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By performing large-scale molecular-dynamics simulations of clusters of MgO we investigate the fun-

damental physics of melting, and the effects of pressure on melt and crystal structure along the melting

curve from zero pressure to 300 GPa. We Snd that melting occurs at constant root-mean-squared (rms)

displacements relative to the average near-neighbor distance over the entire pressure range, in agreement

with Lindemanns predictions of 1910, and contrary to previous studies that indicate failure of
Lindemann's law for nonmonatomic substances. The high-pressure validity of Lindemann's law sup-

ports one-phase models for melting. The liquid structure varies along the melting curve, becoming more

crystal-like with increasing pressure with average coordinate number changing from 4.5 to 6, and

LV/V, tends to zero with increasing pressure. Trends in thermodynamic functions and structure indi-

cate that in the extreme pressure limit, melting is characterized only by dynamical changes such as onset

of rapid diffusion, and not by local structural changes, since high pressure favors efficient packing of the

liquid as well as the solid.

I. INTRODUCTION

The physics of melting, particularly the relationship
between melting and intrinsic instabilities of crystals and
liquids, has remained a subject of great interest for most
of the century beginning at least as early as Lindemann's
1910 paper' relating melting to a threshold for atom dis-
placements from their equilibrium positions. Melting has
since been related to instabilities in the crystal as temper-
ature increases, to an instability in the liquid with in-
creasing order as temperature decreases, and to an insta-
bility in the crystal related to the growth of defects such
as dislocations. In this study we have used a first-
principles approach, and have applied the same
nonempirical, many-body potential, the potential-induced
breathing or PIB model, for MgO using both molecular
dynamics and lattice dynamics to understand the melting
process and how it relates to lattice instabilities. We have
chosen to study MgO since it is not complicated by
solid-state phase changes up to 500 GPa, ' and because
an accurate, well-tested potential is available. MgO is
also an end member of magnesiowustite (Mg, Fe)O, which
is believed to be a major phase in the Earth's lower man-
tle, and represents a simple analogue for melting of
close-packed oxides and silicates, an understanding of
which is of great importance to geophysics. By using the
massively parallel CM-2 and CM-5 supercomputers we
were able to run for long times to reduce hysteresis and
to obtain accurate values for static and dynamical corre-
lation functions such as rms displacements.

Molecular dynamics is a well-established technique for
studying melting in clusters and bulk. High-pressure
melting has been simulated in systems as complex as
MgSi03 and Si02 with periodic boundary conditions. "
Clusters as small as 64 atoms of KCl have showa
behavior similar to bulk melting, ' and the primary
difFerences between melting in clusters and bulk are shifts

in the melting temperature and surface melting. ' '
How cluster behavior evolves into bulk behavior with in-
creasing size has been examined using both molecular dy-
namics' and statistical mechanics. ' Our goal is to un-
derstand bulk melting, but we have chosen to study a
range of cluster sizes rather than a periodic bulk system
since enforced periodicity greatly inhibits crystallization
from the liquid, especially in defect-free systems with
long-range forces. By using finite clusters rather than
periodic boundary conditions, both melting and crystalli-
zation begin readily at the surfaces, so that we can direct-
ly reverse the melting curve. We obtain both the melting
(on heating) and crystallization (on cooling) tempera-
tures, by which the equilibrium melting temperature
must be bounded. With periodic boundary conditions
equilibrium melting and crystallization are impossible to
simulate without introducing extended defects al-
though the melting curve can be determined by free-
energy integrations, ' the dynamics of the melt and crys-
tal nucleation processes cannot be directly observed. By
systematically studying difFerent-sized clusters ranging
from 64 to 1000 atoms, we can extrapolate to obtain bulk
properties.

