and characterize
the rearrangement pathways is described in Sec. IV. A
number of vacancy (Sec. VI) and interstitial (Sec. VII) mi-

gration mechanisms are identified, giving formation and
migration energies, as well as diffusion constants (Sec.
IX). Some highly cooperative processes are described in
Sec. VIII. It is also important to consider the differences
between calculations performed at constant volume and
at constant pressure, i.e., where the lattice is allowed to
relax. Results are given in Sec. IX where it is shown that
relaxation does not affect the energetics significantly, but
can have dramatic consequences for the diffusion con-
stants. Conclusions are presented in Sec. X.

II. DEFECTS AND DIFFUSION

It is generally accepted, following Huntingdon and
Seitz, that nearest-neighbor vacancy migration is the
most energetically favorable defect diffusion mechanism
in metals. However, there has been some debate about
the cause of the upward curvature of Arrhenius plots,
i.e., the logarithm of the diffusion constant as a function

of the reciprocal temperature. This effect is especially
pronounced in the group-4 body-centered-cubic metals
P-Ti, P-Zr, and P-Hf, and phonon interactions combined
with a temperature-dependent vacancy migration enthal-

py may be responsible. The energy barrier to migration
calculated from simulations by Mikhin and Osetsky was
smaller than for a static calculation, and it was suggested
that this is due to the presence of a "dynamic double bar-
rier. " Here, however, we will concentrate on the
potential-energy surface.

For the refractory body-centered-cubic metals of
groups 5 and 6 the Arrhenius plot curvature is less pro-
nounced, and Neumann et al. concluded that two
diffusion mechanisms are responsible. They further ar-

gued that a divacancy contribution can be neglected, and
that a second-nearest-neighbor process is more likely to
provide the additional mechanism than rearrangements
involving interstitial atoms. The presence of two
different kinds of interstitial defects in the group-4 met-

als, and perhaps groups 5 and 6 as well, has been suggest-
ed by Frank.

For face-centered-cubic metals the enhanced rate of
diffusion at high temperatures is qualitatively similar to
that observed for the group-5 and -6 metals. Siegel
pointed out that this could be due to temperature-
dependent properties of the monovacancies or, more like-

ly, contributions from other mechanisms at higher tem-

peratures. For Al, Au, and Pt he argued that divacancies
are the second mechanism in question, but that intersti-
tials could also be involved in other face-centered-cubic
metals. Schiile described the divacancy contribution to
diffusion in Au as "especially small" and "relatively large
in Cu and Ag, even below 700'C," and also ruled out a
significant temperature dependence of both monovacancy
and divacancy parameters, with the possible exception of
Ag. However, the small contribution of the divacancy
mechanism in Au is all that is needed to explain the very
small curvature exhibited for this metal. In contrast,
Fuks et al. interpreted their calculations for face-
centered-cubic Cs in terms of the variation of the energy
of vacancy formation with the concentration of vacan-
cies. '

0163-1S29/94/50(17)/12342(20)/$06. 00 50 12 342 1994 The American Physical Society



50 REARRANGEMENTS IN MODEL FACE-CENTERED-CUBIC SOLIDS 12 343

III. POTENTIALS AND CALCULATION
OF THE ENERGY

The present study employs empirical potentials for Ag,
Au, and C6o, both to provide benchmark calculations for
these systems and because accurate quantum-mechanical
descriptions would be very time consuming. We do not
expect these forms to give high accuracy, although previ-
ous results for Sutton-Chen potentials are encouraging.
Since only equilibrium data have been used in the param-
etrizations we should not expect quantities such as bar-
rier heights to be as accurate as vacancy formation ener-
gies. However, the main purpose of the present paper is
to demonstrate that eigenvector following can reveal
rearrangement mechanisms and activation barriers in
model bulk systems if energy derivatives are available.
Although the whole concept of a transition state can be
avoided using a quantum-mechanical approach, " most
previous considerations of rate processes are essentially
classical, following Vineyard, ' and this framework will
also be used in the present work.

The Sutton-Chen' form used for Ag and Au is an ex-
tension of the many-body approach developed by Finnis
and Sinclair' intended to give a realistic description of
long-range as well as short-range interactions in transi-
tion metals. The need to extend empirical descriptions of
metals beyond a simple pair representation has been
recognized for some time, and various approaches have
been suggested, starting from the inclusion of three-body
terms. ' ' Both the Finnis-Sinclair and embedded-atom'
models represent the cohesive energy by an attractive
functional of the electron density and a repulsive pair po-
tential. Physically reasonable inward surface relaxations
have been obtained with such potentials. ' The Sutton-
Chen form has also been found to give results in agree-
ment with experiment in describing the migration of sur-
face atoms' and surface relaxation. ' The structural and
dynamical implications of such potentials for clusters
have also been investigated. ' The energy in this ap-
proach is written as

n
a

Vsc =e X
i&j ~J

where

P =
jul &J

is the local "density" at atom i, r,-. is the separation of
atoms i and j, e is a parameter with dimensions of energy,
a is a parameter with dimensions of length, c is a dimen-
sionless parameter, and the exponents n and m are con-
strained to be integers. ' The fitted values recommended
by Sutton and Chen are @=0.0025415 eV, a =4.09 A,
c =144.41, n =12, and m =6 for Ag, and @=0.012793
eV, a=4.08 A, c=34.408, n =10, and m =8 for Au.
For given values of n and m the value of c is constant and
corresponding results for other metals may be obtained
by simply rescaling the units of energy and length. '
Hence the present calculations for Ag and Au also pro-
vide results for SC Rh (12-6}and SC Pt (10-8).

For C6O molecules the intermolecular potential em-

ployed is that of Girifalco. Each molecule is treated as a
pseudoatom without orientational coordinates, making
the present calculations tractable at the expense of intro-
ducing orientational isotropy. The total energy is

1 1 2Va= —a g 3+
s; (s, - —1) s; (s,"+1) s,"

+pg +
s,i(s; —1)

1 2

s,, (s,, +1)' s,," (2)

SC Ag:
SC Au:
C6o:

L =5.6648,
L =5.6569,
L =5.6568,

C =2.5035,
C =2.500,
C =2.8284.

For Ag the values were arrived at starting from the ex-

where s, =r,""/2a, r, being "the separation between the
centers of mass of molecules i and j, radius a,
a=3600' /768a, and P=3600B/368640 a' . A and B
are the coefficients of the attractive and repulsive terms
in the carbon-carbon Lennard-Jones potential, and were
determined by fitting to the sublimation energy and the
lattice constant of bulk C6O. The pair well depth and
equilibrium separation are then 3218.43 K (0.2773 eV}
and 10.0558 A. The pair well depth is a convenient unit
of energy, and most of the results will be presented in this
reduced form.

The effective range of the C6O potential is very short
compared to the equilibrium pair separation. Previous
calculations using the same potential predict that the
liquid phase of C6O will have either a very limited range of
stability or none at all. A study of clusters bound by
the Morse potential has revealed how the topology of the
potential-energy surface of a finite system changes with
the range of the pairwise interaction. Shorter range re-
sults in a more complicated surface with more minima
and more transition states because distant atoms are in-
sensitive to one another's precise locations. Hence the
potential-energy surface becomes glassy or amorphous, as
confirmed by other studies. Such behavior has also been
found in comparisons of C6o and Lennard-Jones clus-
ters. Similar considerations can be used to explain the
diff'erences observed between C6O and the Sutton-Chen
systems found in the following sections.

To simulate a regular fcc lattice a cubic cell of 256
atoms or molecules was used together with the
minimum-image convention where a given particle in-
teracts with the closest periodic images of the other
X—1 particles associated with the basic repeated cell.
The interaction must be cut off at not more than half the
box length for consistency. The Sutton-Chen potential
proved more time consuming to evaluate than the C6o
and most results are for a cutofF of around 2.5 times the
equilibrium bulk nearest-neighbor distance. Calculations
were performed to gauge the efFects of the cutofF, as de-
scribed below and in Sec. IX, which were generally incon-
sequential. Hence, unless stated otherwise, results are for
box lengths L and cutoffs C in units of the bulk nearest-
neighbor distance given by
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perimental value for L with C =2.5 and then relaxing the
lattice for the close-packed structure, changing C in pro-
portion to L. For Au the experimental value for L was
unchanged by further relaxation, correct to 10 %. For
C6 I. was optimized for the fcc lattice keeping C =I./2.