Lindemann' proposed perhaps the earliest instability
model for melting, and related melting to the crystal
shaking itself apart at the melting point. He proposed
that melting occurs when the rms displacements of atoms
reach some fraction of the nearest-neighbor distance.
The Lindemann law is often treated as an empirical ap-
proach for predicting melting, ' ' but fundamental tests
have been few. Many applications and tests have been
based on assuming a Debye model and used thermo-
dynamic data for the Debye temperature 8& to obtain
the melting temperature TNI with the expression
Tst=(lksO&a /9A )b, where I is a reduced mass, a
is the near-neighbor distance, and 6 is the rms displace-
ment of the atoms relative to the near-neighbor distance
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a at the melting point, which varies somewhat with
different materials. For example, the experimental melt-
ing curve of Pb has been shown to agree well with Lin-
demann behavior based on a simple Debye-Griineisen
model fit to a pair potential obtained from first-principles
electronic structure calculations up to 100 GPa. ' This is
not a strong test of the Lindemann hypothesis, however,
since it depends on harmonic Debye behavior, and on
knowing exactly how the effective 8D varies with pres-
sure and temperature. More sophisticated analyses still
require the harmonic and anharmonic response of the
crystal along the melting curve, so that apparent failures
of Lindemann's model may instead reAect failures in the
lattice-dynamical description of the crystal, particularly
near melting, or ambiguities in how to apply the Lin-
demann criterion to complex crystals. Such empirical
thermodynamic tests of Lindemann's law have generally
shown it to be unreliable for predicting melting curves
even for simple alkali halides. Notable fundamental
studies include simulations for argon using a Lennard-
Jones potential, Monte Carlo simulations used in con-
junction with perturbation theory for general Lennard-
Jones systems, and a self-consistent phonon study of
Lennard-Jonesiurn and the Gaussian core model. All of
the atomistic studies found that Lindemann's model pre-
dicted melting well, at least in the classical (i.e., high-
temperature) regime. However, all of these rigorous tests
have been based on simple monatomic systems with ideal-
ized potentials. In particular, it can be shown that a
power-law potential such as the repulsive part of a
Lennard-Jones potential obeys Lindemann's law exactly,
and since the attractive part can be treated as a small per-
turbation at high temperatures, it is not surprising that
Lindernann's law is followed closely for Lennard-
Jonesiurn, Thus, in spite of the venerable age of
Lindemann's criterion, no fundamental atomistic study
using realistic potentials for a more complex system has
been reported until now.

Another line of approach relating crystalline instabili-
ties to melting began with Born in 1939, who proposed
that crystals transform to melts, gels, or gases when they
become elastically unstable with respect to the shear elas-

tic constants c44, c»-c,z, or to the bulk modulus K, re-

spectively, as temperature or pressure varies. Boyer sug-

gested that the vanishing of bulk moduli with increasing
temperature that he found in Gordon-Kim models of
alkali halides was related to melting. Isaak, Cohen, and
Mehl found for the same potential used here that the
quasiharmonic free energy as a function of strain gives a
vanishing c»-c,z before the occurrence of the instability
in the bulk modulus, and also found the elastic instability
to occur very close to the experimental zero-pressure
melting point. There has been much hesitation to relate
this instability directly to melting because melting is a
first-order phase transition with a transition point given

by the equality of the free energies of the phases (e.g. ,

Ref. 26}. However, the thermodynamic argument gives
no information on the microscopic origin of melting, and
more specifically does not rule out the importance of a
lattice instability in driving a phase transition. For exarn-

ple, ferroelectric transitions in BaTi03 and PbTi03 are

first order, and the transition points are given by the
equality of the free energies of the ferroelectric and
paraelectric phases. Nevertheless, there is a well-defined
soft-mode lattice instability associated with the transi-
tions. Due to complications related to domain formation
and long-range strain interactions the soft-mode frequen-
cy does not vanish at the phase transitions, and there is
now much evidence that there is a crossover to order-
disorder type behavior as the ferroelectric phase transi-
tion is approached. So the first-order nature of a transi-
tion does not rule out an underlying dynamical instability
in the phases. Molecular-dynamics (MD) simulations for
Cu show just this behavior; c»-c&2 would vanish at
T=1430 K, but a first-order transition occurs earlier at
1170K while c»-c&z is still finite. '

II. METHODS

A. Potential

It is important to use an accurate, well-tested potential
or one can be easily misled. For example, inverse power-
law potentials automatically obey Lindemann's law along
the melting curve due to their scaling properties, and
Lennard-Jones potentials may mimic that behavior since
the attractive part can be considered as a small perturba-
tion on the repulsive power-law potential. We have
chosen the potential-induced breathing model since it has
been extremely well tested against both experiments and
electronic structure and total-energy calculations; the
PIB model appears to be ideal for Mg0. The PIB model
is a Gordon-Kim-type model, in which the charge den-
sity is approximated as spherical, overlapping, closed-
shell ions. It differs from rigid-ion models in that the ions
are allowed to relax spherically in response to changes in
the long-range electrostatic potential. Since 0 is un-
stable in the free state, the 0 ion is stabilized by in-

cluding a positive sphere in the atomic calculation, and
the radius of the so-called Watson sphere is chosen to
equal the long-range electrostatic potential at the ion.
The total energy is calculated using the local-density ap-
proximation for the kinetic energy as well as for the elec-
trostatic, exchange, and correlation energies. The total
energy is given by a sum of three parts, the self-energy of
each ion, the overlap energies between ions, and the
long-range electrostatic or Madelung energy. Since the
oxygen density depends on the long-range atomic envi-
ronment, the pair interactions, as well as the self-energy,
depend on the positions of all of the other ions. The PIB
model gives much improved thermoelastic properties
over rigid-ion models. PIB is a many-body model and
not only gives the correct Cauchy violations, but gives
the correct temperature dependence of c&z-c~. Since
the potential is long ranged and all X interactions must
be summed at each time step, well-converged computa-
tions were possible only by using a massive1y parallel ar-
chitecture. We used a modification of the massively
parallel code developed for Lennard-Jonesium by Boyer
and Edwardson for the CM-2.

One important question is whether the PIB potential is
appropriate for clusters, particularly among the surface
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atoms. Rigid-ion models for clusters show that with ion-
ic charges Mg'+ and 0' the bulk rocksalt structure is
favored even for clusters as small as 20—50 atoms, but
that clusters with +2 charged ions favor open rings.
There appears to be little question, however, that clusters
of 1000 atoms are cubic and bulklike. ' ' The PIB po-
tential has the advantage over rigid-ion potentials in that
one primary difference between the surface and bulk
atoms, the reduction in Madelung potentials, is reflected
in the potential. It is possible that ionic charges also vary
from the surface to the bulk, and this is not reflected in
the present calculations. Our goal here, however, is to
understand bulk melting, and, by studying cubic clusters
as a function of cluster size, we can recover good esti-
mates of bulk properties.

B. High-pressure molecular-dynamics simulations

We performed classical MD simulations using the Ver-
let algorithm with time steps ranging from 0.25 to 3 fs.
The zero-pressure simulations were performed for a clus-

ter in free space, and pressure was simulated by enclosing
the cluster of atoms in a cubic box with a size chosen to
give the average pressure of interest. All simulations
were at constant energy and number, and the high-
pressure runs were at constant volume. The pressure was
calculated both by the virial and by momentum transfer
to the box walls and both numbers agreed to 0.5%. At
high pressures, desired average pressures were obtained
by scaling the velocities (that is, by varying the tempera-
ture) but velocity scaling was not used after equilibration
for the portions of the runs used for evaluating correla-
tion functions or melting. A11 N interactions were calcu-
lated without truncation. The PIB potential is a many-
body potential, and the pairwise interactions depend on
the Madelung potential at each atom in a pair; the
Madelung potential at each atom was calculated from the
other N-1 atoms at each time step. For the 1000 atom
clusters, simulation times ranged from 5 to 640 ps, and
runs up to 430000 time steps were used to obtain highly
accurate rms displacements and well-constrained melting
and crystallization points.
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FIG. 1. Five frames are shown from an an-
imation, showing nucleation and crystalliza-
tion of a cluster of 216 atoms of MgO at zero
pressure in free space. The droplet in this
figure was heated until it melted and then su-
percooled to about 1000 K below the melting
point. Newton's equations were then integrat-
ed at constant energy. The nucleation and
growth process is quite fascinating. First flat
faces form on the cluster (see 15 ps). These flat
faces appear and disappear until one stabilizes
by inducing layering in the oxygen ions
throughout the cluster. After this rough or-
ganization of the cluster, the crystal nucleation
is completed by ordering of the magnesium
ions on the nucleation surface. Then crystal
growth begins in earnest and both crystalline
and molten regions coexist with a well defined
interface (24-30 ps). The crystal that nucleat-
ed was only five atoms across due to the radius
of curvature of the droplet, rather than the six
across that could make a perfect cube. Thus a
defect results, in this case a textbook example
of a low-energy defect, a rounded corner. Dur-
ing the crystallization process, atoms diffuse
very rapidly on the surface. At higher pres-
sures we found almost no hysteresis.
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III. RESULTS

A. Melting curve

creasing pressure. Nevertheless, hysteresis is much worse
with periodic boundary conditions. There are no experi-
ments for effects of pressure on melting in MgO, so our
high-pressure melting curve is a prediction, which will be
compared with future experiments.

We also performed lattice dynamics using the same po-
tential. Figure 2(b) also shows the quasiharmonic insta-
bility c»-c»~0. Although the elastic instability corre-
sponds closely to the experimental and MD melting
points at zero pressure, it deviates from them with in-
creasing pressure [Fig. 2(b)].