The cutoff and the minimum-image convention intro-
duce a further complication because of discontinuities
when a particle passes through the cutoff distance or
when the closest periodic image of one particle experi-
enced by another changes. Energy discontinuities could
be avoided by employing a fixed neighbor list but this
was not deemed to be appropriate in the present context
of reaction pathway calculations. In fact, discontinuities
were not found to pose any serious problems and were
only manifested as very small energy jumps in some of
the reaction pathways, where the energy should strictly
decrease continuously. Such problems were only notice-
able for a few of the Sutton-Chen pathways which were
checked by steepest descent.

IV. EIGENVECTOR FOLLO%'ING

Finding transition states on a potential-energy surface
is generally a much harder problem than finding minima.
Here we define a true transition state as a stationary
point of Hessian index 1, i.e., with precisely one negative
eigenvalue. All the geometry optimizations and reaction
path calculations in the present work were performed by
eigenvector following. ' This approach has sufficient

flexibility to systematically increase the energy for one
degree of freedom, whilst minimizing the energy in all the
conjugate directions —the prerequisite for a successful
transition-state search. Minima can be found within the
same framework by minimizing in all directions.

In fact, some transition states and higher-order saddle
points can be located by simple energy minimization.
This is possible where the geometry in question is a local
minimum within a restricted configuration space defined

by the presence of particular symmetry elements. For ex-

ample, in the nearest-neighbor and second-nearest-
neighbor vacancy migrations the transition state has an
additional mirror plane passing through the migrating
atom that is not present in either of the corresponding
minima. Hence the forces which would lead to energy
lowering of the transition state through collapse into a
minimum vanish by symmetry. Even so, some previous
studies of such mechanisms and their analogues in other
regular lattices do not appear to perform energy minimi-

zation for the transition state, ' ' though others
do. ' ' In fact, relaxation has often been neglected
even for local minima corresponding to vacancies or in-
terstitials, ' again with some exceptions. ' ' Cal-
culation of lattice defect energies in ionic solids following
Mott and I.ittleton and of energy barriers has em-

ployed similar techniques. "
However, methods such as damped molecular dynam-

ics ' ' do not provide a satisfactory general approach to
the calculation of transition states. In their study of the
generalized saddle surface De Lorenzi, Flynn, and Jacuc-
ci refined the transition state using a procedure that em-

ploys second derivatives and is probably equivalent to

taking Newton-Raphson steps. However, the Newton-
Raphson approach is also unsatisfactory because it can
converge to a stationary point of any order. The saddle
surface, which is the hyperplane in which all degrees of
freedom except that corresponding to the reaction coor-
dinate defined at the transition state are allowed to
vary, ' is needed when calculating rates by computer
simulation at finite temperature. Studies of such surfaces
have shown that anharmonic effects make a contribution
of less than 2% to the isotope eS'ect factor3 and that
corrections due to multiple barrier crossings are negligi-
ble at low temperature and reduce the rate by only
around 10% at the melting point. Conjugate-gradient
techniques were employed by De Vita and Gillan to cal-
culate the vacancy and nearest-neighbor migration ener-
gies in Al, but such optimizations can also converge to
saddle points rather than minima. Perkins and DePris-
to have used the Ulitsky-Elber algorithm in recent
surface calculations which include rearrangement path-
ways for hundreds of active atoms. It would be interest-
ing to compare the performance of the above method,
which does not require second derivatives, with eigenvec-
tor following in future work.

%e now consider the eigenvector-following approach
in more detail. Refinements of this method have im-

proved the convergence properties and made possible cal-
culations for systems with hundreds of degrees of free-
dom. In fact, the present approach is especially sim-

ple for a bulk system, and to appreciate this some under-
standing of the method is needed. The standard
Newton-Raphson step is given by

hNR
—H g (3)

~here F, is the component of the gradient along V,-. If
the number of zero eigenvalues were constant we could
employ the Newton-Raphson step using {4), taking only
contributions from degrees of freedom with b;WO. How-

ever, at a general, nonstationary point the rotations are
coupled to vibrations by terms linear in the gradient.
Hence, for a free molecule there are always three zero ei-
genvalues corresponding to the translational normal
modes, but there are generally a number of other modes
with small but nonzero eigenvalues. For a bulk system,
however, there are always three, and only three, zero ei-

genvalues at an arbitrary point, and so we can perform
geometry optimizations in Cartesian coordinates without
further complications.

However, the inverse Hessian does not exist, because H
will usually have zero eigenvalues corresponding to bulk
translations and rotations. For isolated molecules there
are six zero eigenvalues at a stationary point, while for
an extended system there are only three corresponding to
the bulk translations.

It is helpful to consider the consequences of the
Newton-Raphson step in the basis of Hessian eigenvec-
tors V, where the corresponding eigenvalues are b;. The
step and energy change are then

F;V, p2
hNR= —X b

and ~ENR= —g 2b
l l
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Although the above arguments relate to the Newton-
Raphson step they carry over to the present eigenvector-
following calculations, which employed steps of the form

+2F;

lb; l(1+Ql+4F; /b; )

(5)

V. CHARACTERIZING REARRANGEMENT PATH%'AYS

Various properties of the reaction paths were calculat-
ed to provide comparisons between the different systems
and to give quantitative measures of path length and
cooperativity. The integrated path length S is the arc
length in 3N-dimensional configuration space, where N is
the number of atoms or molecules in the periodically re-
peated cell. S was approximated as a sum over
eigenvector-following steps:

1y gQ2 I/2

steps i
(6)

where b,Q,. is the step along Hessian eigenvector i Clear-.
ly the distance between minima s and t in nuclear
configuration space D must be less than S, where

where the plus is for maximization, and the minus for
minimization. In most transition-state searches the
eigenvector corresponding to the smallest Hessian eigen-
vector was followed uphill. Analytic first and second
derivatives of the energy were employed at every step,
and the resulting stationary-point energies and
geometries are essentially exact for the model potentials
in question. Calculations were considered converged
when the root-mean-square force was less than 10 and
the maximum step size less than 10 for two successive
steps, where the units of energy and distance are eV and
the nearest-neighbor distance for the Sutton-Chen poten-
tials, and the pair well depth and 3.469 A for C60, the
latter being the value of the Lennard-Jones o parameter
for carbon-carbon interactions. All stationary points
were characterized by their normal-mode frequencies.

Some of the stationary points calculated in the present
work are neither minima nor true transition states but
higher-index saddle points with more than one negative
Hessian eigenvalue. These were found using a pseudo-
Newton-Raphson step employing b,. defined in (5) but al-

ways taking the minus sign and the actual value of b;,
rather than the modulus, in the denominator.

To visualize the mechanisms and reaction pathways,
the transition-state geometries were perturbed by adding
(and subtracting) a small fraction of order 0.01 of the nor-
malized eigenvector corresponding to the unique negative
Hessian eigenvalue, and initiating eigenvector-following
searches for minima from the resulting geometries.
Smaller displacements were needed for some of the highly
localized mechanisms. The pathways calculated in this
way do not follow true steepest-descent lines because the
eigenvector-following step is not strictly parallel to the
gradient vector. However, they should be quite adequate
for the present purposes.

and Q;(s) is the value of the nuclear Cartesian coordinate

Q; for minimum s, etc.
The moment ratio of displacement y provides a mea-

sure of how cooperative a rearrangement is: '

Ng [Q;(s)—Q, (t)]
'2

g [Q,(s)—Q;(t)]

F 256E =, Ew' —Ezs6 (9)

(which gives essentially the same result as
Ez —N'E 62/s256). ComParison is therefore made with a
reference state consisting of the regular lattice with the
same number of particles, rather than with a surface
state. For the SC potentials the results of this approach
are practically the same as those of Uppenbrink,
Johnston, and Murrell, ' who used a different definition.
Expression (9) was employed by Denteneer and Soler36
and is slightly different from that used by De Vita and
Gillan, 3s where the volume is adjusted too.