Simulations were studied by computer animations, and
melting and crystallization clearly initiated at the cluster
surfaces. Figure 1 shows a sequence of crystallization
from the melt. The crystal nucleates on one surface and
then grows, during which time both crystalline and melt
regions coexist in spite of the small cluster size. No evi-
dence for surface precursor melting was observed in the
animations. This is most likely due to the stability of the
(100) faces of MgO, similar to the (100) and (111)faces of
Cu for which no surface premelting has been seen.

Figure 2(a) shows a set of hysteresis or van der Waals
loops in temperature versus energy that were obtained by
heating and cooling. On heating, the temperature de-
creases as the cluster melts, and on cooling, the tempera-
ture increases during crystallization, due to the enthalpy
of melting. Figure 2(b) shows the resulting melting
curves, and the black band in the inset indicates the hys-
teresis between melting on heating and crystallization on
cooling. The melting curves show strong curvature at
low pressures due to the greater compressibility of the
liquid than the solid, and there is a pronounced size
effect, which increases with increasing pressure. Figure
2(c) shows the melting temperature versus the inverse
cluster length; surprisingly, this relationship is quite
linear even for cluster sizes as small as 216 atoms, and
departs only slightly from linearity for clusters as small
as 64 atoms. This gives us confidence to extrapolate to
infinite cluster size and to give the bulk melting tempera-
tures in Fig. 2(b). Note that the zero-pressure melting
point is predicted to be 3200+500 K for the PIB poten-
tial, which agrees well with the experimental value of
3098 K. The bracket for the melting temperature at zero
pressure is large due to hysteresis for melting versus crys-
tallization for the free cluster, which is large at zero pres-
sure (590 K for the 1000-atom cluster and 330 K for the
216-atom cluster), but becomes negligibly small with in-

B. Root-mean-squared disylacements along the melting curve

The simple elastic instability model does not follow the
pressure dependence of melting, although it does corre-
spond to melting at zero pressure. In Fig. 2(b) we show
the thermodynamic Lindemann criterion for melting
computed using the quasiharmonic free energy for the
same PIB potential, with the zero-pressure melting point
anchored to the experimental melting point. We used the
relationship dlnT —/dlnV =2y z

——', and fixed the
zero-pressure melting point to be equal to the experimen-
tal value. This is similar to previous empirical applica-
tions of the Lindemann law, except that we have calculat-
ed the quasiharmonic rms displacements with lattice dy-
namics using the same potential as was used for the MD
simulations. Although there is some correspondence be-
tween the thermodynamic Lindemann melting curve and
the predicted MD bulk melting (N +oo ), the a—greement
is not sufficient to base any strong conclusions on the ac-
curacy of the physics behind the Lindemann model.

A clear and most surprising picture emerges when the
actual anharmonic rms displacements are computed from
the MD results, rather than from quasiharmonic lattice
dynamics. These were obtained from the intercept (small
time limit) of the mean squared displacement versus time,

([r(t)—r(0)] ) =(2tt, ) +6Dt,
where D is the diffusion constant and the ensemble aver-

30 30
Elastic instability (c)

P =300
00 GPa.

o
g) 20

0

CL

E

«10
Ol
C:

C)

g) 20

Q)
CL

E

~10
C

n=216
..-0

.... ----' —S12 I0. '

...-0
..----""n = 1000

..-0
n -) infinity

Lindamann

0 GPa

0 GPa
i

10
o
l—

I-

5
l.

P = 40GPQ

0 GPa

0 GPa

P = 10GPa
P = ~ 5 GPa

0 GPa

0 GPa

(b)
I

n = 1000

0
0 100 200

P (cpa)
3001.0. 8

E + 275 (hartree)

FIG. 2. (a) Melting loops on heating (solid) and cooling (dashed) 1000-atom clusters. Only at zero pressure do we find significant

hysteresis. The melting temperature is at the center of each melting loop. (b) Melting curves for 216-, 512-, and 1000-atom clusters

and the extrapolated melting curve for bulk MgO. The inset shows the low-pressure region, and the thick band in the inset indicates

the hysteresis. Also shown is the c»-c» —+0 elastic instability, and the thermodynamic Lindemann criterion obtained using quasihar-

monic lattice dynamics. (c) The size dependence of the melting temperature. L =N' ' is the length of the cluster. The solid lines

were fit to the 216-atom and larger clusters, but come close to the 64-atom clusters, which were not used in the fit. The bulk melting

temperatures shown in (b) are extrapolated from the intercepts for 1/L ~0.
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comes large or is discontinuous, and there is good agree-
ment with the melting temperatures shown in Fig. 2(a.
The major result is that melting occurs at constant rms

isplacement relative to the average near-neighbor dis-
tance from zero pressure to 300 Gpa. We find this

ehavior invariant with respect to cluster size for the
clusters from 64 to 1000 atoms; although the melting
temperature changes with cluster size, melting always
occurs at a constant u, /(a ) =18%. This number is
not significant in itself, although it is somewh t 1ew a arger

an is observed for other compositions. What is
significant is that it is constant as a function of pressure

FIG. 3. Lind'ndemann ratio u, /a versus temperature for
000-atom clusters as a function of pressure. Circles are for 0

and squares are for Mg. The open symbols are for crystal and
the filled symbols are for liquid, runs within the hysteresis loops
were not included since they show both solid and liquid regions.

elting occurs when the rms displacements reach about 18% of
the near-neighbor distances over the entire pressure range.

age is over all initial times and atoms. The factor of 2
arises since r(0) does not refer to a fixed lattice but rather
to each instantaneous configuration. Figure 3 shows the
rms displacements over the near-neighbor di t fr is ances o

e an g ions (u, /( a ) ) as functions of tempera-
ture and pressure calculated accurately from the MD
simulations. At the melting point the change in u be-DIlS

C. Liquid structure along the melting curve

We have studied the liquid and solid structures and
have calculated pair distribution functions, coordination
numbers, and three-body angular distributions, along the
me ting curve. Figure 4 shows the calculated pair distri-
bution functions for crystal and liquid. Since we are
comparing structures along the melting curve, the high-

ig er temperature.pressure distribution is also at much h' h t
ue to the high temperatures, the crystalline peaks are

quite broad, and of similar but slightly sharper breadth
t an the liquid peaks. At large distance g (r)~0 rather
than 1 due to the finite cluster size. The crystalline order
extends to the edge of the cluster, but in the liquid, order
at ot zero and high pressures decreases more rapidly.
However, medium-range order in th 1' 'de iqui persists over
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FIG. 4. Partial pair distribu-
tion functions at P=0 and
P=300 GPa for crystal (solid)
and liquid (dashed) near melting.
The distribution functions van-
ish with increasing r rather than
tending to unity due to the finite
cluster size.
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several shells of neighbors to over 15 bohr At hig. h pres-
sures the first coordination shell in the liquid is almost
identical to that in the solid. That is shown even more
clearly in Fig. 5 where angular distributions averaged
over the first peak in the Mg-0 pair correlation function
are shown. The crystalline distribution peaks at 90' as
expected. The peak which is at 180' in the ideal crystal at
0 K is shifted to lower angles due to thermal motion. At
zero pressure the crystalline and liquid angular distribu-
tions are quite different, but the liquid distribution is still
peaked near 90'. At high pressures and temperatures the

liquid and solid angular distributions are very similar, in-
dicating converging local structure with increasing pres-
sure.

The convergence of local liquid and solid structure is
most evident on examination of coordination numbers.
Figure 6 shows the average coordination numbers for the
liquid and solid as a function of pressure along the melt-
ing curve. Since the melting temperature increases with
increasing pressure, temperature increases along the
abscissa, leading to the slight apparent decrease in the
crystal coordination number with increasing pressure.
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FIG. 6. Coordination numbers for solid and liquid MgO at (a) zero pressure, (b) 300 GPa, and (c) along the melting curve. The
liquid coordination number increases continuously from 4.5 to 6 as pressure is increased, and the liquid and crystal become more
similar in structure.
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Whereas the average coordination number in the crystal
is approximately 6 as expected, the melt has a coordina-
tion number of 4.5 at zero pressure, which increases grad-
ually with increasing pressure. Similar behavior is seen in
alkali halides at zero pressure. Though the coordina-
tion number is close to 4 in the liquid, it is not due to reg-
ular tetrahedrally coordinated ions because we find the
bond angles to peak near 90' as expected for octahedral
coordination (Fig. 5).

D. Equation of state along the melting curve
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0 50 100 150
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We have also fitted the volumes of the crystal and
liquid along the melting curve to a Birch equation of
state giving V0=21.0 A, K0=149 GPa, and K0=3.47
for the solid and V0=27.0 A, K0=59.2 GPa, and
Eo=3.83 for the liquid (rms errors from these fits are 3

GPa). Note that these are nonisothermal equations of
state. The results are shown in Fig. 7. In spite of the
much greater compressibility of the liquid than the solid
at low pressures, the densities of the solid and liquid do
not cross, even on extrapolation above the highest simu-
lation pressure of 300 GPa, due to the higher Ko for the
liquid. The convergence of liquid and solid densities
along the melting curve is discussed further below.
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E. Thermodynamics of melting at high pressures
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FIG. 7. Equations of state of crystal (solid) and liquid
(dashed) along the melting curve.