For C60 Girifalco has previously estimated the vacancy
formation energy as half the sublimation energy, arguing
that half the contacts lost when a bulk molecule is re-
moved are recovered when it is placed on the surface.
However, the latter process involves six nearest-neighbor
contacts, as does the sublimation energy within the same
approximation. Professor Girifalco has confirmed to the
authors that the previous factor of one-half was in-
correct. The approach used in the present work gives a
value that is practically the same as taking the full sub-
limation energy.

VI. VACANCIES AND VACANCY MIGRATION
MECHANISMS

A. Minima

Tables I and II collect the energies of the regular fcc
lattice, the unique single-vacancy minimum, and various
two- and three-vacancy minima. The nomenclature for
the divacancy structures, which have 254 atoms or mole-
cules in the cubic ce11, is illustrated in Fig. 1: for the
structures referred to as 2543 -F the vacancies, in units
of the nearest-neighbor distance, lie in the following
representative positions.

If only a single atom moves then y=N and the rear-
rangement is entirely localized, whereas if a11 atoms move
through the same distance then y = 1 and the process is
completely cooperative. Some previous comparisons of
these quantities for clusters bound by the Lennard-Jones
and Girifalco C60 potentials are provided elsewhere.
For the present calculations the nearest periodic image
was always used in calculating distances.

Defect formation energies were all calculated by com-
parison with the regular fcc lattice of 256 particles by re-
scaling the energy. Hence, if the defect structure has N'

particles, where lN' —256l ~ 3 in this study, and energy
EN., then the formation energy E was estimated as



DAVID J. %ALES AND JULIA UPPENBRINK 50

TABLE I. Minima found for the fcc lattice and structures with vacancies for the Sutton-Chen poten-
tials. Energies are in eV. AE is the energy relative to the 256-atom fcc structure in units of the
cohesive energy and E is the formation energy in eV calculated by rescaling the number of atoms and
comparing with the perfect lattice as described in the text. For the fcc lattice E is the cohesive energy
per atom.

Structure

256 fcc
255 vacancy

254A
254B
254C
254D
254E
254F

253A A 1

253A A2
253BB1

253BB2
253DD1
253DD2

Energy

—743.768 568
—739.879 751
—736.001 993
—735.987 304
—735.989 724
—736.088 791
—735.987 661
—735.991 609
—732. 123 855
—732. 120 520
—732.094 311
—732.092 761
—732.299 798
—732.402 080

SC Ag

1.339
2.673
2.678
2.677
2.643
2.678
2.677
4.008
4.009
4.018
4.019
3.948
3.912

2.905
0.987
1.971
1.986
1.984
1.884
1.986
1.982
2.963
2.967
2.993
2.995
2.785
2.682

Energy

—965.417 381
—960.983 336
—956.538 718
—956.541 315
—956.545 269
—956.602 413
—956.537 369
—956.548 365
—952.093 737
—952.085 714
—952.098 118
—952.093 492
—952.220 099
—952.293 473

SC AU

1.176
2.354
2.354
2.353
2.337
2.355
2.352
3.533
3.535
3.532
3 ~ 533
3,500
3.480

3.771
0.665
1.347
1.344
1.340
1.283
1.348
1.337
2.034
2.042
2.030
2.034
1.906
1.832

D

E
B
F
C

1
v'2
v'3

2
v'g
v'6

Label Vacancy separation Vacancy coordinates

(0,0,0),(1/v 2, 1/v'2, 0)
(0,0,0),(v'2, 0, 0)
(0,0,0),( v 2, 1/v'2, 1/v 2 )

(0,0,0),( v 2, 0, V 2)
(0,0,0),(0,3/v 2, 1/v 2)
(0,0,0),(v'2, V2, v 2)

A A 1

AA2
BB1
BB2
DD1
DD2

(0,0,0), (v 2, 0,0), ( —v 2, 0, 0)
(0,0,0), (v 2, 0,0),(0,0, v2)
(0,0,0), (v 2, 0, v'2), (

—v'2, 0, v'2)
(0,0,0), (v 2,0,v'2), (

—v'2, 0, —v 2)

(0,0, 0), (1/v 2, 1/v 2,0), (
—1/v 2, —1/v 2, 0)

(0,0, 0), (1/v'2, 1/v 2, 0), (0, 1/v 2, 1/v'2)

For trivacancy structures six arrangements were con-
sidered initially; the positions of the empty sites, in units
of the nearest-neighbor distance, are

There are some interesting patterns discernible in
Tables I and II. First we note that the cohesive energies
per atom or molecule should all be in good agreement

TABLE II. Minima found for the fcc lattice and structures
with vacancies for C60. The unit of energy is the pair well

depth. AE is the energy relative to the 256-atom fcc structure in
units of the cohesive energy and E is the formation energy in

units of the pair well depth calculated by rescaling the number
of atoms and comparing with the perfect lattice as described in
the text. For the fcc lattice E is the cohesive energy per mole-
cule.

Structure

ac
B

256 fcc
255 vacancy

254A
254B
254C
254D
254E
254F

253AA1
253A A2
253B81
253BB2
253DD 1

253DD2

—1655.842 670
—1642.908 056
—1630.039 392
—1629.978 769
—1629.974 889
—1630.973 382
—1629.988 104
—1629.976 278
—1617.171 250
—1617.159243
—1617.049 914
—1617.049402
—1619.044285
—1620.037 947

2.000
3.989
3.999
3.999
3.845
3.997
3.999
5.979
5.978
5.998
5.998
5.689
5.536

6.468
6.492

12.968
13.029
13.033
12.027
13.020
13.032
19.495
19.491
19.618
19.619
17.600
16.595

�

+ E

D

F

reference vacanc~

FIG. 1. Labeling scheme for divacancy structures. The first
vacancy is at the bottom right-hand corner site and the labels
A —F then refer to the position of the second vacancy with
respect to this site.
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TABI.E III. Rearrangement pathways for SC Ag involving vacancy migration. Energies are all in

eV. MIN1 and MIN2 are the two minima, 6I and 6& are the two barriers. S, D, and y are defined in

Sec. V and co is the magnitude of the unique imaginary normal-mode frequency of the transition state in

cm '.

MIN1 TS MIN2 S(A) D (A) y

255 vacancy
255 vacancy

254D
254B
254D
254F
254F
254C

253DD2
253DD1
253DD1
253231
2532 A2
253BG1'
253BB2

0.7334
3.1721
0.4039
0.6572
0.7591
0.7292
0.7319
0.7324
0.2146
0.4203
0.7208
0.7031
0.7075
0.7334
4.7635

( 110) —739.146 307
( 100) —736.707 674

—735.684 898
—735.330 140
—735.329 644
—735.262 376
—735.259 691
—735.257 362
—732.187 518
—731.879 457
—731.491 051
—731.420 758
—731.413052
—731.362 958
—727.331 114

0.7334
3.1721
0.4039
0.7587
0.6580
0.7396
0.7319
0.7303
0.2146
0.3127
0.8087
0.6889
0.8867
0.7314
4.7616

255 vacancy 3.40
255 vacancy 5.67

254D 3.57
254D 3.40
254E 3.35
2543 3.41
254F 3.43
254E 3.41

253DD2 3.44
253BE1' 3.75
253 AD1b 3.48
253 AE1' 3.43
253DD 1 3.53
253BB1 3.43
253B62' 9.97

2.85
4.09
2.85
2.87
2.86
2.84
2.85
2.85
2.71
2.80
2.86
2.83
2.87
2.85
6.44

252.4 58.1

252.6 86.8
251.0 14.?
251.3 57.7
251.2 56.7
251.4 58.2
251.4 57.9
251.4 57.8
250.3 33.8
249.9 21.6
250.3 59.1

250.4 56.4
250.1 60.6
250.4 57.9

70.0 34.3

'E = —732.211 891.
"Vacancy moves from ( —1/&2, —1/&2, 0) to (0, —&2,0), E= —?31.192 196.
'Vacancy moves from ( —&2,0,0) to ( —&2, 1/&2, —1/&2), E= —732. 109667.
Vacancy moves from (

—&2, 1/&2, 3/&2), E= —732.094 311, to ( —&2,0, &2).
'Vacancy moves from (

—&2,0, —&2) to ( —3/&2, 1/&2, —&2), E= —732.092?61.

with experiment because this property was Qtted in each
case. The energy difference between a defect structure
and the ideal lattice is about 1.3 and 1.2 times the
cohesive energy per atom for each vacancy in Ag and Au,
respectively. For C6p however, the energy increase for
each vacancy is close to twice the ideal cohesive energy.

If we neglect the efFects of relaxation of the surround-
ing atoms upon vacancy formation and count only
nearest-neighbor interactions, which each contribute
ENN, then the increase in energy for each vacancy creat-
ed would be roughly 12ENN. However, in the same ap-
proximation the cohesive energy per atom is 6ENN, and

TABLE IV. Rearrangement pathways for SC Au involving vacancy migration. Energies are all in
eV. MIN1 and MIN2 are the two minima, 5& and 52 are the two barriers. S, D, and y are defined in
Sec. V and co is the magnitude of the unique imaginary normal-mode frequency of the transition state in
cm

MIN1 TS MIN2 S (A) D (A)

255 vacancy
255 vacancy

254D
254B
254D
254F
254F
254C

253DD2
253DD 1

253DD1
253M 3 1

2532 A2
253BG1
253BB2

0.5658
2.4393
0.3784
0.5188
0.5757
0.5811
0.5613
0.5701
0.3784
0.3954
0.5537
0.5321
0.5451
0.5612
3.6183

( 110) —960.417 149
( 100) —958.544042

—956.223 997
—956.022 495
—956.026 790
—955.96?247
—955.989 023
—955.975 145
—956.223 997
—951.824 690
—951.602 818
—951.561 613
—951.540 587
—951.536 952
—948.4?5 161

0.5658
2.4393
0.3784
0.5799
0.5106
0.5715
0.5613
0.5622
0.3784
0.3230
0.6173
0.5291
0.6795
0.5635
3.6221

255 vacancy
255 vacancy

254D
254D
254E
2543
254F
254E

253DD2
253BE1'
253 AD1
253 AE1'
253DD 1

253BB1

253BG2'

3.36 2.83
5.64 4.06
3.44 2.81
3.38 2.85
3.40 2.83
3.39 2.83
3.38 2.82
3.39 2.83
3.44 2.81
3.67 2.82
3.40 2.82
3.36 2.80
3.44 2.82
3.39 2.83

10.75 6.40

252. 1 38.4
252.3 58.6
251.3 18.6
251.2 38.0
251.2 37.5
251.0 38.7
251 ~ 1 38.1

251.0 38.2
251.3 18.6
250.4 18.4
250.2 39.1
250.0 37.1

250.1 40.3
250.1 38.1

69.9 24.6

'E = —952. 156 53?.
Vacancy moves from ( —1/&2, —1/&2, 0) to (0, —&2,0), E= —952. 156537.

'Vacancy moves from ( —&2,0,0) to ( —&2, 1/&2, —1/&2), E= —952.090 692.
Vacancy moves from ( —&2, 1/&2, 3/+2), E= —952. 100480, to ( —+2,0,+2).

'Vacancy moves from ( —&2,0, —&2) to ( —3/&2, 1/&2, —&2), E= —952.097 256.
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TABLE V. Rearrangement pathways for C60 involving vacancy migration. Energies are all in units of the pair well depth. MIN1
and MIN2 are the two minima, 5& and b2 are the two barriers. S, D, and y are defined in Sec. V and co is the magnitude of the unique

imaginary normal-mode frequency of the transition state in cm

MIN1 TS MIN2 S (A) D (A)

255 vacancy
255 vacancy

254D
254B
254D
254F
254F
254C

253DD2
253BE1
253DD1
253AA2
253AA1
253BG1
253BH1~

22.6488
115.9795

9.6068
21.6631
22.6589
22.5739
22.5745
21.6592
4.4092
8.6S77

22.6628
20.8007
21.9644
22.5052

128.5483

( 110) —1620.259 280
( 110) —1526.928 518

—1621.367 303
—1608.315 269
—1608.314 505
—1607.402 391
—1607.401 751
—1607.374 904
—1615.628 759
—1609.401 040
—1596.381 509
—1596.358 517
—1595.079 849
—1594.539 873
—1488.496 687

22.6488
115.9795

0.5203
22.6577
21.6736
22.6370
22.5745
22.6132
4.4092
0.5515

21.7259
22.6858
22.0397
22.5100

128.5474

255 vacancy
255 vacancy

254 off-center'
254D
254E
254A
254F
254E

253DD2
2S3 off-center'

253 AD1
253DD 1

253 AE1'
253BB1
253BI1"

12.46
22.41
6.90

12.30
12.42
12.SO

12.50
12.41
11.89
6.61

12.35
12.21
12.39
12.45
26.85

10.01
14.18
5.94

10.02
10.01
10.01
10.01
10.01
9.98
5.95

10.02
10.02
10.01
10.01
17.33

253.0
253.0
251.6
252.0
252,0
252.0
252.0
252.0
251.0
230.4
251.0
251.0
251.0
251.0
138.9

20.3
32.3
12.5
20.2
20.2
20.3
20.2
20.3
7.0

12.6
20.0
19.6
19.9
20.2
25.3

'E = —1629.978 769.
E= —1618.058 710.

'E = —1609.952 493.
4Vacancy moves from (

—1/&2, —1/&2, 0) to (0, —&2,0), E= —1618.107 455.
'Vacancy moves from ( —&2,0,0) to ( —&2, 1/&2, —1/&2), E= —1617.119507.
Vacancy moves from (

—&2, 1/&2, 3/&2), E= —1617.045 118, to ( —&2,0,&2).
I'Vacancy moves from (2/&2, 3/&2, —3/&2), E= —1617.045031, to (2&2,&2, —&2), E= —1617.044128, with two common va-

cancies at (0,0,0) and (&2,0,&2).

so the energy increase for each vacancy is twice the
cohesive energy. C60 actually follows this scheme quite
accurately, indicating that there is little relaxation
around vacancies for this short-range potential. For Ag
and Au, however, relaxation lowers the energy difference
significantly. It is important to notice that formation of
multiple vacancies is most favorable when they occupy
adjacent lattice sites because fewer nearest-neighbor in-
teractions are lost. Hence, for all three systems minimum
254D is the lowest-energy divacancy structure, and mini-
ma 253DD2 and 253DD1 are the lowest-energy trivacan-
cies.

For the largest vacancy separation, in structure 254C,
the energy difference is very close to that expected for
two single defects. This observation provides evidence
that the number of particles in the basic unit is
sufficiently large for at least some of the results to be in-

dependent of the periodic boundary conditions.
Details of the pathways found involving vacancy mi-

grations are collected in Tables III—V. The results for
SC Ag and Au are generally analogous; transition-state
searches were first performed for Au and then optimiza-
tions for Ag were started from the converged Au
geometries. All the transition states reported in Table II
converged within a few steps from the appropriately
scaled Au geometries. The energetic ordering of the
transition states is the same for the trivacancy structures,
but a litt1e different for the divacancies; the magnitude of
the unique imaginary frequency is usually 1.5 times larger
for Ag.