We have determined the basic thermodynamic parame-
ters for melting from our simulations (Fig. 8). The
enthalpy change on melting, b,H, was obtained from the
integrated energy versus temperature over the melting in-
terval, and hS was obtained from the slope of the melt-
ing curve and the Clapeyron equation dT/dP
=hV /bS . If we consider T =EH /hS, we see
that the increase in hH with pressure is the primary
cause of the increase in T with pressure. The entropy of

0
0 50 100 150 200

P (GPa)
250 300

FIG. 8. Thermodynamic parameters for melting as a func-
tion of system size. The lines are only guides for the eye. The
bulk curves were obtained by extrapolation of the 216-, 512-,
and 1000-atom cluster results vs 1/I.. All results shown were
obtained on heating. On cooling results were essentially identi-
cal except at zero pressure for 216-atom clusters and larger, in
which case defects were frozen in on quenching. (a) hH deter-
mined from equal-area constructions on the E vs T results [Fig.
2(a)] plus PhV . Note the change in sign of the size efFect at
about 40 GPa, perhaps due to increasing importance of the
long-range Madelung terms at high pressures and greater im-
portance of short-range coordination changes at low pressures.
(b) hS determined from the Clapeyron relation
dT/dP =6V/hS using the slope of the melting curve and 6V .
At high pressure bS converges very rapidly with system size.
(c) hV determined from the change in box size required to
keep constant average pressures at high pressures. At zero pres-
sure Boyer and Pawley's method (Ref. 28) was used to deter-
mine the average density of the cluster, which involves a Gauss-
ian weighted average over each atom position and is therefore
more surface sensitive. We also estimated 6V from
dT/dP = TLV/hH and that is shown as the upper set of points
at zero pressure. LV drops most rapidly at low pressures
where the liquid structure changes rapidly with increasing pres-
sure. At high pressures hV becomes small and seems to
asymptotically approach zero.
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melting also decreases with increasing pressure [Fig.
8(b)], decreasing most rapidly in the low-pressure regime
where the liquid structure changes most rapidly with
pressure [Fig. 6(c)]. Of particular interest is the high-
pressure limiting behavior for melting. As discussed
above, 5 V remains finite even on extrapolation of these
equations of state to 500 GPa.

IV. DISCUSSION

A. Liquid versus solid structure at high pressures

A clear result of the present simulations is that local
liquid and solid structures converge with increasing pres-
sure, and the liquid approaches crystalline densities with
increasing pressure. Long-range order is not present in
the liquid, but its packing approaches crystalline
efficiency. Examination of individual frames (snapshots)
from computer animations shows very high degrees of or-
der at high pressures throughout the cluster. In spite of
the high degree of order at any instant, there are rapid
cooperative difFusive motions of atoms as would be ex-
pected in a liquid. The diffusive motions seem to involve
mainly two-body exchanges. The coordination number in
the liquid increases with increasing pressure, and the
greater compressibility of the liquid than the solid is due
to this. Similar changes have been proposed for silicate
liquids. ' If one considers silicate melts as essentially
oxide melts, since the oxygen ions make up by far the ma-

jority of the volume of the melt, the results here for MgO
may be extended to make general predictions for the
structural and melting behavior of silicate melts at high
pressures. Once the liquid coordination number becomes
similar to that of the solid (50—100 GPa for MgO), the
liquid and solid compressibilities become similar, so that
the greater compressibility of liquids is essentially a rela-
tively low-pressure phenomenon.