B. Rearrangement mechanisms

Most of the rearrangements can be described as
nearest-neighbor single-vacancy migrations. For all but
the last process in Tables III-V the mechanism is essen-

tially localized on one particle (y =N ) and in most cases
D is practically equal to the nearest-neighbor distance
(2.89 A for Ag, 2.88 A for Au, and 10.04 A for C60). The
barriers are generally quite similar too, i.e., around 0.7
eV, 0.55 eV, and 22 times the pair well depth for Ag, Au,
and C60, respectively. The basic ( 110) nearest-neighbor

migration for SC Ag is illustrated in Fig. 2.
For each potential there are one divacancy and two

trivacancy processes with particularly low barriers, and
these are analyzed in detail below. In each case the tran-
sition state has several vacant lattice sites adjacent to the
migrating atom, which does not follow an approximately
straight-line path. Instead it is deflected towards an adja-
cent "spectator" vacancy, lowering the energy of the
transition state by increasing the number of interactions
with nearest neighbors of the empty sites.

A11 the illustrations of rearrangement pathways were

prepared using Ref. 62. In each case the two minima ap-

pear at the extreme left and right, with the transition
state in the middle and two intermediate structures from
the reaction pathway on either side. The transition vec-

tor, i.e., the Hessian eigenvector corresponding to the
unique negative Hessian eigenvalue, is superimposed
upon the transition state in the appropriate sense for the
rearrangement from 1eft to right. The relative heights of



50 REARRANGEMENTS IN MODEL PACE-CENTERED-CUBIC SOLIDS 12 349

4L

jLiF

jLiF

FIG. 2. Nearest-neighbor va-

cancy migration for SC Ag
viewed in a section of the (001)
plane; the vacancy positions in

the two minima are marked by
open circles.
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the five frames are chosen to re6ect the energies of the
configurations in a schematic fashion. In each case a sec-
tion is taken through either the (001) or (111) plane, as
appropriate. For (001) projections a simple cubic grid is
added to guide the eye and vacancies are explicitly
marked by open circles.

The mechanism for second-nearest-neighbor vacancy
migration is illustrated in Fig. 3. Here migration occurs
in a (100) rather than a (110)direction, and at constant
volume the barrier is about 4.3 times higher for Ag and
Au, and Sve times higher for C60, because the particle
must squeeze through a smaller gap, causing more dis-
ruption. Both the first- and second-nearest-neighbor va-
cancy migrations are symmetrical in that the two sides of
the pathway leading away from the transition state are
equivalent.

For the divacancies the rearrangement of the 254D
nearest-neighbor vacancy pair which leads to a different
254D-type structure has lower barriers than any of the
other mechanisms. For Ag and Au the barrier is some
0.3 and 0.2 eV lower than the usual value, while for C60
the corresponding process involves a new, relatively
high-energy minimum and is asymmetrical. The mecha-
nism for Ag and Au is illustrated in Fig. 4. Note from
Tables III and IV that the integrated path length S is
slightly larger than expected for a direct motion, and Fig.
4 confirms that in the transition state the migrating atom
moves away from the straight-line path in the direction of
the neighboring vacancy. Although the transition state
appears to have a threefold rotation axis, inspection of
the distances reveals that there is actually only a plane of
symmetry perpendicular to the transition vector. In fact,

FIG. 3. Second-nearest-
neighbor vacancy migration for
SC Ag viewed in a section of the
(001) plane; the vacancy posi-
tions in the two minima are
marked by open circles.
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FIG. 4. Rearrangement of the
254D divacancy structure for Ag
to give an equivalent minimum
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there cannot be a threefold axis because of the McIver-
Stanton geometric selection rules which state that the
transition vector must transform into plus or minus itself
under any symmetry operation of the system. This would
not be possible if there were a true threefold axis. For
C60 the transition-state geometry in Ag and Au roughly
corresponds to a high-energy minimum (Fig. 5). The
McIver-Stanton rules do not prevent the minimum from
having higher symmetry, and indeed the ofr-site molecule
lies on a (111)-type axis, equidistant from the three
unoccupied sites.

There are two trivacancy rearrangements with particu-
larly low barriers and one with particularly high barriers
for each system, the latter corresponding to significant
motion of more than one particle. The rearrangement of

minimum 253DD2 to give an equivalent structure, which
contains three vacancies in a triangle, is common to a11

three systems and is illustrated in Fig. 6. In the transi-
tion state the migrating particle is not equidistant from
the tetrahedron of nearest-neighbor vacant sites but is at-
tracted away from the straight-line path between sites to-
wards the spectator vacancies, as for the rearrangement
of the 254D structure.

The trivacancy structure with a particle in the center
of a tetrahedron of empty lattice sites was also investigat-
ed for comparison with previous work. For a11 three
systems this structure corresponds to a stationary point
of Hessian index 3; the energies are given in Table VI.
The previous calculations considered the Lennard-Jones
potential and a Morse potential parametrized for Cu, and
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~ ~ ~ ~ ~ ~

~ 0 0 ~
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~ ~

~ ~

0
~

0 0 0
~ ~

~ 0
~ 0 0
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~ ~
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~ 0 0 0
~ ~

~ ~ 0
~ ~

FIG. 5. Rearrangement be-

tween the 254D structure for C«
and a high-energy divacancy
minimum with an off-site mole-

cule viewed in a section of the

(111)plane.
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FIG. 6. Rearrangement of the
253DD2 trivacancy minimum
for C60 to give an equivalent
structure. An atom migrates be-
tween two (111)-type planes so
that the lower plane contains all
three vacancies in the 6nal
minimum.

found that the symmetrical structure was stable for the
latter but not for the former. A calculation for the
Lennard-Jones potential was performed for comparison
using box length 5.6569 and cutoff 2.5 in units of the
nearest-neighbor distance. Again the symmetrical struc-
ture had Hessian index 3.

The stability found for the Morse potential in the pre-
vious study is more puzzling. This potential has only
one adjustable parameter, po, corresponding to the range
of the interaction. Values of p =6 and 13.6160. . . are
obtained by fitting the Morse potential to the Lennard-
Jones and Girifalco forms, the larger po corresponding to
short range, and both of these potentials give saddle
points for the symmetrical vacancy cluster. Unfortunate-

ly, the parameters used in the previous study were not re-
ported. To check that relaxation does not change the
number of negative eigenvalues in the present work the
geometries were reoptimized for all four potentials, main-

taining the same ratio of the box length to the cutofF. In
each case the Hessian index 3 was retained after relaxa-
tion.

The other trivacancy pathway with small barriers in-
volves the 253DD1 minimum for Ag and Au, with three
nearest-neighbor vacancies in a line. The second
minimum has 8- and E-type vacancies at nearest-
neighbor positions, and is common to Ag, Au, and C60.
For Ag and Au the mechanism is analogous to that illus-
trated for the 254D divacancy rearrangement (Fig. 7).
Hence, just as for the 254D process, the migrating atom
deviates from a straight-line path towards a neighboring
vacancy. The analogy carries over to C60, where instead
of 253DD1 we find an off-center molecule practically
equidistant from three vacant lattice sites in the second
minimum (Fig. 8).

The rearrangement of the 254D divacancy is the

lowest-energy divacancy diffusion mechanism, although
the corresponding process in C60 would proceed via a
new high-energy minimum according to the Girifalco po-
tential. Searches were also conducted for a divacancy mi-
gration in which two nearest-neighbor atoms move simul-
taneously into adjacent vacancies. For all three poten-
tials a saddle of Hessian index 2 was found close to the
idealized geometry for this process. Following both of
the downhill directions in each sense produced three
254D-type structures, with the vacancies in different posi-
tions, and one minimum of type 254E. The connectivity
is shown in Fig. 9. Lower-energy pathways exist between
these four minima via single-vacancy, nearest-neighbor
mechanisms, in accordance with the Murrell-Laidler
theorem.

De Lorenzi and Ercolessi report a stationary point of
Hessian index 2 corresponding to a double-jump vacancy
migration in their calculations for Au. Using trial and
error saddle searches they describe a process in which
two nearest neighbors move together in a (110) direc-
tion so that a vacancy effectively moves through two
nearest-neighbor distances. If such a saddle point does
exist then there must be a lower-energy pathway involv-

ing only true transition states connecting the same two
minima. In fact, we were unable to find a stationary
point of the appropriate geometry for SC Ag and
searches were not attempted for the other potentials.
Hence, if true transition states exist for concerted
multiple-jurnp processes, then they have yet to be charac-
terized.

From the summary in Table X below we see that after
the nearest-neighbor vacancy migration mechanism, the
divacancy migration (involving structure 254D) has the
lowest combined formation and migration energy. Hence
the present calculations suggest that, if a second mecha-

TABLE VI. Energy of the trivacancy stationary point consisting of a tetrahedron of empty sites with
a particle in the middle. In each case the structure has Hessian index 3. The units are eV for Ag and
Au and the pair well depth for C60 and the Lennard-Jones (LJ) potential.

Unrelaxed
Relaxed

SC Ag

—732.163428
—732.184261

SC Au

—951.751 863
—951.800 110

—1614.617 178
—1614.620 324

—1998.276 814
—2038.008 969
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FIG. 7. Rearrangement of
253DD1 for SC Ag to the
higher-energy minimum 253EB1

viewed in a section of the (111)
plane.

nism is responsible for the upward curvature of Ar-
rhenius plots at high temperature, then it is probably the
divacancy process. For C60, the divacancy mechanism
actually appears to be more favorable than the single-
vacancy process. The relaxation energies for these two
rearrangements are both small (Sec. IX).

VII. INTERSTITIAL MIGRATION MECHANISMS

The first mechanism investigated here was the forma-
tion of a vacancy-interstitial pair, or Frenkel defect.
For Au we found a rearrangement where three second-
nearest-neighbor atoms migrate in a line to give a (100)
split interstitial whose center is separated by 2&2 times
the nearest-neighbor distance from a vacancy (Fig. 10).
For Ag the stationary point corresponding to the Au
transition state has Hessian index 3 (E= —738.862 363
eV). However, there is a true transition state correspond-
ing to a small perturbation of this structure where the

three atoms move off axis. The higher-energy minimum
has a ( 100) split interstitial whose center is separated by
v S times the nearest-neighbor distance from a vacancy
(Fig. 11). The axis of the split interstitial is perpendicular
to that found in the Au analogue, providing the first qual-
itative difference found between the two potentials in this
study.

C60 is different from both Ag and Au. As for Au there
is a rearrangement in which three second nearest neigh-
bors move in a (100) direction. However, instead of a
vacancy-split-interstitial pair we find a vacancy and an
interstitial molecule in an octahedral site separated by
3/&2 nearest-neighbor distances (Fig. 12). The energet-
ics of all these pathways are summarized in Table VII.
This result is indicative of the unfavorable nature of split
interstitials in C60 with the present potential.

The remaining results in this section are all for cubic
cells containing 257 particles. The mechanisms found for
interstitial migration are different for the three potentials.
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FIG. 8. Rearrangement from a minimum

with an off-center molecule to minimum

253EB1 for C60 viewed in a section of the (111)
plane.
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FIG. 9. Schematic connectivity around the index-2 saddle
found when searching for a double-jump mechanism. Solid
lines indicate connections via a simple transition state and
dashed lines represent steepest-descent paths from the index-2
saddle. The lowest-energy path between any two minima cir-
cumnavigates the higher-order saddle.

For SC Ag the ( 100) split interstitial can move via a rel-
atively cooperative process involving rotation of a penta-
gon of atoms (Fig. 13). The axis of the interstitial
dumbbell rotates through 90' in this mechanism, while
the center of the interstitial moves through one nearest-
neighbor distance. This resembles the mechanism sug-
gested by Bocquet in the context of Ag-Zn solid solu-
tions.

For Au, however, we found a rearrangement between
the (100) split interstitial and an 0& interstitial which
occurs primarily through the motion of three atoms in a
line (Fig 14). .For SC Ag the corresponding Os intersti-
tial is a saddle point of index 3 (E= —742.783 605 eV).
Performing a transition-state search from the rescaled Ag
geometry with the SC Au potential gives the Os-to-
(100) rearrangement again. Clearly these mechanisms

are related to those found above for the formation of
vacancy-interstitial pairs. In both cases the motion essen-
tially occurs in a linear fashion for Au, while for Ag a
more cooperative process is involved resulting in a
reoriented split interstitial.

C60 again behaves differently from both Ag and Au.
Here we found a simple migration mechanism for an OI,
interstitial along a (100) direction through a (100)-
split-interstitial transition state (Fig. 15). Since the SC
Au potential has a shorter effective range than that for
Ag, while the efFective range of the Girifalco C60 poten-
tial is shorter still, it appears that (100) split interstitials
are favorable for longer-ranged potentials and Os inter-
stitials are unfavorable, while the converse holds for
shorter-ranged potentials. The energetics of these rear-
rangements are summarized in Table VIII.

The possibility of a (110) split interstitial was also in-
vestigated. A low-index stationary point for C60 was not
found, but for SC Ag and Au the configuration corre-
sponds to a transition state for a 90' rotation of the
(100) split interstitial. The defect does not actually mi-
grate in this process (Fig. 16); details of the pathways are
given in Table IX. Analogous rotation of ( 110)
dumbbells has previously been proposed to explain the re-
laxation of radiation-induced point defects in body-
centered-cubic Mo (Ref. 67) and W.s However, alterna-
tive mechanisms have also been suggested. The fact
that Ag favors (100) over (110) split interstitials with
the present potential is in agreement with experiment.

The barriers involved for the (100)-split-interstitial
rotation are clearly much larger than for the migration
processes in Table VIII, which are themselves orders of
magnitude smaller (for Ag and Au) than for any of the
vacancy migrations reported in the previous section. The
values obtained for Au, in particular, are almost an order

FIG. 10. Rearrangement of a
( 100)-split-interstitial/vacancy
pair (left) to the fcc lattice (right)
for SC Au viewed in a section of
the (001) plane. The vacancy is
marked with an open circle.
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FIG. 11. Rearrangement of a
( 100)-split-interstitial/vacancy
pair (left) to the fcc lattice (right)
for SC Ag viewed in a section of
the (001) plane. In this case the
split interstitial lies perpendicu-
lar to the axis along which the
three atoms appear to be moving
in the transition state. The va-
cancy is marked with an open
circle.

of magnitude smaller than for Ag. This is especially in-
teresting in view of the anomalous migration observed in
Au at very low temperatures, which Koehler has previ-
ously suggested is due to a (110) crowdion, 7' i.e., an in-
terstitial atom whose presence is "diluted" over a region
of about eight interatomic distances. However, the
larger formation energies of all the interstitials found in
this study suggest that relatively high temperatures
~ould be needed before thermally generated interstitials
could contribute signi6cantly to difFusion. When com-
pared to divacancies the formation energies are greater

but the barriers are lower. The present results suggest
that the divacancy mechanism has the lower sum of ener-
gies.

VIII. COOPERATIVE REARRANGEMENTS

A few highly cooperative processes were found for all
three systems. In these mechanisms, which have ex-
tremely high barriers, essentially all the atoms or mole-

FIG. 12. Formation of an

OI, -interstitial/vacancy pair
(right) from the fcc lattice (left)
for C60 viewed in a section of the
(001) plane. The vacancy is
marked by an open circle.
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cules move. If these motions were commensurate with
the periodic boundary conditions then we could clearly
dismiss them as artifacts of the model used to represent
the extended system. However, this does not appear to
be the case, and so it is possible that these rearrange-
ments are telling us something about the preferred
cooperative motions of the bulk. The results will be sum-
marized briefly here, if only to show that such mecha-
nisms exist for the conventional representation of extend-
ed systems.

The Srst fully cooperative process was found in a
transition-state search for SC Ag and links the regular fcc
lattice to a structure with no discernible order at all. The
pathway is highly asymmetrical because the disordered
minimum lies much higher in energy. An equivalent

pathway exists for Au, but when a transition-state search
was performed for C60 starting from the rescaled
geometry for Ag it took 88 cycles to converge. The re-
sulting pathway appears to link two high-energy, disor-
dered minima.