B. Lattice instabilities

At zero pressure the melting point and the quasihar-
monic instability (c»-c&z)&H —+0 seem to coincide in

MgO. Similar behavior is observed for alkali halides.
This behavior thus spans a wide range of compositions
and melting points, and thus it seems far fetched to as-
sume that such behavior is entirely fortuitous. However,
at high pressure this relationship breaks down, as is
shown in Fig. 2(b). The relationship of the quasiharmon-
ic instability with melting is unclear, because the actual,
anharrnonic elastic constants show an instability at
higher temperatures, above the actual melting point. '

One possible interpretation is that the quasiharmonic in-

stability is correlated to barrier heights to bulk diffusive
motion, and that melting occurs when the kinetic energy
of sufficient numbers of atoms is greater than the barrier
height to drive a structural instability and thus a phase
transition. If this picture is correct, it is unclear why the
quasiharmonic instability fails to correspond to melting
at high pressures. The failure of (c»-c,2)&H~O to corre-
spond to melting at high pressures is probably not due to
the approach of a coordination change (which is predict-

ed to occur at much higher pressures, -500 GPa in the
solid) ' or to increasing defects in the crystal or melt
with increasing pressure and temperature, because we see
no such evidence in our simulations. Perhaps the simple
elastic instability is fortuitously close to important bar-
rier heights at zero pressure. For example, Boyer and
co-workers have proposed that the magic strain coordi-
nates, the strains that transform a B1 lattice into an
equivalent B1 lattice but with a different orientation, are
the lowest-energy coordinates for lattice strain. Howev-
er, we see no evidence for such cooperative all-body
motions in our simulations, yet our clusters melt at close
to the experimental melting point at zero pressure. Rath-
er we see evidence for exchange processes in the melt that
lead to high mobility.

We find using quasiharmonic lattice dynamics that
Lindemann's law does not agree very well with the melt-
ing curve obtained in our simulations. On the other
hand, we find that the Lindemann criterion is strongly
obeyed when the actual, anharmonic, rms displacements
are calculated from the MD simulations, rather than as-
suming quasiharmonic behavior up to melting. If our po-
tential was close to an inverse power-law potential, this
would tell us nothing about the dynamics of melting, be-
cause power-law potentials automatically scale along the
melting curve and liquid and melt structures remain con-
stant along the melting curve. The fact that we find
changes in liquid structure along the melting curve is
proof that the behavior we find is not due to scaling laws
for the potential. In fact, the PIB potential is very far
from a power-law potential in any case, since it includes
large many-body terms in the self-energy, Madelung con-
tributions, and a short-range potential with both attrac-
tive and repulsive parts. The PIB potential is expected to
be very realistic for the behavior of MgO based on com-
parisons with both self-consistent electronic structure cal-
culations' and experiment.

We emphasize again that the Lindemann relationship
we have discovered in our simulations of MgO is not due
to the potential being in any way like a power law. In-
verse power-law potentials give b V /V, and b,S to be
constant3s which is clearly not so for our potential (Figs.
8 and 9). If the observed Lindemann behavior is not due
to dimensional scaling, what could be its cause? The
behavior indicates that the approach to melting can be
inferred by examining only properties of the crystal. This
is true in spite of changes in liquid structure along the
melting curve. This seems to require an underlying
dynamical instability in the solid as the melting transition
is approached.

C. One-phase vs boo-phase melting models

The fact that melting is predictable from behavior of
the solid alone, despite changes in liquid structure along
the melting curve, is strong support for instability or
one-phase models for melting. One-phase models suggest
that melting can be predicted from the behavior of one
phase alone, without regard to the other. They do not
necessarily imply that two phases do not coexist at the
transition, or that the transition is not strongly first or-
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der. Arguments that melting can only be understood in
terms of free-energy difFerences between solid and liquid
(i.e., two-phase theories) ignore the success of soft-mode
and order-disorder phase transitions in solids, which are
also often first-order phase transitions. However, two-
phase models cannot explain the apparently intrinsic in-
stabilities in solid and liquid phases on approach to melt-
ing.

Even though melting is incontrovertibly a first-order
thermodynamic phase transition, our results suggest that
it is related in a fundamental way with intrinsic instabili-
ties in the solid. Finding these intrinsic instabilities will
lead to a fundamental microscopic picture of melting. A
search for low-frequency structure in $(q, r0) in the crys-
tal near melting may be fruitful. On the other hand, the
intrinsic instability cannot be the whole story; if one were
to introduce another component into the liquid that is
not soluble in the solid, for instance, the melting tempera-
ture would decrease due to the increased entropy of the
liquid phase. One-phase models are not in contradiction
to thermodynamics, but they simply propose that an in-
stabihty in one phase leads to a rapid increase in the free
energy of that phase relative to another, thus driving a
phase transition.

D. Melting at extreme pressures; predictions

As hV /V, ~O with increasing pressure, and as the
packing of the liquid becomes by necessity as efficient as
that of the solid, what is the nature of the melting transi-
tion? Most clearly we find that melting is not simply due
to changes in packing density. The changes in packing
density increase with increasing pressure, and the density
difference between solid and liquid slowly vanishes, yet
the entropy and enthalpy changes, b,S and hH
remain large, indicating that packing density is not a
good primary order parameter. On the other hand, rapid
diffusive motion sets in immediately on melting at all
pressures. This implies that the dynamical changes on
melting are the most important, and at high enough pres-
sures the dynamical changes at the transition dominate.