The second cooperative process is rather different. In
this case the barriers are again large but the fcc lattice is
connected to a new minimum with almost the same ener-

gy which possesses multiple twins on a set of [111]
planes. The symmetry inherent in this process only be-
comes apparent when the pathway is viewed down the
[110], [101], or [011] directions. The same process
occurs for all three potentials.

The final cooperative rearrangement was found initial-
ly in a transition-state search from the regular C60 lattice.
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FIG. 14. Rearrangement
from an 0& interstitial to a
(100) split interstitial for Au
viewed in a section of the (001)
plane.
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FIG. 15. Migration of an 0&
interstitial via a (100) split in-

terstitial transition state for C60
viewed in a section of the (001)
plane.
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Starting from the rescaled C60 transition state SC Ag con-
verged to a transition state in 24 steps, and the two mech-
anisms are found to be very similar, with SC Au behaving
in the same way as Ag. In all three cases the symmetry
of the rearrangement becomes clear when the pathway is
viewed down the [110]direction, and is then seen to in-

volve diamonds of 16 atoms or molecules. An alternative
description of the intermediate geometries is that they
possess stacking faults on inclined I 1 1 1 ) planes. Howev-
er, particles also migrate between planes parallel to this
direction. For C60 the diamonds undergo a slight relative
rotation to give a high-energy minimum. However, for
Ag and Au the diamonds do not "rock" when viewed in
this direction but expand and contract slightly, and the
regular fcc lattice is recovered.

IX. DIFFUSION CONSTANTS AND
LATTICE RELAXATION

The phenomenological diffusion equation is

Oe (10)

D =
—,'a'f

3N —3
min

j=1
3N —4

vTS

k=1

—hE/kTe

where D is the diffusion constant and Q is the effective
activation energy. The transition-state-theory expres-
sion, due to Vineyard, ' is

IF

~& &~
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FIG. 16. Rotation of a (100)
split interstitial via a ( 110) split
interstitial transition state for SC
Ag viewed in a section of the
(001) plane.
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TABLE VII. Rearrangement pathways for vacancy-interstitial formation from the regular fcc lattice for all three potentials. The

unit of energy is eV for Ag and Au and the pair well depth for C. MIN1 and MIN2 are the two minima, 5& and 52 are the two bar-

riers. S, D, and y are defined in Sec. V and co is the magnitude of the unique imaginary normal-mode frequency of the transition state

in cm

MIN1 TS MIN2 S (A) D (A)

SC Ag
vacancy-(100)-interstitial'

SC AU

vacancy- ( 100)-interstitialb

Ceo
vacancy-Oz -interstitial'

0.1250

0.0214

7.8446

—738.862 682

—961.628 647

—1471.717725

4.9059

3.7887

184.1249

fcc

fcc

fcc

8.01

7.37

23.66

4.76

5.29

15.88

107.9

89.0

19.2

12.3

14.4

'E = —738.987 707 eV.
E= —961.650081 eV.

'E = —1479.562 331 pair well depths.

TABLE VIII. Rearrangement pathways for interstitials in SC Ag, SC Au, and C6o', in each case the cubic cell contains 257 atoms
or molecules. The unit of energy is eV for Ag and Au and the pair well depth for C6o. MIN1 and MIN2 are the two minima, 5& and

52 are the two barriers. S, D, and y are defined in Sec. V and co is the magnitude of the unique imaginary normal-mode frequency of
the transition state in cm

MIN1 TS MIN2 S (A) D (A)

SC Ag
(100) interstitial'

SC Au
0& interstitial

C6o

Oz interstitial

0.0500

0.0012

9.6492

—742.830490

—966.075 706

—1482.713099

0.0500

0.0076

9.6492

(100) interstitial

(100) interstitial'

Oz interstitial

2.35

1.48

13.02

2.21

1.44

10.82

31.8

33.7

22.4

21.4

3.4

11.8

'E = —742. 880479 eV.
bE = —966.076 940 eV.
'E = —966.083 275 eV.
E= —1492.362 298 pair well depths.

TABLE IX. Pathways for the local rotation of (100) split interstitials in SC Ag and Au via a (110) split interstitial transition
state. In each case the cubic cell contains 257 atoms and the unit of energy is eV. MIN1 and MIN2 are the two minima, 5& and 62
are the two barriers. S, D, and y are defined in Sec. V and co is the magnitude of the unique imaginary normal-mode frequency of the
transition state in cm

MIN1

SC Ag
( 100) interstitial'

SC Au
( 100) interstitial

'E = —742.880 479.
E=—966.083 275.

0.4200

0.3005

TS

—742.460 450

—965.782 798

0.4200

0.3005

MIN2

(100) interstitial

(100) interstitial

S (A)

4.75

5.03

D (A)

3.07

3.03

60.9

63.7

42.2

28.0
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where a is the nearest-neighbor distance, ff„ is the corre-
lation factor equal to 0.781 for nearest-neighbor vacancy
migration and 0.468 for divacancy migration, v. '" and
v& are normal-mode frequencies of the minimum and
transition state in question, and hE is the sum of the de-
fect formation and migration energies. This expression
assumes that we may neglect the entropy differences and
the difference between enthalpies and internal energies.

In fact, one can equally well use a Rice-Ramsperger-
Kassel-Marcus-type expression for the rate, rather than
transition-state theory, and it is not hard to show that the
two become equal in the limit of high temperature. How-
ever, only the transition-state-theory values for D will be
given here.

Results will only be reported for the rearrangements
which seem most likely to contribute to self-diffusion and

TABLE X. Collected data for key parameters calculated for SC Ag, SC Au, and C6o in the present
work (in bold), and comparison with experiment and previous calculations. All diffusion constants are
in units of cm s ' and energies are in eV in each case; corresponding results for Pt and Rh may be ob-
tained by simply rescaling the SC results for Au and Ag, respectively. A superscript F signifies a forma-
tion energy calculated as described in Sec. V, and superscript M signifies a migration energy (barrier
height). Q=b,E +DE is the effective activation energy for difFusion by a particular mechanism.
Subscript 1U signifies single-vacancy properties, 2U signifies the 254D divacancy, "sec" signifies the
second-nearest-neighbor vacancy migration, Oz signifies an octahedral interstitial, and ( 100) signifies a
split interstitial. DE&„=26E &,

—EE~„ is the divacancy binding energy. Overbars denote calculations
in which the lattice was also relaxed.

Parameter

hE

LEM

Do

AE„,
Qsec
aE2F,
gEM

Qz.
Do /Do

AE2,
~E ( &oo)

dEM

Q«ooi
AEoh

AEM
oh

0A

SC Ag

1.11,' 1.02, 1.09~ 1.23 "
1.16,' 0.98, 0.99
0.64,' 0.8, 0.65,'
0.73, 0.73
1.96,' 1.99,' 1.79, 1.91,"

1.82,' 1.76,' 1.92, 1.76,'
2.06," 1.71, 1.72
0.67,' 0.895,' 0.07, 0.40,"

0.1, 0.00011, 0.0023
3.17, 2.39
4.15, 3.38
1.88, 1.88
0.67, 0.40, 0.40
2.37, 2.28, 2.28
55,' 37, 0.20
0.34,' 0.03, 0.08, 0.10
2.57,' 3.78, 3.61
0.050, 0.045
3.83, 3.65
2.72'

SC AU

o87,' o94' 09' o8»'
0.98, 0.97,' 1.24,"
0.66, 0.66
0.85, 0.84,' 0.57, 0.57

1.75,' 1.78,' 1.83," 1.81,~

2.07," 1.23, 1.23

0.048,' 0.107,"
0.000040,0.0010
2.44, 1.83
3.10, 2.49
1.28, 1.27
0.66,' 0.38, 0.38
2.30,' 1.66, 1.65
32,' 52, 1.32
0 l 6~ 0 04~ 0 04& 0 05
3.2, 2.26, 3.09, 2.90
0.0076, 0.0015
3.10, 2.90
2.29,", 3.10, 2.90

0.0012, 0.0033

3.10, 2.90

1.79, 1.80

6.28, 6.01

8.08, 7.81

1.8X 10-'
1.5X 10'
32.16, 25.50
33.95, 27.30
3.34, 3.34
2.66, 2.63'
6.00, 5.97

0.25, 0.26

46.94, 33.46

2.68, 1.44

49.62, 34.90

'Reference 77.
Reference 78.

'Reference 79.
Reference 14.

'Reference 8.
'Reference 80.
Reference 81.

"Reference 34.
'Reference 82.
'Reference 83.
"Reference 84.
'Reference 8».

Reference 74.
"Reference 86.
'These numbers are for the larger barrier; the smaller one (0.14 eV) is practically unchanged by relaxa-
tion.
Reference 65.
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are collected in Table X along with some experimental
and theoretical values from the literature. The agree-
ment obtained is quite encouraging, especially for Ag. In
making such comparisons, however, we must be aware
that all the results reported here so far are for constant-
volume rather than constant-pressure calculations.
Hence some selected stationary points were reoptimized
with respect to the box length L while keeping the ratio
of the cutoff to the box length fixed. Effective pressures
were also calculated for all the stationary points, using

E 1

dL 3L' (12)

These required numerical derivatives of the total energy
with respect to the box length, which were found from
two-sided differences. In fact, because of the cutoff and
minimum-image convention one must be especially care-
ful in employing numerical derivatives. There is also the
question of whether the cutoff should be incremented
with the box length when the numerical derivatives are
being calculated, or once the optimum value of L has
been found. (This should not affect the final optimized
geometry. } The most stable scheme consisted of incre-
menting the cutoff in proportion to the box length with
displacements of around 10 A. To optimize the box
length a simple golden section search method was em-

ployed for SC potentials and numerical first and second
derivatives were used in a one-dimensional eigenvector-
following scheme for C60. For all three systems lattice-
optimization steps alternated with standard eigenvector-
following steps for the positions of the particles within
the box. This procedure generally converged more slowly
for C6O.

The results for the unrelaxed stationary points show
the following features.

(i) All Ag and Au defect minima have P ——103 atm.
(ii) Ag and Au fcc lattices have P = —0.4 and 200 atm,

respectively.
(iii) C60 vacancy minima have P- —1 atm; the fcc lat-

tice has P=1.3 atm.
(iv} Divacancy transition states have P —+102 atm, the

plus for Ag and Au and the minus for C60.
(v) The single-vacancy transition state has P-10, 10,

and —10 atm for Ag, C60, and Au, respectively.
(vi) Trivacancy transition states have P-+10 atm,

the minus for Ag and Au, and the plus for C60, except
that the C60 transition state leading to a minimum with
an off-site molecule has P = —10 atm.

(vii) All stationary points calculated for cells contain-
ing 257 particles have P-10 atm, as do the transition
states corresponding to cooperative rearrangements.

Transition states for C60 generally have positive pres-
sures, even when there are several vacancies present.
This presumably again reflects the short range of the C60
potential: the relatively narrow width of the potential
well means that favorable interactions in an ordered local
minimum rapidly become unfavorable when some dis-
tances are shortened in a transition-state geometry. In
general, the pressure is always less than 1 atm in magni-
tude after the box size has been optimized.

Jn agreement with the above observations, the results

for C60 are significantly more sensitive to lattice relaxa-
tion than those for Ag and Au. Considering first the va-

cancy and divacancy mechanisms, the formation energies
for Ag and Au are hardly affected by relaxation, and mi-
gration energies only decrease by a few percent. The
diffusion constants, however, are much more sensitive be-
cause the products of normal-mode frequencies can
change significantly. For Ag and Au D &„ increases on re-
laxation, moving closer to experiment, but the ratio
Dz„/D, „agrees less well with experiment after relaxa-
tion.

For C60 the changes are more pronounced. The spec-
tacular increase in D,„on relaxation occurs because all
the normal-node frequencies of the transition state de-
crease by a couple of wave numbers on relaxation,
whereas those of the corresponding minimum fall only
slightly. Hence the diffusion constants are likely to be
the least trustworthy of the numerical results reported;
nevertheless, studies of the pressure dependence of
diffusion and other properties of C60 might be
worthwhile.

For mechanisms involving interstitials the effects of re-
laxation are more noticeable for Ag and Au, and are
significant for the C60 0& interstitial. In all cases relaxa-
tion lowers the defect formation energy, and usually the
migration energy decreases too, indicating that transition
states generally relax more than minima, as expected and
in agreement with previous work. The significantly
larger formation energy of interstitials compared to va-
cancies and divacancies contrasts with the predictions of
Flores and March for Na and K.

X. CONCLUSIONS

The most important conclusion is that eigenvector fol-
lowing can locate transition states for extended systems
and, perhaps for the first time, has given detailed insight
into rearrangement mechanisms. The scope for future
studies of both bulk and surfaces is limited principally by
the availability of realistic empirical potentials or efBcient
ab initio energy derivatives.

The two principal weaknesses of the present work are
the size of the cubic cell used to represent the bulk and
the empirical potentials employed. Fuks et a/. ' have
previously criticized calculations in which cells contain-
ing only around 100 atoms are used, since the effective
defect concentration is then several orders of magnitude
higher than in the solid at the melting point. There is
some evidence in the present work, from the formation
energies of well-separated divacancies, that this is not a
problem here. However, further investigation mill be
needed in the future employing a larger cubic cell to dis-
cover how well the results are converged with respect to
the cell size. The boundary conditions will probably
affect delocalized mechanisms the most, and this is a par-
ticular concern for the highly cooperative processes dis-
cussed in Sec. VIII. It is not clear from this initial study
whether the latter contain any useful information or are
merely artifacts.

There is one further potential source of difficulties in
comparing the present results with experiment, namely,
that the calculations are all of internal energies rather
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than enthalpies, and that entropy has been neglected.
However, the comparisons between constant-volume and
constant-(zero-) pressure results, the latter corresponding
to fully relaxed lattices, should provide a good indication
of the importance of such effects.

The much shorter effective range of the C60 potential
produces several predictions which are qualitatively
different from the Sutton-Chen Ag and Au potentials.
Examples are C60 minima with off-site molecules and the
calculated pressures and relaxation effects for C60. It also
appears that (100 ) split interstitials are favorable for sys-
tems bound by longer-range potentials, and 0& intersti-
tials are unfavorable, whilst the converse holds for sys-
tems bound by short-range potentials. For Au these two
defects have very similar energies. A general feature of
the results for all three potentials is that formation of
multiple vacancies is most favorable when they lie at
nearest-neighbor sites, as expected.

Divacancy migration has the lowest combined forma-
tion and migration energy aside from the monovacancy
mechanism. Furthermore, the relatively small effect of
lattice relaxation upon the energetics for Ag and Au sug-
gests that a second mechanism is more likely to be the
cause of the upward curvature of Arrhenius plots at high
temperature than temperature dependence of the forma-
tion and migration energies. Of course, this assumes that
the principal effect of temperature variation would be
similar to relaxation. For all three potentials the second-
nearest-neighbor migration is predicted to be more favor-
able energetically than mechanisms involving intersti-
tials. Divacancy and trivacancy migration mechanisms

with particularly low barriers occur for all three poten-
tials when the vacancies are adjacent. In such cases the
energy of the transition state is lowered by deviation of
the migrating atom towards spectator vacancies, thereby
increasing the number of favorable interactions.

Some difFerences have also been observed between the
Sutton-Chen Ag and Au potentials. For Au direct
motion in which three atoms move in a (100) direction
is favored over the more cooperative processes which are
found in Ag. However, it is not obvious how this obser-
vation is related to the results for migration on (100) sur-
faces. ' The somewhat better agreement with experiment
obtained for most properties with the Ag potential may
be a further indication that the SC Ag potential is a
better representation of Ag than the SC Au potential is of
Au. This has previously been suggested on the basis of
calculations for small clusters. '

Finally, the present study raises the important question
of how worthwhile an "accurate" quantum-mechanical
calculation is without proper geometry optimization,
and, conversely, how worthwhile accurate geometry op-
timization is for simple empirical potentials.
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