Most intriguing, we find that bS is still large in this
limit. Figure 9 shows b,S vs b, V /V„the relationship
is linear within the precision of the results, although satu-
ration to a constant entropy of melting at extreme pres-
sures cannot be ruled out. A linear relationship is intri-
guing because hS vs b, V /V, is linear among simple
substances at zero pressure with an intercept of ES /(ks
atom) =0.7, which has been related to the ratio of the free
volume of the liquid to that of the solid. Since in the
extreme high-pressure limit the packing of the liquid
must approach that of the solid, the free volumes must
also approach, and we indeed find for our bulk extrapola-
tion hS /(k~ atom)=0. 95+0.1, which is consistent with
the free volumes being equal. The entropy of melting be-
comes almost entirely communal, or dynamic and
diffusive, in the high-pressure limit. In other words the
entropy change can be envisioned as a change in available
phase space for each atom; in the crystal each atom is
more or less confined to a single cell, whereas in the
liquid diffusive motion allows each atom to move
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FIG. 9. hS /(kz atom) vs b, V /V, . The relationship is
linear within the precision of the data. The scatter is due to
multiple interpolations needed to obtain these numbers for the
Snite number of simulations. The implication of ES /(k&
atom)~1 as hV /V, ~O is that the entropy of melting be-
comes purely collective or difFusive in the high-pressure limit.

throughout the volume. The full communal entropy at
high pressures is contrary to expectations that the com-
munal entropy would vanish at high densities. ' In the
high-pressure limit, our results show that the atomic
motions in the liquid must be such as to allow for preser-
vation of local coordination and structure as in the solid.
Animations show that large-scale motions at high pres-
sure are dominated by exchange and many-body motions.
The entropy change at lower pressures contains both this
communal contribution and the static contribution from
structural disorder in the liquid.

There are presently no experimental data on melting of
MgO at high pressures. Quantities that have been pre-
dicted here include the melting curve, rms displacements
which are related to diffraction linewidths, equations of
state, and hH, ES, and V . The greatest uncertainty
in the present study is in the extrapolation from small
clusters to the bulk, and this extrapolation becomes
larger with increasing pressure. The zero-pressure densi-
ty of the liquid is also rather poorly determined; due to
the free boundary conditions the volume is not well
defined. The qualitative behavior of the thermodynamic
functions, the validity of the anharmonic I indemann cri-
terion, and the structural changes with pressure should
be robust and most probably general for simple systems
with solid and liquid structures which involve the same
bonding character and share similar, simple local struc-
ture.
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V. CONCLUSIONS

How general might be these results? MgO is in many
ways a simple material, yet we propose that the phenome-
na observed here may be general. Although the crystal-
line structure of MgO is simple rocksalt, the liquid struc-
ture is more complex and does change with pressure, yet
the Lindemann relation remains valid. The interatomic
interactions in MgO are long ranged, but the Lindemann
relation also seems to be obeyed in metallic Pb, which is
dominated by short-range interactions. Do the relation-
ships observed here exist in complex materials such as
Si02? There appears to be no fundamental objection to
the existence of intrinsic instabilities in all materials be-
fore melting; future work will clarify how general are the
present results. If instabilities are intrinsic to melting,
then any complete theory of melting must include such
instabilities. In applications in geophysics and materials,
a better understanding of the instabilities that drive melt-

ing will lead to better predictions of melting in new sys-
tems or outside the range of routine experimentation.
X-ray studies of Debye-Wailer factors near melting as a
function of pressure would be particularly exciting.

The most important result of the present study is the
implication that the dynamical aspect of melting, that is,
the onset of large-scale diffusive motion, is more universal
than packing and structural changes which are more ob-

vious at low pressures. At high pressures the entropy
and enthalpy changes are large at melting, but the
volume change becomes vanishingly small with increas-
ing pressure, and local structure in the solid and liquid
becomes identical.

In summary, we have performed large-scale simula-
tions of high-pressure melting in MgO. We have predict-
ed the melting curve, liquid and crystal structure, ther-
modynamic properties, and rms displacements as func-
tions of pressure. We hope that these results will stimu-
late experimental and theoretical work on the fundamen-
tal instabilities that lead to melting.
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